
Information Processing Letters 81 (2002) 271–276

Efficient minimum spanning tree construction
without Delaunay triangulation

Hai Zhoua,∗, Narendra Shenoyb, William Nichollsb

a Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
b Advanced Technology Group, Synopsys, Inc., Mountain View, CA 94043, USA

Received 7 April 2000
Communicated by F. Dehne

Abstract

Givenn points in a plane, a minimum spanning tree is a set of edges which connects all the points and has a minimum total
length. A naive approach enumerates edges on all pairs of points and takes at least�(n2) time. More efficient approaches find
a minimum spanning tree only among edges in the Delaunay triangulation of the points. However, Delaunay triangulation is
not well defined in rectilinear distance. In this paper, we first establish a framework for minimum spanning tree construction
which is based on a general concept of spanning graphs. A spanning graph is a natural definition and not necessarily a Delaunay
triangulation. Based on this framework, we then design an O(n logn) sweep-line algorithm to construct a rectilinear minimum
spanning tree without using Delaunay triangulation. 2002 Elsevier Science B.V. All rights reserved.

Keywords: Minimal spanning tree; Graph algorithms; Wire routing; Computational geometry

1. Introduction

Givenn points in a plane, a minimum spanning tree
is a set of edges which connects all the points and
has a minimum total length. Minimum spanning tree
construction on an arbitrary graph is a well studied
problem [1]. It also belongs to a more general class of
greedy problems on combinatorial structures known as
matroids [6]. Typical complexity of computing a min-
imum spanning tree in a graphG(V,E) is O(m logn),
wheren is the number of vertices andm is the num-
ber of edges. So given a graph, the spanning tree can
be constructed efficiently. Clearly, a minimal spanning
tree is contained in the complete graph ofn points.

* Corresponding author.
E-mail address: haizhou@ece.nwu.edu (H. Zhou).

However enumerating�(n2) edges is expensive for
largen.

The first algorithm to speed up the minimum span-
ning tree computation came as a by-product of compu-
tational geometry research and was based on the fact
that only the edges in the Delaunay triangulation of the
points need to be examined [8]. But this only works
in Euclidean distance (L2). When Euclidean distance
(L2) is used, the Delaunay graph is defined as the dual
of the Voronoi diagram [8]. A Delaunay graph is usu-
ally a triangulation if no more than three points are
cocircular, or can become a triangulation by adding
more edges. Preparata and Shamos’ algorithm [8] for
Voronoi diagram uses divide-and-conquerstrategy and
runs in O(n logn) time. Later, Fortune [2] designed
a much simpler sweep-line algorithm with the same
running time. His algorithm avoids the difficult merge

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00232-0

272 H. Zhou et al. / Information Processing Letters 81 (2002) 271–276

step of the divide-and-conquer technique. However,
when rectilinear distance (L1) is used, the Voronoi di-
agram is not always well defined. Efforts to resolve
this issue need to explicitly specify what they mean
when there are ambiguities [5,3]. Similar as in Euclid-
ean distance, the original algorithm [5] in this direc-
tion was a divide-and-conqueralgorithm. And motived
by Fortune [2], there came a sweep-line algorithm [3]
more recently.

As we mentioned earlier, minimum spanning tree
construction for Euclidean distance came only as a by-
product of Delaunay triangulation. Since Delaunay tri-
angulation is not well defined in rectilinear distance,
forcing minimum spanning tree computation on it en-
counters unnecessary difficulties. In fact, around the
same time, Yao [11] observed that a minimum span-
ning tree can be constructed by considering a suf-
ficient number of closest neighbors for each of the
given points and gave an algorithm which runs in
O(n2−1/8 log1−1/8 n) time for the planar case. Guibas
and Stolfi [4] further implemented the idea for rec-
tilinear distance in the plane with a running time of
O(n logn). Interesting enough, their algorithm is also
based on divide-and-conquer strategy: it divides the
point set into a left half and a right half, and recur-
sively applies the algorithm to them.

In this paper, we focus directly on the objective of
constructing a minimum spanning tree. Keeping this in
mind, we find that there is no need to take the burden
of constructing or even defining a Delaunay triangula-
tion. Actually, what we need are sparse graphs which
contain minimum spanning trees. Generally, we define
these graphs as spanning graphs. Although for Euclid-
ean distance a Delaunay triangulation can be proved to
be a spanning graph, a spanning graph need not to be
a Delaunay triangulation. This observation is invalu-
able for rectilinear distance metric where a Delaunay
triangulation is not well defined. Based on the frame-
work and using the property that each point needs to
be connected to only a few other points, we designed a
sweep-line algorithm to construct a spanning graph for
rectilinear distance. After that, a minimum spanning
tree can be easily computed on the spanning graph.

With respect to the literature, our work stands out in
two contributions: First, we establish a general frame-
work of spanning graphs which includes both Delau-
nay triangulation and non-Delaunay triangulation ap-
proaches, and study the properties of spanning graphs

in both rectilinear and Euclidean distances. Second,
although the divide-and-conquer algorithm by Guibas
and Stolfi [4] has the same asymptotic running time as
our sweep-line algorithm, theirs is more complicated
in implementation, requires more storage (O(n logn)

vs. O(n)), and has larger hiding constant.
The rest of the paper is organized as follows. In

Section 2, we define the spanning graphs and discuss
their properties. In Section 3, we design an algorithm
to construct rectilinear spanning graphs for a given set
of points. Finally, Section 4 concludes the paper.

2. Spanning graph

Given a set ofn points in a plane, a spanning
tree is a set of edges that connects all the points and
contains no cycles. When each edge is weighted using
some distance metric of the incident points, themetric
minimum spanning tree is a tree whose sum of edge
weights is minimum. If the Euclidean distance (L2)
is used, it is called theEuclidean minimum spanning
tree; if the rectilinear distance (L1) is used, it is
called therectilinear minimum spanning tree. Since
the minimum spanning tree problem on a weighted
graph is well studied, the usual approach for metric
minimum spanning tree is to first define a weighted
graph on the set of points and then to construct a
spanning tree on it.

Much like a connection graph is defined for the
maze search [12], we can define a spanning graph for
the minimum spanning tree construction.

Definition 1. Given a set of pointsV , an undirected
graph G = (V ,E) is called aspanning graph if it
contains a minimum spanning tree.

Usually, for a given set of points, the minimum
spanning tree may not be unique. Thus a spanning
graph defined above may not contain all minimum
spanning trees. If we are only interested in one of
these trees, no matter which one, the above definition
is sufficient. Otherwise, we may need a strong version
as follows.

Definition 2. Given a set of pointsV , an undirected
graphG = (V ,E) is called astrong spanning graph if
it contains all minimum spanning trees.

H. Zhou et al. / Information Processing Letters 81 (2002) 271–276 273

Since we are interested in spanning graphs with
as few number of edges as possible, we define the
cardinality of a spanning graph as its number of edges.
As we can see, a complete graph on a set of points
contains all spanning trees, thus is a spanning graph,
even in the strong sense. This gives us an O(n2)

upper bound on the cardinalities of both spanning
graphs and strong spanning graphs. On the other hand,
since a minimum spanning tree is by definition also a
spanning graph, the minimum cardinality of spanning
graphs is alwaysn − 1 for a set ofn points. But
the minimum cardinality of strong spanning graphs
is more complicated and, as we will show next, is
dependent on which metric is used.

Minimum spanning tree algorithms usually use two
properties to infer the inclusion and exclusion of edges
in a minimum spanning tree. The first property is
known as thecut property. It states that an edge of
smallest weight crossing any partition of the vertex set
into two parts belongs to a minimum spanning tree.
The second property is known as thecycle property. It
says that an edge with largest weight in any cycle in the
graph can be safely deleted. Since the two properties
are stated in connection with the construction of a
minimum spanning tree, they are related to a spanning
graph. A strong cut property states that all lightest
edges crossing any partition of the vertex set into two
parts belong to a strong spanning graph. A strong cycle
property says that the single heaviest edge in any cycle
in the graph does not belong to a strong spanning
graph. Preparata and Shamos [8] proved the following
lemma.

Lemma 1 (Lemma 6.2 in [8]).Let S be a set of points
in the plane, and let �(p) denote the set of points
adjacent to p ∈ S in the Delaunay triangulation of S.
For any partition {S1, S2} of S, if qp is the shortest
segment between points of S1 and points of S2, then q

belongs to �(p).

Combining the lemma with the strong cut property,
we have the following theorem.

Theorem 1. If Euclidean distance is used, the Delau-
nay triangulation of a set of points is always a strong
spanning graph.

Fig. 1. A set of points whose strong spanning graph must have
�(n2) edges.

Since a Delaunay graph has only a linear number of
edges, the above theorem also gives that the minimum
cardinality of strong spanning graph is O(n) for any
set ofn points if Euclidean distance is used. On the
contrary, the rectilinear distance does not have such
good property, as shown in the following lemma.

Theorem 2. If rectilinear distance is used, there is a
set of n points, for which any strong spanning graph
has at least �(n2) number of edges.

Proof. Consider a set ofn points as follows. Let
�n/2	 points fall on the segmentx + y = 1 with x ∈
[0,1]; all other points sit on the segmentx + y = −1
with x ∈ [−1,0]. This is illustrated in Fig. 1. As we
can see, if we partition the whole set into two subsets
according to the two segments, all edges between
the two subsets have the same length. According to
the strong cut property, they all must be in a strong
spanning graph. ✷

3. Rectilinear spanning graph construction

Using the terminology given in [10], we define the
uniqueness property as follows.

Definition 3. Given a points, a regionR has the
uniqueness property with respect tos if for every
pair of points p,q ∈ R, ‖pq‖ < max(‖sp‖,‖sq‖).
A partition of space into a finite set of disjoint regions
is said to have the uniqueness property if each of its
regions has the uniqueness property.

274 H. Zhou et al. / Information Processing Letters 81 (2002) 271–276

Fig. 2. Octal partition and the uniqueness property.

For the rest of the paper we will use the notation
‖sp‖ to represent the distance betweens andp using
theL1 metric. Define theoctal partition of the plane
with respect tos as the partition induced by the two
rectilinear lines and the two 45 degree lines through
s, as shown in Fig. 2(a). Here, each of the regionsR1
throughR8 includes only one of its two bounding half
lines as shown in Fig. 2(b). It can be shown that the
octal partition has the uniqueness property.

Lemma 2. Given a point s in the plane, the octal
partition with respect to s has the uniqueness property.

Proof. To show a partition has the uniqueness prop-
erty, we need to prove that each region of the parti-
tion has the uniqueness property. Since the regionsR1
throughR8 are similar to each other, we only give a
proof forR1.

The points in R1 can be characterized by the
following inequalities

x � xs,

x − y < xs − ys.

Suppose we have two pointsp andq in R1. Without
loss of generality, we can assumexp � xq . If yp � yq ,
then we have‖sq‖ = ‖sp‖ + ‖pq‖ > ‖pq‖. Therefore
we only need to consider the case whenyp > yq . In
this case, we have

‖pq‖ = |xp − xq | + |yp − yq |
= xq − xp + yp − yq

= (xq − yq) + yp − xp

< (xs − ys) + yp − xs

= yp − ys

Fig. 3. Equal distance points in each region.

� xp − xs + yp − ys

= ‖sp‖. ✷
Given two pointsp,q in the same octal region of

point s, the uniqueness property says that‖pq‖ <

max(‖sp‖,‖sq‖). Consider the cycle on pointss, p,
andq . Based on the cycle property, only the point with
the minimum distance froms needs to be connected
to s. An interesting property of the octal partition is
that the contour of equidistant points froms forms a
line segment in each region. In regionsR1,R2,R5,R6,
these segments are captured by an equation of the
form x + y = c; in regionsR3,R4,R7,R8, they are
described by the formx − y = c, as shown in Fig. 3.

Conceptually, we only need to consider edges from
s to the closest neighbor in each octant. We will pose
this problem in the reverse manner. Given a points,
find all the candidate points to which it can possibly
be the nearest neighbor in a specified octant. For sake
of simplifying the exposition, we will only consider
the case forR1. The rest of octants are symmetric
and the discussion can be easily extended to handle
them. For theR1 octant, we construct a sweep-line
algorithm on all points according to non-decreasing
x + y. During the sweep, we maintain anactive set
consisting of points whose nearest neighbors inR1 are
still to be discovered. When we process a pointp, we
find all the points in the active set, which havep in
theirR1 regions. Supposes is one such point from the
active set. Since we process points in non-decreasing
x + y, we know thatp is the nearest point inR1 for
s. Therefore, we add edgesp and deletes from the
active set. After processing those active points, we also
addp into the active set. Each point will be added and
deleted at most once from the active set.

H. Zhou et al. / Information Processing Letters 81 (2002) 271–276 275

The fundamental operation that is required in the
sweep-line algorithm is given a pointp, find a subset
of active points such thatp is in their R1 regions.
Based on the following observation, we need to find
the subset of active points in theR5 region ofp.

Observation 1. Given two points p and s, point p is
in the R1 region of s if and only if s is in the R5 region
of p.

SinceR5 can be represented as a two-dimensional
range (−∞, xp] × (xp − yp,+∞) on (x, x − y),
a priority search tree [7] can be used to maintain
the active point set. Since each of the insertion and
deletion operations takes O(logn) time, and the query
operation takes O(logn + k) time where k is the
number of objects within the range, the total time
for the sweep is O(n logn). Since other regions can
be processed in the similar way as inR1, we get an
algorithm running in O(n logn) time. Priority search
tree is a data structure that relies on maintaining
a balanced structure for the fast query time. This
works well for static input sets. When the input
set is dynamic, re-balancing the tree can be quite
challenging. Fortunately, the active set has a structure
we can exploit for an alternate representation. Since
we delete a point from the active set if we find a point
in its R1 region, no point in the active set can be in the
R1 region of another point in the set.

Lemma 3. For any two points p,q in the active set,
we have xp �= xq , and if xp < xq then xp − yp �
xq − yq .

Based on this property, we can order the active set
in increasing order ofx. This implies a non-decreasing
order onx−y. Given a points, the points which haves
in theirR1 region must obey the following inequalities

x � xs,

x − y > xs − ys.

To find the subset of active points which haves in
their R1 regions, we can first find the largestx such
that x � xs , then proceed in decreasing order ofx

until x − y � xs − ys . Since the ordering is kept on
only one dimension, using any binary search tree with
O(logn) insertion, deletion, and query time will also

Fig. 4. Only the nearest point inR5 needs to be connected.

give us an O(n logn) time algorithm. Binary search
trees also need to be balanced. An alternative is to
use skip-lists [9] which use randomization to avoid
the problem of explicit balancing but provide O(logn)

expected behavior.
A careful study also shows that after the sweep

process forR1, there is no need to do the sweep for
R5, since all edges needed in that phase are either con-
nected or implied. This is also based on Observation 1.
Moreover, based on the information inR5, we can fur-
ther reduce the number of edge connections. As shown
in Fig. 4, when the sweep step processes points, we
find a subset of active points which haves in their R1
regions. Without loss of generality, supposep andq

are two of them. Thenp andq are in theR5 region of
s, which means‖pq‖ < max(‖sp‖,‖sq‖). Therefore,
we need only to connects with the nearest active point.

SinceR1 and R2 have the same sweep sequence,
we can process them together in one pass. Similarly,
R3 andR4 can be processed together in another pass.
Based on the above discussion, the pseudo-code of the
algorithm is presented in Fig. 5.

The correctness of the algorithm is stated in the
following theorem.

Theorem 3. Given n points in the plane, the rectilin-
ear spanning graph algorithm constructs a spanning
graph in O(n logn) time, and the number of edges in
the graph is O(n).

Proof. The algorithm can be considered as deleting
edges from the complete graph. As described, all
edges that we delete are redundant based on the cycle
property. Thus, the output graph of the algorithm will
contain at least one rectilinear minimum spanning tree.

In the algorithm, each given point will be inserted
and deleted at most once from the active set for each of

276 H. Zhou et al. / Information Processing Letters 81 (2002) 271–276

Algorithm Rectilinear Spanning Graph
for (i = 0; i < 2; i + +) {

if (i == 0) sort points according to x + y;
else sort points according to x − y;
A[1] = A[2] = ∅;
for each point p in the order {

find points in A[1],A[2] such that p is in their
R2i+1 and R2i+2 regions, respectively;

connect p with the nearest point in each subset;
delete the subsets from A[1],A[2], respectively;
add p to A[1],A[2];

}
}

Fig. 5. The rectilinear spanning graph algorithm.

the four regionsR1 throughR4. For each insertion or
deletion, the algorithm requires O(logn) time. Thus,
the total time is upper bounded by O(n logn). The
storage we need is only for active sets, which is at most
O(n). ✷

4. Conclusion

In summary, we have characterized a broader class
of spanning graphs which are more natural than the
Delaunay triangulation for minimum spanning tree
constructions. We also described a new and much
simpler approach to solving the minimum spanning
tree problem for the rectilinear distance metric. The
approach relies on the cycle property of spanning
trees and the uniqueness property applied to an octal
partition of the planar space.

References

[1] T.H. Cormen, C.E. Leiserson, R.H. Rivest, Introduction to
Algorithms, MIT Press, Cambridge, MA, 1989.

[2] S. Fortune, A sweepline algorithm for Voronoi diagrams,
Algorithmica 2 (1987) 153–174.

[3] L.L. Deneen, G.M. Shute, C.D. Thomborson, An O(n logn)

plane-sweep algorithm forL1 and L∞ Delaunay triangula-
tion, Algorithmica 6 (1991) 207–221.

[4] L.J. Guibas, J. Stolfi, On computing all north-east nearest
neighbors in theL1 metric, Inform. Process. Lett. 17 (4)
(1983) 219–223.

[5] F.K. Hwang, An o(n logn) algorithm for rectilinear minimal
spanning trees, J. ACM 26 (2) (1979) 177–182.

[6] E.L. Lawler, Combinatorial Optimization: Networks and Ma-
troids, Holt, Rinehart and Winston, New York, 1976.

[7] E.M. McCreight, Priority search trees, SIAM J. Comput. 14 (2)
(1985) 257–276.

[8] F.P. Preparata, M.I. Shamos, Computational Geometry: An
Introduction, Springer, Berlin, 1985.

[9] W. Pugh, Skip lists: A probabilistic alternative to balanced
trees, Comm. ACM 33 (6) (1990).

[10] G. Robins, J.S. Salowe, Low-degree minimum spanning tree,
Discrete Comput. Geom. 14 (1995) 151–165.

[11] A.C.-C. Yao, On constructing minimum spanning trees in
k-dimensional spaces and related problems, SIAM J. Com-
put. 11 (4) (1982) 721–736.

[12] S.Q. Zheng, J.S. Lim, S.S. Iyengar, Finding obstacle-avoiding
shortest paths using implicit connection graphs, IEEE Trans.
Comput. Aided Des. 15 (1) (1996) 103–110.

