
7

A New Efficient Retiming Algorithm Derived
by Formal Manipulation

HAI ZHOU

Northwestern University

A new efficient algorithm is derived for the minimal period retiming by formal manipulation.
Contrary to all previous algorithms, which used fixed period feasibility checking to binary-search a
candidate range, the derived algorithm checks the optimality of a feasible period directly. It is much
simpler and more efficient than previous algorithms. Experimental results showed that it is even
faster than ASTRA, an efficient heuristic algorithm. Since the derived algorithm is incremental by
nature, it also opens the opportunity to be combined with other optimization techniques.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Optimization

General Terms: Algorithm, Design

Additional Key Words and Phrases: Clockperiod minimization, retiming, algorithm derivation

ACM Reference Format:
Zhou, H. 2008. A new efficient retiming algorithm derived by formal manipulation. ACM Trans. Des.
Automat. Electron. Syst., 13, 1, Article 7 (January 2008), 19 pages, DOI = 10.1145/1297666.1297673
http://doi.acm.org/10.1145/1297666.1297673

1. INTRODUCTION

Since its creation twenty years ago by Leiserson and Saxe [1983], retiming has
firmly established its reputation as one of the most effective techniques for
sequential circuit optimization. The past twenty years have witnessed retim-
ing’s steady improvements on performance and continuous expansions into new
areas [Lockyear and Ebeling 1994; Papaefthymiou and Randall 1993; Malik
et al. 1993; Shenoy and Rudell 1994; Singhal et al. 1995; Even et al. 1996;
Maheshwari and Sapatnekar 1999; Pan et al. 1998]. Recent progress on semi-
conductor technology saw an increase on the number of global wires whose
delays are longer than one clock period [Hassoun and Alpert 2002; Cocchini
2002], and retiming is again a promising technique that could be leveraged
[Zhou and Lin 2004].
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In this paper, we solve the retiming problem by algorithm derivation (also
known as program derivation) that was advocated and pioneered by Dijkstra
[1976], among many others. We have two purposes in mind when writing this
article: first, it records a new angle to look at retiming and a new algorithm for
the minimal period retiming problem; second, using the retiming as an exam-
ple, we hope to bring to the awareness of CAD researchers the advantages of
algorithm derivation. For the second purpose, we also give a brief introduction
to program derivation and use the maximal network flow problem to demon-
strate the methodology and principles.

Given a sequential circuit, the retiming changes the locations of flip-flops
(registers) in the circuit without changing its function. Its validity is guaran-
teed by the basic operation of moving flip-flops from the inputs to the outputs
of a gate, or vice versa. In this paper, we only focus on the minimal period
retiming problem, that is, moving the flip-flops to minimize the clock period
that is decided by the longest delay between two consecutive flip-flops. Since
Leiserson and Saxe [1983], the minimal period retiming problem has always
been solved through a sequence of fixed period retiming problems each of which
checks whether a given clock period is feasible. With a list of candidate clock
periods or an upper bound and a lower bound, a binary search is used to find the
smallest feasible period. In cases when the periods may change continuously,
the binary search approach only gives a fully polynomial-time approximation
scheme (FPTAS) [Ishii et al. 1997], that is, the running time is dependent on
the required precisions.

Given that the minimal period retiming problem has been studied for more
than two decades, we did not expect any new result when we set up to derive an
algorithm for it. The first surprise is the discovery that neither the fixed period
retiming problem nor the binary search comes naturally in the derivation, or we
can say that they never come into the picture during our derivation. The derived
algorithm iteratively shortens the longest combinational path in the circuit, and
when that can no longer be done, certifies that an optimum has been reached. To
those who are familiar with Ford and Fulkerson’s maximal flow algorithm [Ford
and Fulkerson 1962], this sounds too familiar: an incremental flow is attempted
over the current flow, and when that is not possible, an optimum is declared.
This philosophy is quite different from that of the binary search with fixed
period retiming. The main question answered in each step of the binary search
approach is whether a given clock period is feasible, but the main question
in each step of the derived algorithm is whether any smaller clock period is
achievable. Because of this subtle difference, the optimality of a feasible clock
period in the binary search approach is established only indirectly, that is,
through the infeasibility of the next smaller period. However, in the derived
algorithm, the optimality of a feasible clock period is certified directly through
the unattainable of any smaller period.

It must be noted that the derived algorithm is different from the FEAS al-
gorithm by Leiserson and Saxe [1991] even though there may exist some sim-
ilarity. First, the FEAS algorithm can only be used to check the feasibility of
a given period and, as presented in Leiserson and Saxe [1991], must be used
within a binary search for the minimal period. Second, the FEAS algorithm
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needs to repeat the r increment operation |V | − 1 times for feasibility checking
while the derived algorithm can certify the optimality quickly through a spe-
cial data structure. Finally, even if we assume that the FEAS algorithm can
be modified for pushing the period down (a small but nontrivial task), it is not
easy to bound the iteration numbers.

Compared with the binary search approach, the derived algorithm has many
advantages. First, it is very simple. No upper bound, lower bound, or list of
candidate periods needs to be computed. It does not require any special data
structure or subroutine, not even a sorting. Actually, the implementation of
the algorithm took us less than two hours—much less than the time we spent
on the data preparation. Second, the algorithm is also very efficient, in the
sense that all the effects of previous operations are kept. Also, an operation
in the algorithm is either pushing down the current clock period or building
up evidences to show that it cannot be reduced. It is proved that the derived
algorithm has polynomial running time in the worst case. However, the worst
case running time should not be our focus, since the running time discrepancy
of an algorithm is usually very large and any attempt to reduce the discrepancy
will usually increase the running time on some instances while reducing it on
others. The derived algorithm will process all instances as efficiently as possible.
In the same vein, Shenoy and Rudell [1994] preferred some algorithms with
larger worst case running time because of their practical efficiency. Last, but
not least, without using binary search, the derived algorithm is incremental in
nature. Because it always keeps a valid retiming during the execution, it has
great potentials to be combined with other optimization operations, or used in
incremental design methodologies [Cong et al. 2000].

The rest of the article is organized as follows. Since we use the predicate
calculus and Dijkstra’s guarded commands to conduct algorithm derivations,
a brief introduction to them is first given in Section 2. As an example, the
algorithm derivations for the maximal flow problem are also included in the
section. In Section 3, a new algorithm in guarded commands is derived for the
minimal period retiming problem. In Section 5, the derived algorithm for retim-
ing is translated into a common language where the nondeterminacies in the
guarded commands are explored. Experimental results comparing the derived
algorithm with other algorithms are given in Section 6. Some conclusions are
drawn at the end.

2. ALGORITHM DERIVATION IN GUARDED COMMANDS

2.1 Guarded Commands and Predicate Calculus

Algorithm derivation (or program derivation) is a formal method for developing
algorithms. Dijkstra [1976] is a classical reference in this area, and the guarded
commands [Dijkstra 1975] are usually used in the derivations.

The language of the guarded commands mainly has four kinds of statements:
assignment, composition, selection, and repetition. An assignment statement
is of the form

v1,v2,... := E1,E2,...
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which concurrently assigns the value of each expression on the right hand
side to the different corresponding variable on the left hand side. Given two
statements S1, S2, a composition is the statement S1; S2 that executes S1
followed by S2.

A guarded command has the following form.

<boolean expression>→<statement>

The statement at the right of the arrow could be a composite statement. A set
of guarded commands can be used to form a selection statement.

if <guarded command>{�<guarded command>} fi

When more than one guards in a selection statement are true, any statement
after a true guard may be selected to execute. This introduces nondeterminacy.
When no guard is true, a selection statement is defined as abort. The other way
to organize guarded commands is by a repetition statement, which is defined
as follows.

do <guarded command>{�<guarded command>} od

Whenever there is any true guard in the repetition, a statement after any true
guard may be executed. This is repeated until all the guards are false. As we
can see, nondeterminacy is also allowed here.

The benefit of guarded commands in algorithm derivation is the clean formal
definition of their semantics [Dijkstra 1976, 1975]. Based on Floyd [1967] and
Hoare [1969], the semantics of a statement S is defined to truthify a predicate
R upon a given predicate P . And this is represented as a Hoare triple:

{P} S {R}
The predicate calculus [Gries and Schneider 1993] is used to express predicates
in the algorithm derivation. It has the usual syntax of the first-order logic. The
only difference is on quantification. The general form of a quantification over �

is exemplified by

(�x, y : R : P ),

where x and y are distinct index variables, R is a predicate that gives the
ranges of x and y , and P is an expression on which � is applied. The universal
and existential quantifications in logic are thus represented as

(∀x :: P (x)) or (∧x :: P (x)),

(∃x :: P (x)) or (∨x :: P (x)),

respectively. Besides logic quantifications, other quantifications such as a sum-
mation can also be represented similarly. For example, a summation can be put
as

∑
0≤i≤n an

i in the traditional representation. However, it is not clear from the
representation which identifier, i or n, is the variable. But when the summation
is given as (+i : 0 ≤ i ≤ n : an

i ), it is very clear that i is the index variable and
n is the parameter.
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A problem can be formally specified by the predicate that the variables must
satisfy when the program terminates. This predicate is usually called the post-
condition of the program. The algorithm derivation is a goal-driven activity
that studies the post-condition and finds a sequence of statements to fulfill
it. Besides the program, the intermediate predicates between statements will
also be decided in the derivation. Therefore, the proof of the correctness of a
algorithm is developed hand-in-hand with the program.

It should be noted that any nontrivial algorithm must involve at least one
repetitive statement—otherwise the processing length of the algorithm will not
be longer than the program length and thus cannot do too much. Therefore, a
critical task in the algorithm derivation is to partition the post-condition and to
decide which part should be kept as an invariant and which part should be ful-
filled through the repetition. This will become clear in the following examples.

2.2 Derivation for Maximal Flow

Given a flow network—that is, a directed graph G = (V , E) where each e ∈ E
has a capacity c.e ∈ R+ and two special nodes s, t ∈ V —the maximal flow
problem asks for a flow from s to t that is maximal. It is a well-known problem
and has many applications. Ford and Fulkerson [1962] were the first to give
an algorithm for it. But new efficient algorithms based on the “push-relabel”
approach had not been discovered until 1988 [Goldberg and Tarjan 1988]. To
demonstrate the general principle of algorithm derivation, we will derive these
two different algorithms with the same methodology.

A flow is defined as a labeling of the edges f : E → R that satisfies the
following two conditions.

P0( f ) : (∀e : e ∈ E : 0 ≤ f .e ≤ c.e)
P1( f ) : (∀v : v ∈ V − {s, t} : f (−, v) = f (v, −)),

where

f (−, v) = (+u : (u, v) ∈ E : f (u, v)),
f (v, −) = (+w : (v, w) ∈ E : f (v, w)).

The value of a flow f is defined as the sum of flows out of s; that is,

| f | = f (s, −).

A maximal flow f is a flow that has the maximal value, that is, it must satisfy
the following condition.

P2 : (∀ f ′ : P0( f ′) ∧ P1( f ′) : | f ′| ≤ | f |).
Among the three conditions, P2 is the most complex one. Different treatments
of it lead to different algorithms.

2.2.1 ¬P2 as Loop Condition. Based on the principle of using the easily
satisfied conditions as invariant, we select P0 and P1 to be invariant, since a
simple initialization of

f := 0;
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will truthify them. In order to use ¬P2 as the loop condition, we need a witness
for it. The negation of P2 is

(∃ f ′ : P0( f ′) ∧ P1( f ′) : | f ′| > | f |).
Since both f and f ′ satisfy P1, their difference f ′ − f also satisfies P1. How-
ever, the difference may not satisfy P0. But the following result can be proved.

LEMMA 1.

(∀ f ′ : P0( f ′) : (∀e : e ∈ E : − f .e ≤ ( f ′ − f ).e ≤ (c − f ).e)).

Therefore, if ¬P2( f ), we must have at least one path P ( f ) from s to t such
that any forward edge e on P has c.e > f .e and any backward edge e1 on P
has f .e1 > 0. Using (∃P ( f )) as the loop condition, we can have the following
algorithm for the maximal flow problem.

f := 0;
{P0∧P1}
do

(∃P(f)) → {(∃P(f))∧P0∧P1}
(e:e∈P(f):f.e:=f.e+|P(f)|) {P0∧P1}

od
{P0∧P1∧P2}
where |P ( f )| = min((min e : e ∈ P ( f ) : c.e − f .e), (min e : −e ∈ P ( f ) : f .e)),
that is, the minimal capacity on the augmenting path P ( f ). Recall that this is
Ford-Fulkerson’s algorithm.

2.2.2 P2 as Invariant. Alternatively, we may select P2 as invariant, since
another simple initialization

f := 0;
(v:(s,v)∈E:f(s,v):= c(s,v))

will truthify P0 ∧ P2. Therefore ¬P1 will be used as the loop condition. For
any node v ∈ V − {s, t}, we define

X (v) = f (−, v) − f (v, −).

With the given initialization, the following predicate is true and we also plan
to maintain it as an invariant.

I0 : (∀v : v ∈ V − {s, t} : X (v) ≥ 0)

Therefore, X (v) > 0 is a witness of ¬P1. Thus, our algorithm will have the
following structure.

f,X := 0,0;
(v: (s,v)∈E: f(s,v),X.v := c(s,v),X.v+c(s,v));
do

X(v)>0 → S;
od
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It is obvious that statement S should falsify X (v) > 0 and maintain P0 and P2.
In other words, it should balance the flows to and from v under the condition
of P0 and P2. There are two operations to reduce the overflow to v: pushing
a flow through forward edge (v, w) such that f (v, w) < c(v, w); pushing a flow
through backward edge (u, v) such that f (u, v) > 0. It seems that the first
operation should be selected first since the second is a cancellation of previous
operations. However, in the worst case, both operations are necessary to reduce
the overflow. But then it may run into the trap of pushing flows back and forth
over an edge. Furthermore, we should push a flow back on an edge (s, v) only
when we know that P2 could be maintained. Both problems indicate that our
original plan, that is, falsifying X (v) > 0 in one step, is too ambitious.

The possible trap of pushing flows back and forth urges us to introduce an
order on the nodes and to only push flows according to the order. Also, X (v) > 0
should be falsified gradually: if there are accommodating neighbors of lower
order, the overflow will be pushed out; otherwise, the order of v will be increased.
The condition P1 will finally be truthified if the order of s is fixed, since in the
worst case all flows will be returned to s. The revised algorithm is given as
follows, where h : V → N is the order of the nodes.

f,X,h := 0,0,0;
(v: (s,v)∈E: f(s,v),X.v := c(s,v),X.v+c(s,v));
h.s := x;
do
X.v>0∧f(v,w)<c(v,w)∧h.w<h.v →

f(v,w), X.v := min(c(v,w),f(v,w)+X(v)), max(X.v-c(v,w)+f(v,w),0)

� X.v>0∧f(w,v)>0∧h.w<h.v →
f(w,v), X.v := max(0,f(w,v)-X(v)), max(X.v-f(w,v),0)

� X.v>0∧(∀w:f(v,w)<c(v,w)∨f(w,v)>0:h.w≥h.v) →
h.v := h.v+1

od

In order to decide what value x should be, we need to establish the relation
between every edge accommodating a flow and the orders of its two end nodes.
It can be shown that the following predicate is an invariant.

I1 : (∀u, v : f .(u, v) < c.(u, v) : h.u ≤ h.v + 1)
∧(∀u, v : f .(u, v) > 0 : h.v ≤ h.u + 1).

Since h.t = 0 will not be changed, with I1 as an invariant, we can see that a
node u �= s does not have an augmenting path to t whenever h.u ≥ |V | − 1.
Therefore, we can select x = |V | − 2. With the shorthand

I = P0 ∧ P2 ∧ I0 ∧ I1

the complete algorithm is given as follows.

f,X,h := 0,0,0;
(v: (s,v)∈E: f(s,v),X.v := c(s,v),X.v+c(s,v));
h.s := |V|-2;
do {I}
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 7, Pub. date: January 2008.
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X.v>0∧f(v,w)<c(v,w)∧h.w<h.v →
f(v,w), X.v := min(c(v,w),f(v,w)+X.v), max(X.v-c(v,w)+f(v,w),0)

� X.v>0∧f(w,v)>0∧h.w<h.v →
f(w,v), X.v := max(0,f(w,v)-X.v), max(X.v-f(w,v),0)

� X.v>0∧(∀w:f(v,w)<c(v,w)∨f(w,v)>0:h.w≥h.v) →
h.v := h.v+1

od
{I∧(∀v:v �∈{s,t}:X.v≤0)}

Using I1, we can prove that (∀u : u ∈ V : h.u ≤ 2|V | − 4). This guarantees
the termination of the algorithm. Notice that this is Goldberg’s “push-relabel”
algorithm.

3. A NEW ALGORITHM FOR RETIMING

Circuit retiming is perhaps the most effective structural optimization technique
for sequential circuits. It moves the registers within a circuit without chang-
ing its function. The minimal period retiming problem needs to minimize the
longest delay between any two consecutive registers, which decides the clock
period.

The problem can be formally described as follows. Given a directed graph
G = (V , E) representing a circuit—each node v ∈ V represents a gate and each
edge e ∈ E represents a signal passing from one gate to another—with gate
delays d : V → R+ and register numbers w : E → N , it asks for a relocation
of registers w′ : E → N such that the maximal delay between two consecutive
registers is minimized.

To guarantee that the new registers are actually a relocation of the old ones,
a label r : V → Z is used to represent how many registers are moved from
the outgoing edges to the incoming edges of each node. Using this notation,
the new number of registers on an edge (u, v) can be computed as w′(u, v) =
w(u, v) + r.v − r.u. Furthermore, to avoid explicitly enumerating the paths, we
introduce another label t : V → R+ to represent the output arrival time of a
gate, that is, the maximal delay of the gate from any preceding register. Based
on the notations, the validity of a retiming (r, t) is defined by the following
conditions.

P0(r) : (∀(u, v) ∈ E :: w(u, v) + r.v − r.u ≥ 0)
P1(t) : (∀v ∈ V :: t.v ≥ d .v)

P2(r, t) : (∀(u, v) ∈ E : r.u − r.v = w(u, v) : t.v − t.u ≥ d .v).

We use a predicate P to denote the conjunction of the above conditions:

P (r, t) � P0(r) ∧ P1(t) ∧ P2(r, t).

The optimality of a retiming (r, t) is given by the following condition.

P3 : (∀r ′, t ′ : P (r ′, t ′) : max .t ≤ max .t ′),

where

max .t � (max v : v ∈ V : t.v).
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Since we only talk about a valid retiming (r ′, t ′) in the sequel, to simplify the
presentation, we often omit the range condition P (r ′, t ′); the meaning will be
clear from the context.

The condition P0 states that a valid retiming should have nonnegative num-
ber of registers on any edge. The conditions P1 and P2 defines a lower bound
on the arrival time t, that is, the arrival time of a gate is at least the summation
of the gate delay and the arrival time of its fanins. The condition P3 states that
among all valid retimings—those that satisfy P0, P1, and P2—the current
(r, t) has a minimal max .t.

Similar to the conditions of the maximal flow problem, P3 gives the opti-
mality condition and is the most complex one. Therefore, we consider a simple
initialization as follows.

r,t:=0,d;
do

(u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v:=t.u+d.v

od

This initialization will truthify P0, P1, and P2. To use ¬P3 as a loop condition,
we need to establish a witness for it. If ¬P3, that is, we have another valid
retiming (r ′, t ′) such that max .t > max .t ′, then (∀v : t.v = max .t : t ′.v < t.v).
One property we know on these nodes is

(∀v : t ′.v < t.v : (∃u : t.u = d .u : r.u − r.v > r ′.u − r ′.v)),

which means that if the arrival time of v is smaller in another retiming (r ′, t ′),
then there must be a node u such that r ′ has more registers between u and v. In
fact, one such a u is the starting node of the longest combinational path to v that
gives the delay of t.v. It should be noted that it is not the absolute values of r but
their differences that are relevant in the retiming. If (r, t) is a solution to a retim-
ing problem, then (r + c, t), where c ∈ Z is an arbitrary constant, is also a solu-
tion. Therefore, we can move r “closer” to r ′ by allocating more registers between
u and v, that is, by either decreasing r.u or increasing r.v. We know that v can
be easily identified by t.v = max.t. In order to find u, we will keep yet another
label p : V → V such that p.v is the starting node of the longest combinational
path to v for any v ∈ V . No matter whether r.v or r.p.v is selected to change,
the amount of change should be only 1 since we do not want to over-adjust r. It
means that, after the adjustment, we still have r.v−r.p.v ≤ r ′.v−r ′.p.v, or equiv-
alently r.v−r ′.v ≤ r.p.v−r ′.p.v. Assume we increase r.v. The arrival time t.v can
be immediately reduced to d .v. This operation is given by the following guarded
command.

(∃r’,t’::max.t’<max.t)∧t.v=max.t →
r.v,t.v,p.v:= r.v+1,d.v,v

Since registers are moved in this operation, the condition P2 may be vio-
lated. To restore it, we may execute the same repetition statement as in the
initialization after each operation, as in the following form.

(∃r’,t’::max.t’<max.t)∧t.v=max.t →
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 7, Pub. date: January 2008.
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r.v,t.v,p.v:= r.v+1,d.v,v;
do

(u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v,p.v:=t.u+d.v,p.u

od

However, this kind of programming will aggressively update t after each ad-
justment of r, and its only purpose is to keep P2 invariant when r is changed.
Alternatively, we can weaken the invariant to be maintained, and allow P2
to be violated temporally and restored later. This can be done by putting the
two guarded command within the same repetition statement; it increases the
flexibility in their execution orders.

(∃r’,t’::max.t’<max.t)∧t.v=max.t →
r.v,t.v,p.v:= r.v+1,d.v,v

� (u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v,p.v:=t.u+d.v,p.u

The execution of the second guarded command will increase t. If we use
maxT to represent the max .t before we adjust r, very likely, such t increases
may cause t. y ≥ maxT for some y ∈ V . Similarly, based on the assumption
(∃r ′, t ′ :: max .t ′ < maxT), we must have r. y − r.p. y < r ′. y − r ′.p. y . Therefore
r. y should also be increased. This can be included in the above commands
through a simple modification.

(∃r’,t’::max.t’<maxT)∧t.v≥maxT →
r.v,t.v,p.v:= r.v+1,d.v,v

� (u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v,p.v:=t.u+d.v,p.u

The difference between the two cases of increasing r is that in the first case we
have t.v = max .t but in the second case it may not be true. With t.v = max .t,
there is no edge (v, x) such that r.v − r.x = w(v, x), and thus the execution of
r.v := r.v + 1 cannot destroy P0. Without it, that is not guaranteed. Similar to
our handling of P2, we can either maintain P0 through a repetitive updating
of r after each operation or allow it to be violated temporally and restored later.
We select the second option since it renders more flexibility. It gives us one more
guarded command in addition to the above two.

(∃r’,t’::max.t’<maxT)∧t.v≥maxT →
r.v,t.v,p.v:= r.v+1,d.v,v

� (u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v,p.v:=t.u+d.v,p.u

� (u,v)∈E∧r.u-r.v>w(u,v) →
r.v,t.v,p.v:=r.u-w(u,v),t.u+d.v,p.u

The condition ¬P3, that is (∃r ′, t ′ :: max.t ′ < maxT), guarantees that the
above iterative operations to push down t.v ≥ maxT will terminate within finite
steps. This comes from the fact that each time after r.v for any v ∈ V is increased,
it is guaranteed that there exists a u ∈ V such that r.u − r.v ≥ r ′.u − r ′.v, or
equivalently r.u−r ′.u ≥ r.v−r ′.v. Therefore (max v : v ∈ V : r.v−r ′.v) cannot be
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increased during the iterations. When the iterations terminate, we will have a
valid retiming (r, t) such that max .t < maxT. Therefore, we can reset the maxT
and start the process again. Once again, we introduce a guarded command
parallel to the above three instead of introducing hierarchy. The algorithm
currently has the following scheme.

r,t,p,maxT := 0,d,1,0;
do

(u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v,p.v := t.u+d.v,p.u

� maxT<t.v → maxT:=t.v
od
{P(r,t)∧max.t=maxT}
do

(∃r’,t’::max.t’<maxT)∧t.v≥maxT →
r.v,t.v,p.v:= r.v+1,d.v,v

� (u,v)∈E∧r.u-r.v≥w(u,v)∧t.v<t.u+d.v →
t.v,p.v := t.u+d.v,p.u

� (u,v)∈E∧r.u-r.v>w(u,v) →
r.v,t.v,p.v:=r.u-w(u,v),t.u+d.v,p.u

� P(r,t)∧max.t<maxT → maxT:=max.t
od
{P(r,t)∧max.t=maxT∧(∀r’,t’::max.t’≥maxT)}

The invariant of the second repetitive statement is now very weak—perhaps
only includes P1; the post-condition comes from the negation of the guards.

The remaining task to complete the algorithm is the calculation of the pred-
icate (∃r ′, t ′ :: max .t ′ < maxT). We already know that the predicate implies the
constancy of (max v : v ∈ V : r.v − r ′.v). It means that there is at least a node v
whose r.v does not change. We use a label m : V → V for each node v to point to
the “safe-guard” node p.v when r.v is increased. Since r.v −r.p.v +w(p.v, v) = 0
before the increase (there is no register on the path from p.v to v), we know
that

(∀v : m.v ∈ V : r.v − r.m.v ≤ 1)

is an invariant, which means that r.v is at most one larger than r.m.v. The
condition (∃r ′, t ′ :: max .t ′ < maxT) guarantees the predicate

(∀v : m.v ∈ V : r.m.v − r ′.m.v ≥ r.v − r ′.v),

which ensures that the label m will not form any cycle. In fact, m will form
a forest where the roots have r = 0 and a child can have an r at most one
larger than that of its parent. Therefore, if (∃r ′, t ′ :: max .t ′ < maxT), then, for
any 0 < i ≤ |V |, there must be at least i nodes whose r are smaller than i. A
violation of any of these conditions presents an evidence for (∀r ′, t ′ :: max.t ′ ≥
maxT)—that is, maxT is optimal. Therefore, we can simply extend the above
scheme with the m pointers and monitor these optimality evidences–that is,
(∃v :: r.v > |V | − 1) ∨ (∀v :: r.v > 0) or m forms a cycle.
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The monotonic decrease of maxT implies a monotonic strengthening of the
predicate (∃r ′, t ′ :: max .t ′ < maxT). In other words, we have

maxT1 > maxT2 ⇒ ((∃r ′, t ′ :: max .t ′ < maxT2) ⇒ (∃r ′, t ′ :: max .t ′ < maxT1)).

It shows that the operations done under a larger maxT1 is conservative and still
valid under a smaller maxT2, and the conditions given by (∃r ′, t ′ :: max .t ′ <

maxT1) are still true if (∃r ′, t ′ :: max .t ′ < maxT2). Therefore, we do not need to
reset any of r or m after each decrease of maxT. This gives the beauty of the
algorithm: it constructively pushes down max .t, and at the same time prepares
evidences to show that max .t is optimal.

Based on the discussion, the complete algorithm is given as follows.

r,t,p,m,maxT,cycle:=0,d,1,0,0,0;
do

(u,v)∈E∧r.u-r.v=w(u,v)∧t.v-t.u<d.v →
t.v,p.v := t.u+d.v,p.u

� maxT<t.v → maxT:=t.v
od
{P(r,t)∧max.t=maxT}
do

¬cycle∧t.v≥maxT →
if

m.v �=0 → cycle:=(m forms a cycle)

� m.v=0 → skip
fi;
r.v,t.v,m.v,p.v := r.v+1,d.v,p.v,v

� (u,v)∈E∧r.u-r.v=w(u,v)∧t.v<t.u+d.v →
t.v,p.v:=t.u+d.v,p.u

� (u,v)∈E∧r.u-r.v>w(u,v) →
r.v,t.v,m.v,p.v:=r.u-w(u,v),t.u+d.v,u,p.u

� P(r,t)∧max.t<maxT → maxT:=max.t
od
{(∃r,t::max.t=maxT)∧(∀r’,t’::max.t’≥maxT)}

The correctness of the algorithm is readily provable by using the predicate
annotations in the program. It should be noted that, since we start to change
r before we know (∃r ′, t ′ :: max .t ′ < maxT), the post-condition only states that
maxT is the optimal period, but not that (r, t) is an optimal retiming. However,
an optimal retiming can be easily computed if we store the feasible r before
trying to push the current maxT down. In the post-condition, the predicate
(∃r, t :: max .t = maxT) is an invariant of the loop and the predicate (∀r ′, t ′ ::
max .t ′ ≥ maxT) is implied by cycle which comes from the negation of all guards
in the loop. The termination is guaranteed by the monotonic increase of r and
the upper bound of |V |−1 on them. In order to clear the doubt on the possibility
of an inhibitively long running time when each reduction on max.t is too small,
a bound on the worst case running time is given in the following theorem.

THEOREM 1. The worst case running time of the derived retiming algorithm
is upper bounded by O(|V |2|E|).
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Cautions should be used on this bound. First, a program usually has great
running time variations on different problem instances. The worst case time
may happen in only a few rare instances, and thus may not be a good indi-
cation of the efficiency on most instances. Second, even when the worst case
happens on most problem instances, a bound may be loose due to the difficulty
of having an accurate analysis. A good example is Howard’s algorithm [Cochet-
Terrasson et al. 1998] for the cycle ratio problem: even though the best known
worst case running time is exponential, it was shown to be the most efficient
in practice [Dasdan et al. 1999]. The runtime bound of our retiming algorithm
is got under the worst case assumption that each increase on r will trigger a
timing propagation on the whole circuit (|E| edges). This is only true when the
r increase moves all registers in the circuit. However, in such a case, the r is
upper bounded by 1, thus the running time is not larger than O(|V ||E|). On the
other hand, when the r value is large, the circuit is partitioned by the registers
into many small parts, thus the timing propagation triggered by one r increase
is limited within a small tree.

4. INTUITION AND EXAMPLE

To help the readers to get a better understanding of the derived retiming algo-
rithm, we give an example to show the intuitive interpretation of the algorithm
and why it is efficient in practice. The example is given in Figure 1. The first
graph shows the original circuit; it has five gates with delays shown in each
gate, and registers are shown on the edges. The steps of the algorithm are shown
by the sequence of graphs following the first one.

On the original circuit, the algorithm first calculates the arrival time of each
gate, which is shown beside each gate. Since the gate v5 has the largest arrival
time, 17, the maxT is set to 17. Then any node whose arrival time is at least
maxT will have its r incremented. In our case we have r(v5) = 1, which means
a register is moved from the output of v5 to its inputs. This increment will be
accompanied by setting the m pointer m(v5) = v3 (because v3 is the starting
point of the longest path), which is represented by a dotted edge in the second
graph. The arrival time t(v5) is also updated to 7. And the update is propagated
to make t(v1) = 10. Now since max .t is pushed down to 10, we reset maxT to
10 and start another iteration.

Since now there are two nodes v1 and v4 whose arrival time is at least maxT,
any of them could be picked up for operation. Assume that v1 is selected. The
update is shown in the third graph, where we have r(v1) = 1, m(v1) = v5,
and t(v1) = 3. The arrival time propagation will set t(v2) = 6, t(v4) = 13, and
t(v5) = 10. Now we have t(v5) = 10 and t(v4) = 13 which are at least maxT (that
is 10). Any of them can be selected for operation. If v5 is selected, then r(v5) = 2
and m(v5) = v1, as shown in the last graph. Therefore, a cycle is formed by m
between v1 and v5. It is an evidence that there does not exist a retiming with
a period smaller than maxT = 10. Therefore maxT = 10 is the optimal period
and it is realized in the second graph.

A few interesting things can be noticed from the example. The first is the
dances of the m pointers accompanying the r increases. Each time when a node
has its r increased, its m pointer dances (being created or changed). Before
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Fig. 1. The algorithm applied on an example.

the optimal period is reached, the m pointers can only form a forest. It is also
true that an m pointer can only point to a node whose r is at most one smaller.
In the last step of the example, when r(v5) becomes 2, it can only point to v1
which is the only node with nonzero r. The other thing is that the operations
for finding an evidence of optimality are the same as those for improving the
solution. The first step in the example reduces the period, while the next two
steps discover an optimality evidence. But they have the same operations. Also,
the operations that reduce the period usually take shorter time than those that
build up evidences, since the former cannot go through a cycle. On this aspect,
this derived retiming algorithm is also similar to Ford-Fulkerson’s maximal
flow algorithm: finding an augmenting path is much faster than discovering its
nonexistence. This also explains why the derived algorithm is more efficient in
practice: improvement iterations are very fast and only the last iteration that
establishes the optimality takes longer time.

5. IMPLEMENTATION

The advantages of the guarded commands include simplicity, symmetry, and
intrinsic nondeterminacy. They are of great help in algorithm derivations and
correctness proofs. However, for implementation, it needs to be translated into a
common programming language such as the C language. We should emphasize
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that the translation is straightforward and there is no hiding trick. The trans-
lation of the retiming algorithm is presented here for two purposes. First, it
may help those who are not familiar with the guarded commands to under-
stand the new retiming algorithm. Second, it demonstrates how the nondeter-
minacy in guarded commands can be further explored for the benefit of program
performance.

The four kinds of statements in the guarded commands all have directly cor-
responding constructs in any common programming language such as C. The
assignment and composition statements are the same as in C, with the excep-
tion that a concurrent assignment may be implemented by multiple sequential
assignments in C. The selection statement corresponds to the if statement in
C, and the repetition statement to the while statement. However, nondeter-
minacy is allowed in the guarded commands. When more than one guard in a
selection or repetition statement are true, any one of the statements guarded
by them may be executed. With nondeterminacy, the algorithm design makes
only necessary decisions that guarantee the correctness. An algorithm with
nondeterminacy in the guarded commands actually represents a set of deter-
ministic algorithms, and performance considerations could be used to make
further decisions when it is translated into a deterministic one.

In the new retiming algorithm derived in the previous section, there are
two kinds of nondeterminacy: multiple guards could be true in each of the
two repetition statements; multiple instances (vertices or edges) may satisfy
one given guard. The important fact is that the algorithm is always correct no
matter what execution order is used. To avoid searching all vertices or edges
for instances satisfying the guards, a queue Q is used in the implementation
for bookkeeping. Assuming there are n gates in the circuit, arrays d and w are
used for gate delays and edge weights (the numbers of registers). Similarly the
variables r, t, p, m in the derived algorithm are implemented as arrays. Based
on the discussion, the C program pseudo-code of the retiming algorithm is given
as follows.

for (i=0; i<n; i++) {
r[i] = 0; t[i] = d[i]; p[i] = i; m[i] = -1;

}
for ((i,j)∈E)
if (w[i][j] == 0 && t[j]<t[i]+d[j]) {
t[j] = t[i]+d[j]; p[j] = p[i];
Q = Q+{j};

}
while (Q!=∅) {
i = dequeue(Q);
for ((i,j)∈E)
if (w[i][j] == 0 && t[j]<t[i]+d[j]) {
t[j] = t[i]+d[j]; p[j] = p[i]; Q = Q+{j};

}
if (maxT<t[i]) maxT = t[i];

}
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while (count < n) {
for (i=0; i<n-1; i++)
if (t[i] == maxT) Q = Q+{i};

while (count < n && Q!=∅) {
i = dequeue(Q);
if (t[i] >= maxT) {
if (m[i] != -1) {
count = 0; j = m[i];
while (count <n && j != i && m[j] != -1) {
j = m[j]; count ++;

}
if (m[j] != -1) {
count = n; break;

}
}
r[i] ++; t[i] = d[i]; m[i] = p[i]; p[i] = i;

}
for ((i,j)∈E)
if (r[i]-r[j]==w[i][l] && t[j]<t[i]+d[j]) {
t[j] = t[i]+d[j]; p[j] = p[i]; Q = Q+{j};

} else if (r[i]-r[j] > w[i][j]) {
r[j] = r[i]-w[i][j]; t[j] = t[i] + d[j];
p[j] = p[i]; m[j] = i; Q = Q+{j};

}
}
if (count<n) {
maxT = 0;
for (i=0; i<n; i++)
if (t[i]>maxT) maxT = t[i];

}
}

The first for statement corresponds to the variable initialization in the de-
rived algorithm. The second for statement and the first while statement corre-
spond to the first repetition statement, which is used to compute t and max .t.
The second while statement implements the second repetition statement in
the derived algorithm. Since the last guard in the statement is mutually exclu-
sive from other guards, we implement the first three guarded commands by the
inner while statement and the last guarded command by the if statement after
it. Since the processing of the first guarded command may change the second
or the third guard value, it is executed first in the if (t[i]>=maxT) statement.
Because of these, the statement r[j] = r[i]-w[i][j] may have an increase
larger than 1, which speeds up the convergence. We implement a cycle check-
ing along m by simply counting and searching for the starting vertex i. Other
alternatives are also possible.

Since the order of getting vertices from Q is not defined, there is still
some flexibility in the C program. If Q is implemented as a stack—that is,
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Table I. Experimental Results

Clock Period ASTRA
Name #Gates Before After

∑
r #Updates Time(s) A(s) B(s)

s1423 490 166 127 808 7619 0.02 0.03 0.02
s1494 558 89 88 628 7765 0.02 0.01 0.01
s9234 2027 89 81 2215 76943 0.12 0.11 0.09
s9234.1 2027 89 81 2164 77644 0.16 0.11 0.10
s13207 2573 143 82 4086 28395 0.12 0.38 0.12
s15850 3448 186 77 12038 99314 0.36 0.43 0.17
s35932 12204 109 100 16373 108459 0.28 0.24 0.65
s38417 8709 110 56 9834 155489 0.58 0.89 0.64
s38584 11448 191 163 19692 155637 0.41 0.50 0.67
s38584.1 11448 191 183 9416 114940 0.48 0.55 0.78

first-in-last-out (FILO), the updates will be conducted in a depth-first fashion;
if Q is implemented as a first-in-first-out (FIFO) queue, the updates will be con-
ducted in a breadth-first fashion. Our experiments showed that the depth-first
update is a little better on performance.

6. EXPERIMENTAL RESULTS

We implemented the derived retiming algorithm easily according to the code
in the previous section. We also got the retiming code ASTRA [Sapatnekar
and Deokar 1996] from Prof. Sapatnekar. The parser and data preparation
(e.g., changing registers into edge weights and adding a host node connecting
POs and PIs) in ASTRA are also used with the derived retiming program. The
min-period retiming algorithm in ASTRA explored the close relation between
retiming and clock skew optimization to first do a continuous retiming (finding
the maximal mean cycle with arbitrary skews) and then locally move registers
to reduce the skews to be within one clock period [Sapatnekar and Deokar
1996]. The continuous retiming is called phase A; the local register movement
is called phase B. Since phase B may not be able to reduce the skews to zero,
the algorithm is just a heuristic and may not give the optimal period if no clock
skew is allowed. All the test cases in the ISCAS89 benchmarks are tested both
on the derived algorithm and the ASTRA running on a Sun Ultra 10 machine.
Since there is no gate delay information on those benchmarks, the ASTRA is
set to generate gate delays between 1 and 100. Reported in Table I are results
for large test cases. For each test cases, it reports its name, number of gates,
the original period and the optimal period (from the derived algorithm). To
demonstrate that the runtime bound in Theorem 1 is loose, we also record the
total increases of r (“

∑
r”) and the numbers of edges examined (“#updates”)

in the algorithm. As we can see, the total r increases are usually around |V |
with the largest one smaller than 4|V |; the total numbers of edges examined
are usually around 10|V | with the largest one smaller than 40|V |. The running
time of the derived algorithm (column “time”) and the two phases in the ASTRA
(column “A” and “B”) are reported for comparison. Since phase A in ASTRA in
fact computes the lower bound of the clock period, it is a necessary step in
every binary search based algorithm. For all test cases, the derived algorithm
outperforms the ASTRA. For larger circuits and larger difference between the
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original and optimal periods, the difference is even bigger. For most of the cases,
the running time of the derived algorithm is even smaller than that of the
phase A in ASTRA. Therefore, we can safely claim that the derived algorithm
generally outperforms any binary search based approach.

7. CONCLUSIONS

A new efficient algorithm for the minimal period retiming is presented in this
article. Contrary to all previous algorithms which used binary search with fea-
sibility checking on a range of clock periods, the new algorithm directly checks
the optimality of the current feasible period, and can thus either push down
the period or certify the optimality. The advantages of the algorithm include its
simplicity, efficiency, and being incremental. Experimental results shows that
the algorithm is faster even than the best heuristic for the same problem.

Besides the algorithm, the paper also presents the algorithm design method-
ology by which the algorithm is discovered: program derivation. Our experi-
ences so far with this method are positive and, through this new retiming algo-
rithm, we hope to increase the awareness of CAD researchers of this method.
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