EECS 311: Data Structure and Data Management Lecture 24 Union-Find

Reading: Chapter 8.

Union-Find

"a data structure for maintaining **disjoint** sets. Supports operations **union** and **find**."

Recall: Kruskal's MST Algorithm Input: Graph G = (V, E), edge weights $w(\cdot)$

- 1. sort edges by weight.
- 2. for each edge e = (u, v) (in sorted order)
 - (a) if u and v already connected, discard edge.
 - (b) otherwise, add (u, v) to MST.

Def: Union–Find ADT

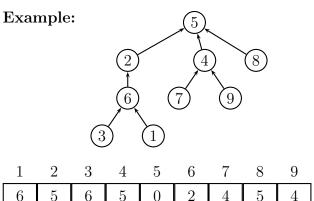
- create(n): initializes disjoint sets {1,...,n}
- **union(i,j)**: joins set containing *i* with set containing *j*.
- find(i): gives unique identifier for set containing *i*.
 (Note: need find(i) == find(j) iff *i* and *j* in same set)

Claim: exists a union-find data structure that is almost amortized constant time.

(really: each operation is amortized f(m)time where $f(m) \leq 5$ if m is less than number of particles in the universe). **Idea:** keep sets in trees, union merges trees, find returns root.

Note: only ever need to traverse *up* tree, so keep up-pointers.

Idea: tree with up arrows is easy to do in an array



- 1. $\operatorname{array} = \operatorname{length} n \operatorname{array}$.
- 2. $\operatorname{array}[1, \ldots, n] = 0.$

Algorithm: create(n)

Algorithm: find(i)

- 1. while $\operatorname{array}[i] \ge 1$, $i = \operatorname{array}[i]$.
- 2. return i.

Algorithm: union(i, j)

Example:	sion" (relink all node
1. $create(5)$	Example:
2. $union(1,2)$	1. $create(5)$
3. $union(3,4)$	2. $union(1,2)$
4. find(4) \Rightarrow 3	3. $union(3,4)$
5. $union(5,2)$	4. $union(5,2)$
6. find(1) $\Rightarrow 5$	5. $union(2,4)$
7. $union(2,4)$	 6. find(5) 7. find(4)
	(. 1110(4))

Idea: union-by-size

3. $\operatorname{array}[j'] = i'$

"make smaller tree child of root of larger tree"

Claim: with union-by-size, any sequence of m operations after creation costs $\Theta(m \log n)$

Proof:

- 1. runtime = $m \times$ "worst case depth"
- 2. depth of any node = number of times its tree was the smaller of the trees in union.
- 3. if tree is smaller of trees in union, after union size of tree more than doubles.
- 4. can only double size of tree $\log n$ times before it contains all nodes.
- 5. maximum depth $= \log n$.

Idea: when doing a find, do "path compresles on path directly to root)

-))))
- (4)

Def: $\log^* n$ = the number of logs you can take of n before you're ≤ 1 .

Example:

$$\begin{split} \log^* 1 &= 0 \\ \log^* (2^1) &= \log^* 2 = 1 \\ \log^* (2^2) &= \log^* 4 = 2 \\ \log^* (2^4) &= \log^* 16 = 3 \\ \log^* (2^{16}) &= \log^* 65536 = 4 \\ \log^* (2^{65536}) &= 5 \\ \log^* (\text{hubungus}!!) &= 6 \end{split}$$

Claim: with path-compression and unionby-size/height m union and find operations from creation costs $O(m \log^* n)$

(actually, it is better, see "inverse Ackermann function")

Implementation Detail: store "negative size of tree" at root node in array.

Note: union-by-height also works

(trees only get taller when both trees are same height \Rightarrow tree doubles in size.)