
EECS 311: Data Structure and Data Management Lecture 24

Union-Find

Reading: Chapter 8.

Union-Find

“a data structure for maintaining disjoint
sets. Supports operations union and find.”

Recall: Kruskal’s MST Algorithm
Input: Graph G = (V, E), edge weights w(·)

1. sort edges by weight.

2. for each edge e = (u, v) (in sorted order)

(a) if u and v already connected, dis-
card edge.

(b) otherwise, add (u, v) to MST.

Def: Union–Find ADT

• create(n): initializes disjoint sets
{1,. . . ,n}

• union(i,j): joins set containing i with
set containing j.

• find(i): gives unique identifier for set
containing i.
(Note: need find(i) == find(j) iff i and j

in same set)

Claim: exists a union-find data structure
that is almost amortized constant time.

(really: each operation is amortized f(m)
time where f(m) ≤ 5 if m is less than number
of particles in the universe).

Idea: keep sets in trees, union merges trees,
find returns root.

Note: only ever need to traverse up tree, so
keep up-pointers.

Idea: tree with up arrows is easy to do in an
array

Example: 5

2

6

3 1

4

7 9

8

1 2 3 4 5 6 7 8 9

6 5 6 5 0 2 4 5 4

Algorithm: create(n)

1. array = length n array.

2. array[1, . . . , n] = 0.

Algorithm: find(i)

1. while array[i] ≥ 1, i = array[i].

2. return i.

Algorithm: union(i, j)

1. i′ = find(i).

2. j′ = find(j).

1



3. array[j′] = i′

Example:

1. create(5)

2. union(1,2)

3. union(3,4)

4. find(4) ⇒ 3

5. union(5,2)

6. find(1) ⇒ 5

7. union(2,4)

Idea: union-by-size
“make smaller tree child of root of larger tree”

Claim: with union-by-size, any sequence of
m operations after creation costs Θ(m log n)

Proof:

1. runtime = m× “worst case depth”

2. depth of any node = number of times its
tree was the smaller of the trees in union.

3. if tree is smaller of trees in union, after
union size of tree more than doubles.

4. can only double size of tree log n times
before it contains all nodes.

5. maximum depth = log n.

2

Implementation Detail: store “negative
size of tree” at root node in array.

Note: union-by-height also works

(trees only get taller when both trees are
same height ⇒ tree doubles in size.)

Idea: when doing a find, do “path compres-
sion”
(relink all nodes on path directly to root)

Example:

1. create(5)

2. union(1,2)

3. union(3,4)

4. union(5,2)

5. union(2,4)

6. find(5)

7. find(4)

Def: log∗ n = the number of logs you can
take of n before you’re ≤ 1.

Example:

log∗ 1 = 0

log∗(21) = log∗ 2 = 1

log∗(22) = log∗ 4 = 2

log∗(24) = log∗ 16 = 3

log∗(216) = log∗ 65536 = 4

log∗(265536) = 5

log∗(hubungus!!) = 6

Claim: with path-compression and union-
by-size/height m union and find operations
from creation costs O(m log∗ n)

(actually, it is better, see “inverse Ackermann
function”)

2


