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These lecture notes cover the second third of the class CS364B, Topics in Algorithmic
Game Theory, offered at Stanford University in the Fall 2005 term. They cover the topic of
optimal mechanism design. As this is a traditional economic objective, we will review the
Economics treatment of optimal mechanism design first before moving on to cover recent
work on the problem from the theoretical computer science community. Prerequisites for
reading these lecture notes are basic understanding of algorithms and complexity as well as
elementary calculus and probability theory. I will also assume that the reader has access to
the notes on the first third of this course which covers combinatorial auctions.

Thanks to the students of CS364B, Ning Chen, and co-instructor Tim Roughgarden.
Comments are welcome.

1 Introduction

In the first third of this course we looked at the problem of designing a mechanism to max-
imize the social surplus, the sum of the valuations of the participants. A second, natural,
objective to consider is that of maximizing the profit of mechanism. Where as the Vickrey
auction maximizes the social surplus by awarding the item to the bidder with the highest
valuation, an auctioneer might prefer a mechanism which maximizes their profit instead.
Profit maximization is one of fundamental objectives in mechanism design. We adopt ter-
minology from Economics and refer to the mechanism that maximizes the seller’s profit as
the optimal mechanism.1

In this course we will cover two approaches to optimal mechanism design. The first is the
conventional economics approach of Bayesian optimal mechanism design where it is assumed
that the valuations of the agents are drawn from a known distribution and the Bayesian
optimal mechanism is the one that achieves the largest expected profit for these agents.
Here the expectation is taken over the randomness in the agents’ valuations. The problem

∗Microsoft Research – Silicon Valley, 1065 La Avenida, Mountain View, CA 94043. Email:
hartline@microsoft.com.

1A mechanism that maximizes the social surplus, we call the efficient mechanism.
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of optimal mechanism design here is to determine how to take distributional knowledge and
use it to construct the optimal mechanism.

The second approach we will consider is reminiscent of the typical Computer Science
approach to optimization (and approximation) where we look for a mechanism that is op-
timal (or near optimal) for any possible valuations the agents may have. This approach
is especially appealing as the worst-case guarantees we derive for any agent valuations are
comparable to the optimal average-case guarantees for valuations from known distributions.
The techniques we discuss for worst-case optimal mechanism design follow from techniques
typical for algorithmic design and analysis.

We now briefly motivate the problem of optimal mechanism design by considering the
profit of the Vickrey auction for selling a single item. Recall that the Vickrey auction sells
the item to the highest bidder at the second highest bid value. Thus, the profit of the
Vickrey auction is the second highest bid value. Consider running the Vickrey auction in a
setting where there are two bidders who’s valuations are known to be drawn independently
at random from the uniform distribution on [0, 1].

What follows is a simple argument showing that the expected revenue of the Vickrey
auction in this setting is 1/3. This follows from the calculation of the second order statistic of
two uniform random variables on [0, 1]. Let v1 and v2 denote the valuations of the bidders. By
the definition of uniform random variables, Pr[vi < x] = x implying that Pr[vi > x] = 1−x.
Since v1 and v2 are independent, Pr[min(v1, v2) > x] = Pr[v1 > x ∧ v2 > x] = (1 − x)2.
Using Fact 1.2, below, about the expectation of non-negative random variables we have

E[min(x1, x2)] =

∫ ∞

0

Pr[min(v1, v2) > x] dx

=

∫ 1

0

(1− x)2dx =

∫ 1

0

(1− 2x + x2)dx = x− x2 + x3/3

∣

∣

∣

∣

1

0

= 1/3.

A natural question to ask at this point is whether it is possible to do better and how.
Consider the following definition of the Vickrey auction with reservation price r for selling a
single item. This auction is of interest, for example, if the seller has valuation r for retaining
the item. It is instructive to think of the Vickrey auction with reserve price r as being
implemented by running the Vickrey auction with an additional bid placed on behalf of the
seller with value r. If this bid wins, then the seller keeps the item. The truthfulness of this
auction follows trivially from this viewpoint.

Definition 1.1 (Vickrey Auction with reservation price r) The Vickrey auction with
reservation price r, VAr, sells the item if any bidder bids above r. The price the winning
bidder pays the maximum of the second highest bid and r.

We now show that the seller can increase their expected profit in our example scenario
by pretending to have a valuation of 1/2 for the item and running the Vickrey auction with
reservation price r = 1/2. In particular when vi are independent and identically distributed
uniformly on [0, 1], a reservation price of 1/2 in the Vickrey auction yields an expected
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profit of 5/12 which is more than 1/3. To show this we consider three cases based on the
randomization in the bidders’ valuations.
Case 1 (both bids are less than 1/2): This happens with probability 1/4 and in this case
VA1/2 does not sell the item and has no profit.
Case 2 (both bids are above 1/2): This happens with probability 1/4 and in this case the
expected profit is the expected value of the second highest value. This is the second order
statistic of random variables that are uniform on [1/2, 1] which can be calculated, similarly
to before, to be 2/3.
Case 3 (otherwise, one bid is less than 1/2 and the other is above 1/2): This happens with
probability 1/2 and the expected profit is the reservation price 1/2.

The expected profit of VA1/2 is thus, 1/4× 0 + 1/4× 2/3 + 1/2× 1/2 = 5/12.
We have thus shown that given prior knowledge of the distribution from which the bidders’

valuations are drawn, it is possible to give an auction with higher expected profit than the
Vickrey auction. In the next section we will show that for this particular example VA1/2 is the
optimal auction and we will give a general technique for finding the optimal auction in more
complex scenarios. In the subsequent sections, we discuss doing optimal mechanism design
without foreknowledge of the distribution from which the bidders’ valuations are drawn.

We finish this section by giving a simple proof of a fact about expectations that will be
useful throughout these lectures.

Fact 1.2 A non-negative random variable X satisfies E[X] =
∫ ∞

0
Pr[X ≥ z] dz.

Proof: Let fX(z) be the density function for X. The expectation of X is thus:

E[X] =

∫ ∞

y=0

yfX(y)dy

Using the fact that y =
∫ y

z=0
dz and then switching the order of integration, we have:

E[X] =

∫ ∞

y=0

∫ y

z=0

fX(y)dzdy

=

∫ ∞

z=0

∫ ∞

y=z

fX(y)dydz

=

∫ ∞

z=0

Pr[X ≥ z] dz.

�

2 Bayesian Optimal Mechanism Design

In this section we solve the Bayesian optimal mechanism design problem in a very general
setting. For this setting we give a simple characterization of truthful mechanisms and then
a simple description of the optimal mechanism.
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2.1 Single Parameter Agents

Suppose we have n agents. each of whom desires some good or service. We assume that agent
i’s valuation for receiving service is vi and their valuation for no service we normalize to zero.
The mechanism designer, will solicit sealed bids from the agents and compute an outcome
which consists of an allocation x = (x1, . . . , xn) and prices p = (p1, . . . , pn). Assume that
xi = 1 represents agent i being allocated service whereas xi = 0 for no service. In addition to
receiving service or not, agent i is required to pay the mechanism pi. We assume that agents
have quasi-linear utility expressed by ui = vixi − pi. Thus, an agent’s goal in a mechanism
is to maximize the difference between their valuation and their payment.

To make this setting quite general, we assume that there is an inherent cost in producing
the outcome c(x) which must be payed by the mechanism. The two most fundamental
economic objectives are that of social surplus, a.k.a., common welfare, and profit. These
quantities are defined as:

Surplus =
∑

i
vixi − c(x), and

Profit =
∑

i

pi − c(x).

While in the preceding third of this course when discussing combinatorial auctions we were
interested in the efficient outcome, i.e, the one that maximizes the social surplus, we now
consider the problem of maximizing the mechanism’s profit.

Example 2.1 (single item auction)

c(x) =

{

0 if
∑

i xi ≤ 1,

∞ otherwise.

Example 2.2 (single-minded combinatorial auction, known bundles) Let Si be the
desired bundle of bidder i, then

c(x) =

{

0 if ∀i, j, Si ∩ Sj 6= ∅ → xixj = 0,

∞ otherwise.

Example 2.3 (multicast auctions) Given a graph with costs c(e) on edges, and a desig-
nated “root” node. c(x) is the total cost of connecting all of the agents with xi = 0 to the
root (I.e., the minimum Steiner tree cost).

We will place two standard assumptions on our mechanisms. The first, that they are
individually rational, means that no agent has negative expected utility for playing. This
condition is alternatively known as voluntary participation and essentially it requires that
pi ≤ bixi. The second condition we require is that of no positive transfers which restricts the
mechanism to not pay the agents to play. I.e, pi ≥ 0.
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2.2 Characterization of Truthful Mechanisms

Before presenting this characterization, we extend our analysis to consider randomized mech-
anisms as well. In a randomized mechanism we view xi as the probability that agent i is
allocated the good, and pi as their expected payment. Recall that xi and pi are results of the
mechanism. As such, it will be useful to view them as functions of the input bids as follows.
We let xi(b), pi(b), and ui(b) represent agent i’s probability of allocation, expected price,
and expected utility, respectively. Let b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn) represent the vector
of bids disincluding bid i. Then with b−i fixed, we let xi(bi), pi(bi), and ui(bi) represent
the agent i’s probability of allocation, expected price, and expected utility, respectively, as
a function of their own bid. We further define the convenient notation xi(bi,b−i) = xi(b),
pi(bi,b−i), and ui(bi,b−i).

Definition 2.4 A mechanism is truthful if and only if for all i, vi, bi, and b−i, agent i’s
utility for bidding their valuation, vi, is at least their utility for bidding any other bid, bi.
I.e.,

ui(vi,b−i) ≥ ui(bi,b−i).

The following results were shown by Myerson in his seminal paper on optimal mechanism
design [11]. Our proofs will follow those of Archer and Tardos [1] which is a bit more accessible
to computer scientists.

Theorem 2.5 A mechanism is truthful if and only if, for any agent i and bids of other
agents b−i fixed,

1. xi(bi) is monotone non-decreasing.

2. pi(bi) = bixi(bi)−
∫ bi

0
xi(z)dz.

Given this theorem, we see that for a fixed allocation rule, x(·), the payment p(·) rule is
also fixed. Thus, in specifying a mechanism we need only specify a monotone allocation rule
and from this the correct payment rule for truthfulness can be derived.

We break the proof of this theorem into two parts, the forward direction “if”, and the
backwards direction, “only if”.
Proof:(⇐=) We prove this by picture. Though the formulaic proof is simple, the pictures
provide useful intuition. We consider two possible bid values z1 and z2 with z1 < z2. Sup-
posing vi = z2 we argue that agent i does not benefit by shading their bid down to z1. We
leave the proof of the opposite, that agent i does not benefit by shading their bid up, as an
exercise for the reader.

To start with this proof, we assume that xi(bi) is monotone and that pi(bi) = bixi(bi) −
∫ bi

0
xi(z)dz. Recall that the utility of agent i is ui(bi) = vixi(bi)− pi(bi).
Consider the diagrams in Figure 1. The first diagram (top, center) shows xi(·) which is

indeed monotone as per our assumption. The column on the left show the bidder’s valuation,
vixi(vi); payment, pi(vi), and utility, ui(vi) = vixi(vi)− pi(vi), assuming that they bid their
true valuation, bi = vi = z2. The column on the right shows the analogous quantities when
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the bidder bids bi = z1 < z2 = vi. The final diagram (bottom, center) shows the difference
in the bidders utility when bidding bi = vi = z2 and bidding bi = z1 ≤ z2 = vi. Note that as
the picture shows, the monotonicity of the allocation function implies that this difference is
always non-negative and that indeed there is no incentive for the bidder to shade their bid
to z1 < z2 = vi. The reader can draw and verify the analogous pictures to show that there is
also no incentive for a bidder with valuation vi = z1 to shade their bid up to bi = z2. These
two facts combine to show that monotonicity of the allocation rule with the payment rule
specified in the lemma statement imply truthfulness.

(=⇒) First we show that truthful implies monotone. If a mechanism is truthful then for
all valuations, vi, and possible lies, bi, ui(vi) ≥ ui(bi). Expanding ui(·) we require:

∀vi, bi vixi(vi)− pi(vi) ≥ vixi(bi)− pi(bi).

We now consider z1 and z2 and take turns setting vi = z1, bi = z2, and bi = z1, vi = z2. This
yields the following two inequalities:

vi = z2, bi = z1 =⇒ z2xi(z2)− pi(z2) ≥ z2xi(z1)− pi(z1), and

vi = z1, bi = z2 =⇒ z1xi(z1)− pi(z1) ≥ z1xi(z2)− pi(z2).

Adding these inequalities and canceling the payment terms we have,

z2xi(z2) + z1xi(z1) ≥ z2xi(z1) + z1xi(z2).

Rearranging,

(z2 − z1)(xi(z2)− xi(z1)) ≥ 0.

Since z2− z1 > 0 we see that xi(z2)−xi(z1) ≥ 0. This holds for all z2 > z1 which is precisely
the condition that xi(·) is monotone non-decreasing.

Now we show that the payment rule must satisfy pi(bi) = bixi(bi) −
∫ bi

0
xi(z)dz. Fix vi

and recall that ui(bi) = vixi(bi) − pi(bi). Let ui
′(·) be the partial derivative of ui(·) with

respect to bi (recall that ui(·) is also a function of vi). Thus, ui
′(bi) = vixi

′(bi) − pi
′(bi),

where xi
′(·) and pi

′(·) are the derivatives of pi(·) and xi(·), respectively. Since truthfulness
implies that ui(bi) is maximized at bi = vi. It must be that

0 = ui
′(vi)

= vixi
′(vi)− pi

′(vi).

This formula must hold true for all values of vi. For remainder of the proof, we treat this
identity formulaicly. To emphasize this, substitute z = vi:

0 = zxi
′(z)− pi

′(z).
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xi(bi)

0

1

z2z1

vixi(vi)

0

1

vi

xi(vi)

vixi(bi)

0

1

vibi

xi(bi)

pi(vi)

0

1

vi

xi(vi)

pi(bi)

0

1

vibi

xi(bi)

ui(vi)

0

1

vi

xi(vi)

ui(bi)

0

1

vibi

xi(bi)

Bidder’s Loss

0

1

vibi

xi(bi)

xi(vi)

Figure 1: The left column shows the valuation, payment, and utility of the bidder when
bidding bi = vi = z2. The right column shows the valuation, payment, and utility of the
bidder when bidding biz1 < vi = z2. The final diagram shows the difference between the
bidder’s utility when bidding their valuation and less than it.
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xi(bi)

0

1

ti

Figure 2: The deterministic allocation with minimum winning bid ti.

Solving for pi
′(z) and then integrating both sides of the equality from 0 to bi we have,

pi
′(z) = zxi

′(z), so
∫ bi

0

pi
′(z)dz =

∫ bi

0

zxi
′(z)dz,

pi(bi)− pi(0) = zxi(z)|bi

0 −

∫ bi

0

xi(z)dz

= bixi(bi)−

∫ bi

0

xi(z)dz.

Adding pi(0) from both sides of the equality, we arrive at a valid equation for the payment
rule pi(·) given the allocation rule xi(·). We take this one step further by assuming voluntary
participation and no positive transfers. The former implies that pi(bi) ≤ bi (so pi(0) ≤ 0)
and the latter implies that pi(bi) ≥ 0. Thus, pi(0) = 0 and we have our desired theorem. �

It is useful to reinterpret this theorem for deterministic mechanisms. For deterministic
mechanisms xi(·) ∈ {0, 1}. Therefore, monotonicity implies that xi(·) is a step function.
Furthermore, if an agent wins, then their payment is exactly their “minimum winning bid”,
i.e, ti = infz{z : xi(z) = 1} (Figure 2). As an exercise reprove Theorem 2.5 (and derive the
analogous diagrams to Figure 1) for the deterministic special case.

As an example, let us consider the goal of maximizing the social surplus. Recall that the
surplus is given by the formula

∑

i vixi − c(x). The Vickrey-Clarke-Groves [12, 5, 6] (VCG)
mechanism that we considered previously for combinatorial auctions also applies in general
single-parameter agent settings. As before, the VCG mechanism outputs the allocation that
maximizes the surplus (assuming truthful bidding). To see that this is truthful, we must only
verify that it results in a monotone allocation rule. We can then use this monotone allocation
rule to calculate payments using the formula for payments: pi(bi) = bixi(bi)−

∫ bi

0
xi(z)dz.

Lemma 2.6 The surplus maximizing allocation is monotone.

Proof: Define S(v,x) =
∑

i vixi − c(x). Let v′ be the vector of valuations where agent
i’s valuation is increased by δ ≥ 0 but valuations of other agents remain unchanged. I.e.,
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vi
′ = vi + δ and for j 6= i, vj

′ = vj. Clearly then,

S(v′,x) =
∑

i

vi
′xi − c(x)

= δxi +
∑

i

vixi − c(x)

= δxi + S(v,x).

From this equation it is easy to see that if x maximizes S(v,x) with xi = 1, then all x′ that
maximize S(v′,x) also have xi = 1. �

As an exercise, give a simple expression for the truthful payment rule of the VCG mech-
anism for any single-parameter agent problem.

2.3 Myerson’s (Simple) Optimal Mechanism

Now assume that the valuations of the agents, v1, . . . , vn, are drawn independently (but not
necessarily identically) at random from some distribution. We let Fi denote the distribution
from which bidder i’s valuation, vi, is drawn and F = F1 × . . . × Fn, the distribution from
which v is drawn, is just the product distribution. We adopt the following notation:

Definition 2.7 The cumulative distribution function for vi is Fi(z) = Pr[vi < z].

Definition 2.8 The probability density function for vi is fi(z) = d
dz

Fi(z).

We now define the notion of virtual valuations and virtual surplus. These definitions
follow Myerson [11].

Definition 2.9 The virtual valuation of agent i with valuation vi is

φi(vi) = vi −
1− Fi(vi)

fi(vi)
.

Definition 2.10 Given valuations vi, virtual valuations φi(vi), and allocation x, the virtual
surplus is

∑

i

φi(vi)xi − c(x).

We now state the main result of this section. Note that this result implies that maximizing
profit is equivalent to maximizing virtual surplus.

Theorem 2.11 [11] The expected profit of a mechanism is equal to its expected virtual sur-
plus.

Definition 2.12 Myerson’s optimal mechanism outputs x to maximize the virtual surplus.
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One intuitive way to view this optimal mechanism is via the following algorithm:

1. Given the bids b, compute “virtual bids”: bi
′ = φi(bi).

2. Run VCG on the virtual bids b′ to get x′ and p′

3. Output x = x′ and p with pi = φi
−1(pi

′).

Of course, we still have to ask ourselves whether Myerson’s optimal mechanism is truth-
ful. This is equivalent to the question of whether the allocation rule is monotone: if a winner
increases their bid do they still win? Since surplus maximization is monotone in agent val-
uations (Lemma 2.6), virtual surplus maximization is monotone in agent virtual valuations.
Thus, we can conclude that if virtual valuations are monotone in valuations, then virtual
surplus maximization is monotone in valuations. It is simple to verify that examples exist
such that non-monotone virtual valuation functions result in a non-monotone allocation rule
which implies non-truthfulness.

Lemma 2.13 Myerson’s optimal mechanism is truthful if and only if φi(vi) is monotone in
vi for all i.

The condition that virtual valuations be monotone is consistent with a common assump-
tion made in Economics: the monotone hazard rate assumption. The hazard rate is defined
as f(z)/(1 − F (z)). Myerson discusses an “ironing” procedure for handling the case where
the virtual valuations are not monotone. Interested readers should consult his original paper
[11] or alternative presentations (E.g., [2]).

Lemma 2.14 The expected payment of a bidder satisfies (as a function of their bid bi and
with all other bids fixed b−i):

Ebi
[pi(bi)] = Ebi

[φi(bi)xi(bi)]

Proof: (drop the subscript i) The bid b is random from distribution F with density function
f . From the definition of expectation and truthfulness we have:

Eb[p(b)] =

∫ h

0

p(b)f(b)db

=

∫ h

b=0

bx(b)f(b)db −

∫ h

b=0

∫ b

z=0

x(z)f(b)dzdb.

focusing on the second term and switching the order of integration, we have

Eb[p(b)] =

∫ h

b=0

bx(b)f(b)db −

∫ h

z=0

x(z)

∫ h

b=z

f(b)dbzdz.

=

∫ h

b=0

bx(b)f(b)db −

∫ h

z=0

x(z) [1− F (z)] dz.

10



Now, rename z to b and factor out a factor of x(b)f(b).

Eb[p(b)] =

∫ h

b=0

bx(b)f(b)db −

∫ h

b=0

x(b) [1− F (b)] db.

=

∫ h

b=0

[

b−
1− F (b)

f(b)

]

x(b)f(b)db.

= Eb[φ(b)x(b)] .

�

Myerson’s theorem (Theorem 2.11) follows from linearity of expectation and the fact that
the bidders’ valuations are independently distributed (i.e., the joint distribution is a product
distribution).

2.4 Interpretation of Myerson’s Optimal Mechanism

We now consider a few examples which allow us to obtain a precise interpretation of Myer-
son’s optimal mechanism in a few important special cases.

Example 2.15 (single item auction)

c(x) =

{

0 if
∑

i xi ≤ 1,

∞ otherwise.

In the single item auction the surplus maximizing allocation allocates the item to the
bidder with the highest valuation, unless the highest valuation is less than zero in which case
the auctioneer keeps the item. This point of not allocating the item if all bidders values are
less than zero is usually not relevant because it is usually assumed that the bidders valuations
are all at least zero. For deriving the Bayesian optimal single item auction Myerson says to
find the virtual surplus maximizing allocation and virtual valuations can be negative (see
the example below). The optimal auction, therefore, allocates the item to the bidder with
the largest positive virtual valuation.

For the case that there are only two bidders, bidder 1 wins precisely when φ1(b1) ≥
max{φ2(b2, 0}. This is a deterministic allocation rule, and thus the payment that a winning
bidder 1 must make is the p1 = inf{b : φ1(b) > φ2(b2)∧φ1(b) > 0}. Suppose that F1 = F2 =
F which implies that φ1(z) = φ2(z) = φ(z). Then we can simplify the price bidder 1 must
make upon winning to p1 = inf{b : b > b2 ∧ b > φ−1(0)}. Bidder 2’s payment upon winning
is p2 = inf{b : b > b1 ∧ b > φ−1(0)}. Thus we arrive at Myerson’s main observation.

Theorem 2.16 The optimal single-item auction for bidders with valuations drawn i.i.d. from
distribution F is precisely the Vickrey auction with reservation price φ−1(0).
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In our example above when F is uniform on [0, 1], we can plug the equations F (z) = z
and f(z) = 1 into the formula for the virtual valuation function (Definition 2.9) to conclude
that φ(z) = 2z − 1. Thus, the virtual valuations are uniformly distributed on [−1, 1]. We
can easily solve for φ−1(0) = 1/2. Thus, we can conclude that the optimal auction for our
example: two bidders with valuations uniform on [0, 1] is the Vickrey auction with reservation
price 1/2.

The reader should now be prepared to answer the following questions:

1. What is the optimal single-item auction when the seller values the item at v0 > 0?

2. What is the optimal digital good auction for bidders with i.i.d. valuations drawn uni-
formly from [0, 1]? from distribution F ?

3. What is the optimal auction for a seller with k identical items and n > k bidders with
i.i.d. valuations drawn uniformly from [0, 1]?

In this section we have seen how to design the optimal truthful auction. The reader
might be wondering whether this auction is optimal amongst all auctions including possi-
bly non-truthful auctions. In order to consider this question we must fix an equilibrium
concept describing how bidders will behave in a non-truthful mechanism (recall that this
issue is precisely the issue we were trying to avoid when we adopted the solution concept of
truthfulness). It turns out that for natural equilibrium concepts and given the assumption
that the bidders are risk neutral there is a revenue equivalence theorem that states that all
auctions which yield the same outcome in equilibrium also yield the same expected profit.
In particular, the first price auction, the Vickrey auction, and even the all-pay auction2

Interested readers are referred to Krishna’s book [9], Klemperer’s survey [8], or Myerson’s
original paper [11].

3 Worst Case Optimal Mechanism Design

We start of with a motivating problem that we will use as a running example throughout
this section.

Example 3.1 (Digital Good Auction) In the digital good auction there are,

1. n bidders with valuations v1, . . . , vn.

2. n units of an item for sale.

We would like to design a truthful auction that maximizes our profit. However, first let
us consider how we might design an algorithm (not truthful) for maximizing our profit.

2In the all-pay auction, all bidders must pay their bids, yet the item is only allocated to the bidder with
the highest bid. Thus, the all-pay auction is not ex post individually rational. It is, however, ex interim

individually rational (i.e., when bidders know the distribution of other bidders valuations, and their own
true valuation, they have no incentive not to participate in the auction).
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3.1 Digital Good Algorithms

When designing an algorithm, we make the classical algorithmic assumption that the algo-
rithm is given the true input. In this case, the true input is the bidders’ true valuations.
The first obvious algorithm for this problem is the following.

Algorithm 3.1 (T ) “Sell to all bidders at their valuation.”

Profit = T (v) =
∑

i
vi.

We might object to this algorithm because it is unfair in that winning bidders are required
to pay different prices. This might cause us to prefer the second most obvious algorithm for
this problem. First a definition that will be useful throughout our discussion of digital good
auctions.

Definition 3.2 Let the notation v(i) represent the ith largest valuation, i.e., v(1) ≥ v(2) ≥
· · · ≥ v(n).

Algorithm 3.2 (F) “Sell at optimal single sale price.”

Profit = F(v) = max
p

p× “number of bidders with vi ≥ p.”

1. Sort valuations: v(1) ≥ . . . ≥ v(n).

2. Compute i∗ = argmaxi iv(i).

3. Output sale price p = v(i∗).

We now consider the relationship between T and F . Obviously T (v) ≥ F(v). For a
bound in the other direction, we show the following lemma where Hn =

∑n
i=1 1/i denotes

the nth harmonic number.

Lemma 3.3 F(v) ≥ T (v)/Hn and this is tight.

Proof: Recall that v(i) is the ith highest bid value and that F(v) = maxi iv(i). We have:

T (v) =
∑

i

vi =
∑

i

v(i) =
∑

i

iv(i)

i
≤

∑

i

F(v)

i
= F(v)Hn.

For tightness, consider the valuations, vi = 1/i. This input is known as the equal revenue
input because as iv(i) = 1 = F(v) for all i. Naturally, T (v) = Hn. �

Since Hn ≈ ln n we see that F(v) is Θ(T (v)/ log n) in worst case.
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3.2 Truthfulness in Auctions

In the previous section on Bayesian optimal auctions we saw that given the allocation rule
x(b) we could determine the payment rule p(b). Of course, the opposite is true as well.
In any deterministic auction, the outcome for a bidder is fully specified by an offer price ti
where the bidder wins if they bid at least ti and they lose if they bid below ti. Implicit in
the definition of this offer price is that all other bids b−i are fixed. It is useful to write this
offer price as a function of the other bids ti(b−i). This view point gives us the following
observation about auctions for digital goods.

Observation 3.1 Any truthful auction should determine an offer price to bidder i that is a
function of all other bids, b−i.

3.3 Worst-case Optimality in Auctions

Recall that when the bidders were drawn from a known distribution there was a very natural
notion of what it meant to be the optimal auction. For a given distribution there exists a
truthful auction that obtains the highest expected profit. This auction is optimal! The same
is not true in worst case settings.

Claim 3.4 There does not exist an auction that it best on every input.

Proof: We will show this proof by example. Consider one bidder in an auction. In a truthful
auction the offer price t1 (for bidder 1) must not be a function of her bid. However, there
are no other bids, therefore, the offer price must just be a constant. Consider two possible
inputs, Case 1 with b1 = 1 and Case 2 with b1 = 2; and two possible auctions, A1 with t1 = 1
and A2 with t1 = 2. Consider the following table with the profit of the auction each auction
on each input.

b1 = 1 b1 = 2
A1 1 1
A2 0 2

It is easy to see that A1 is the unique optimal auction in Case 1 and suboptimal in Case 2;
whereas, A2 is the unique optimal auction in case 2 and suboptimal in Case 1. �

This impossibility leaves us with the question of how we can arrive at a rigorous theoret-
ical framework in which we can determine some auction to be optimal. The key to resolving
this issue is in moving from absolute optimality to relative optimality. Indeed, whenever
there is an information theoretic obstacle or computational intractability preventing us from
obtaining an absolute optimal solution to a problem we can try to approximate. For ex-
ample, in the design of polynomial time algorithms for NP-hard problems, the goal is to
design an algorithm that computes a solution that approximates objective value of the true
optimal solution. Likewise, in the design of online algorithms the objective is to find an
online algorithm that performs comparably to an optimal offline algorithm. The notable

14



analogy here is between the game theoretic constraint that a mechanism does not know the
true bid values in advance and must solicit them in a truth-inducing manner, and the online
constraint that an online algorithm does not have knowledge of the future.

Thus, the general approach will be to try to design an auction that is always (in worst
case) within a small constant factor of some benchmark profit. In the analysis online al-
gorithms it is not always best to gauge the performance of an online algorithm with an
unconstrained optimal offline algorithm, likewise, we may choose in the analysis of digital
good auctions to compare an auction’s profit to some profit benchmark that is not necessarily
the profit of the optimal algorithm that is given the bidders’ true valuations in advance.

Definition 3.5 A profit benchmark is a function G : R
n → R which maps a vector of

valuations to a target profit.

We have already seen two profit benchmarks, F(v) = maxi iv(i) and T (v) =
∑

i vi, that
will be of interest.

The following definition captures the intuition that an auction is good if it is always close
to a reasonable profit benchmark.

Definition 3.6 The competitive ratio of auction A is β = maxv

G(v)
A(v)

.

Given a profit benchmark G the task of an auction designer is to give the auction that
achieves the minimum possible competitive ratio. This auction is the optimal competitive
auction for G.

Lemma 3.7 For v with vi ∈ [1, h], no auction is o(log h)-competitive with T (v) for any n.

Proof: Exercise. �

Corollary 3.8 For v with vi ∈ [1, h], no auction is o(log h)-competitive with F(v) for n = 2.

This follows from Lemma 3.7 because for n = 2, F(v) ≥ T (v)/2. Basically, this impossi-
bility is a result of the fact that we cannot get one high bidder to pay a constant fraction of
their true valuation. There are two solutions to this problem that have been considered in
the literature. The first, which we will consider now, is to compare an auction’s profit to the
profit of the optimal single sale price that sells at least two items. The second approach is
to try to perform well compared to F less an additive loss term that is O(h) for bids in the
range [1, h]. We consider this second approach when discussing online auctions in Section 4.

Definition 3.9 (F (2)) The optimal single priced profit with at least two winners is

F (2)(v) = max
i≥2

iv(i).

For an auction A that is β-competitive with F (2) for some small constant β, we have:

T (v) ≥ F(v) ≈ F (2)(v) ≥ A(v) ≥ F (2)(v)/β ≥ T (v)/β log n.
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3.4 Competing with F (2)

For the remainder of this section we take up the goal of designing an auction that is β-
competitive with F (2) for some constant β. We proceed with a digression into the structure of
F (2). In the following examples we see that the optimal sale price depends on the distribution
of input valuations. In both cases, we would like to design an auction A with revenue
A(b) ≈ F (2)(b).

Example 3.10 With

• 50 bids $10 and

• 50 bids at $1

consider the revenue R1 and R10 from an offer price of $1 and $10, respectively:

• R10 = 500 and

• R1 = 100 (because all 100 bidders win and pay $1).

Clearly, F (2)(b) = R10 = $500.

Example 3.11 With

• 5 bids at $10 and

• 95 bids at $1

consider the revenue R1 and R10 from an offer price of $1 and $10, respectively:

• R10 = 50 and

• R1 = 100.

Clearly, F (2)(b) = R1 = $100.

It us useful here to consider the profit of the single-priced mechanism on a given set of
bidders, b, as a function of its offer price. There is some price at which this function has
an optimal value, this value is F(b) (and if there are at least two winners then this value is
F (2)(b) as well).

Definition 3.12 (opt) The optimal price for input valuations v is

opt(v) = argmaxp p× “number of bidders with vi ≥ p.”

As described in the beginning of this section, any truthful auction can be described by
an offer price ti(b−i) for each bidder that is not a function of their bid value (and possibly
a function of the other bidders bid values). One very natural auction to consider is the
Deterministic Optimal Price auction (DOP).
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Definition 3.13 (DOP) The Deterministic Optimal Price auction offers each bidder

ti(b−i) = opt(b−i).

Clearly, by definition DOP is truthful. How about its performance? Is DOP β-competitive
for any constant β? The answer to this question is no as the following example illustrates.

Example 3.14 With

• 10 bids at $10 and

• 90 bids at $1

consider the prices ti(b−1) and ti(b−10) that DOP offers bidders bidding $1 and $10 respec-
tively. $10, respectively:

• b−1 is 89 bids at $1 and 10 bids at $10, so opt(b−1) = $10, and

• b−10 is 90 bids at $1 and 9 bids at $10, so opt(b−10) = $1.

Thus, bids at $10 are accepted, but offered price $1, while bids at $1 are rejected. The total
profit is $10 when F (2) = 100. This example can be made arbitrarily bad.

3.5 Competitive Auctions

We start this section by extending the bad example for DOT, above, to show that no deter-
ministic symmetric auction is constant-competitive. An auction is symmetric if its outcome
is not a function of the order in which the bids are input.

Theorem 3.15 No symmetric deterministic truthful auction is competitive with F (2).

Proof: We consider only bid vectors with bids bi ∈ {1, h}. Let nh(b) and n1(b) represent
the number of h bids and 1 bids in b, respectively. That an auction A is symmetric implies
that ti(b−i) is independent of i and only a function of nh(b−i) and n1(b−i). Thus, we can
let t(nh, n1) represent the offer price of A for any bidder i when we plug in nh = nh(b−i)
and n1 = n1(b−i). Finally we assume that t(nh, n1) ∈ {1, h} as this restriction cannot hurt
the auction profit on the bid vectors we are considering.

We assume for a contradiction that the auction is constant competitive and proceed in
three steps.

1. Observe that for any auction that is competitive, it must be that for all m, t(m, 0) = h.
Otherwise, on the all h’s input, the auction only achieves profit n while the optimal
profit is F (2) = hn. Thus, the auction would be at most h-competitive which is not
constant.

2. Likewise, observe that for any auction that is competitive, it must be that for all m,
t(0, m) = 1. Otherwise, on the all 1’s input, the auction achieves no profit and is
clearly not competitive with F (2) = n.
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3. For the final argument, consider taking m sufficiently large and looking at t(k, m− k).
As we have argued for k = 0, t(k, m−k) = 0. Consider increasing k until t(k, m−k) =
h. This must occur since t(k, m−k) = h when k = m. Let k∗ = min{k : t(k, m−k) =
h} be this transition point. Now consider the m+1 bid input to A with nh(b) = k∗ and
n1(b) = m− k∗ + 1. Consider separately the offer prices to 1-bidders and h-bidders:

• For 1-bidders: t(nh(b−1), n1(b−1)) = t(k∗, m − k∗) = h. Thus, all 1-bidders are
rejected and contribute nothing to our auction profit.

• For h-bidders: t(nh(b−h), n1(b−h)) = t(k∗−1, m−k∗+1) = 1. Thus, all h-bidders
are are offered a price of one which they accept. Thus, the contribution to the
auction profit from the h-bidders is 1× nh(b) = k∗.

Now, assume we had chosen h = n. If this were the case then F (2)(b) = nk∗ while our
auction profit is only k∗. Thus, auction is at best n-competitive. �

We can conclude from this theorem that if we wish to design a competitive auction we
must either design one that is asymmetric or randomized. Only very recently has it been
shown that there exist asymmetric deterministic auctions that are competitive and these
auctions are based on derandomizing randomized auction. Thus, we now consider the design
of (symmetric) randomized auctions.

Theorem 3.16 There exist (symmetric) randomized auctions that are constant-competitive
against F (2).

Consider the following auction:

Definition 3.17 (RSOP) The Random Sampling Optimal Price auction (RSOP) works as
follows:

• Randomly partition the bids b into two parts by flipping a fair coin for each bidder
and assigning her to b′ or b′′.

• Compute t′ = opt(b′) and t′′ = opt(b′′), the optimal sale prices for each part.

• Offer t′ to all bidders in b′′ and t′′ to all bidders in b′.

It is clear as each bidder is offered a price that is not a function of their own bid, and
only a function of the other bids, that RSOP is truthful. Further, via a complicated analysis
it is possible to prove that RSOP is no worse than 15-competitive. We omit this analysis
here. We instead prove that a lower bound on the competitive ratio of RSOP is four. Thus
we have:

Lemma 3.18 RSOP is truthful.

Theorem 3.19 The competitive ratio of RSOP is between 4 and 15.
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Proof:(of lower bound only) Consider the two-bid vector b = ($1, $2). With probability 1/2
both bids end up in the same part and the RSOP profit is zero. Otherwise, with probability
1/2 one bid is in each part. Without loss of generality, b′ = {$1} and b′′ = {$2}, then
t′ = $1 and t′′ = $2. Thus, the $1-bid is rejected (because she cannot pay $2) and the $2-bid
is offered a price of $1 which she accepts. The RSOP profit in this case is $1. The expected
profit of RSOP is therefore $0.50 while F (2)(b) = $2 which shows that RSOP is at best
4-competitive. �

We conclude our discussion of RSOP with the conjecture that this two bid bid vector is
actually the worst case and that RSOP is indeed 4-competitive.

Conjecture 3.20 RSOP is 4-competitive.

3.6 Lower bounds

Now that we have seen that there exists an auction that has constant competitive ratio to
F (2) it is interesting to consider the following questions. What is the optimal auction in
terms of worst case competitive ratio to F (2)? What is the competitive ratio of this optimal
auction? One way to try to answer this question is to look for good auctions; indeed, we
have already seen one auction, RSOP, that is 15-competitive. Thus, we can conclude that
the competitive ratio of the optimal auction is at most 15. The other direction is to look for
lower-bounds on the competitive ratio. In this section we discuss a proof that shows that no
auction is better that 2.42-competitive.

Theorem 3.21 No auction has competitive ratio less than 2.42.

Instead of proving this theorem which involved a complicated analysis of the expected
value of F (2)(b) when b generated from a particular distribution, we will show a simpler
result which highlights the main ideas of the main theorem.

Lemma 3.22 No 2-bidder auction is has competitive ratio less than 2.

Proof: The proof follows a simple structure that is useful for proving lower bounds for this
type of problem. First, we consider bids drawn from a random distribution. Second, we
argue that Eb[A(b)] ≤ Eb

[

F (2)(b)
]

/2. By the definition of expectation this implies that

there exists a bid vector b∗ such that A(b∗) ≤ F (2)(b∗)/2 (as otherwise the expected values
could not satisfy this condition).

We choose a distribution to make the analysis of Eb[A(b)] simple. This is important
because we have to analyze it for all auctions A. The idea is to choose the distribution
for b such that all auctions obtain the same expected profit. Consider b with bi satisfying
Pr[bi > z] = 1/z. Note that whatever price ti that A offers bidder i, the expected payment
made by bidder i is ti × Pr[bi ≥ ti] = 1. Thus, for n = 2 bidders the expected profit of the
auction Eb[A(b)] = n = 2.

We must now calculate Eb

[

F (2)(b)
]

. F (2)(b) = maxi≥2 ib(i) where b(i) is the ith highest

bid value. In the case that n = 2, this simplifies to F (2)(b) = 2b(2) = 2 min(b1, b2). We
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recall (Fact 1.2) that a non-negative random variable X has E[X] =
∫ ∞

0
Pr[X > z] dz and

calculate Pr
[

F (2)(b) > z
]

.

Prb

[

F (2)(b) > z
]

= Prb[b1 ≥ z/2 ∧ b2 ≥ z/2]

= Prb[b1 ≥ z/2]Prb[b2 ≥ z/2]

= 4/z2.

Note that this equation is only valid for z ≥ 2. Of course for z < 2, Pr
[

F (2)(b) ≥ z
]

= 1.

Eb

[

F (2)(b)
]

=

∫ ∞

0

Pr
[

F (2)b ≥ z
]

dz

= 2 +

∫ ∞

2

4

z2
dz

= 4.

Thus we see that for this distribution and any auctionA, Eb[A(b)] = 2 and Eb

[

F (2)(b)
]

= 4.

Thus, the inequality Eb[A(b)] ≤ Eb

[

F (2)(b)
]

/2 holds and there must exist some input b

such that A(b) ≤ F (2)(b)/2. �

The above proof is based on analysis of Eb

[

F (2)(b)
]

for b of length n = 2. This bound
can be generalized by a much more complicated analysis for larger n. Such an analysis leads
to bounds of 13/6 for n = 3 and eventually to a bound of 2.42 for general n. It is conjectured
that these bounds are tight. Indeed they are tight for n ≤ 3.

Exercise 3.1 Give an auction that is 2-competitive for b of length n = 2?

Next we see how to design an auction that is 4-competitive (and is thus a 4/2.42-
approximation to the optimal competitive auction).

3.7 The Digital Good Auction Decision Problem

A standard approach to solving problems is by reduction to an “easier” problem or one with
a known solution. In what follows we define the notion of a decision problem for mechanism
design and reduce the problem of designing a good competitive auction to it. Since we
will show that the decision problem is solvable, this will give a solution to the competitive
auction problem. This approach is reminiscent of a typical approach for solving optimization
problem via reduction to the decision problem.

Consider a classical optimization problem which can be phrased as “find the feasible
solution maximizes some objective function.” The decision problem version of this is “is
there a feasible solution for which the objective function has value at least V .” Notice that
we can use a solution to the decision problem to solve the optimization problem by doing a
binary search over values V . Unfortunately, such an approach will not work for mechanism
design as it is not truthful to run several truthful mechanisms and then only take the output
of the one that is the most desirable.
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Definition 3.23 The digital good auction decision problem is given:

• n bidders,

• n copies of an item, and

• a target profit R;

design a mechanism that obtains profit R if possible, i.e., if R ≤ F(b).

This digital good auction decision problem is also known as the profit extraction problem
as its goal is to extract a profit R from a set of bidders. It turns out that this problem is
solved by a special case of a general cost sharing mechanism due to Moulin and Shenker [10].

Definition 3.24 (ProfitExtractR) The basic auction profit extractor with target profit R
sells to the largest group of k bidders that can equally share R and charge each R/k.

ProfitExtractR can be implemented be the following algorithm which is given n, R, and
b.

1. Offer R/n to all bidders.

2. If bi ≤ R/n reject bidder i.

3. Let b (resp. n) be the bidders (resp. number of bidders) remaining.

4. Repeat until nobody is rejected in Step 2.

Example 3.25 Consider:

• b = (1, 2, 3, 4, 5),

• R = $9, and

• n = 5 bidders.

The first iteration offers 9/5 to all bidders. This causes bidder 1 to be rejected since
9/5 > 1. The second iteration of the algorithm (with n = 4) offers 9/4 > 2 to each bidder
and bidder 2 is rejected. The final iteration offers 9/3 = 3 to each bidder. Since all bidders
remaining (which are just (3, 4, 5) can afford to pay $3, none are rejected and the auction
terminates with an offer price of $3 to each of the three highest bidders.

Exercise 3.2 Prove that ProfitExtractR is a truthful profit extractor:

1. Prove it is truthful.

2. Prove it is a profit extractor (that it always obtains a profit of at least F(b) when
F(b) ≥ R).
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3.8 Reduction to the Decision Problem

Definition 3.26 (RSPE) The Random Sampling Profit Extraction auction (RSPE) works
as follows:

• Randomly partition the bids b into two by flipping a fair coin for each bidder and
assigning her to b′ or b′′.

• Compute F ′ = F(b′) and F ′′ = F(b′′), the optimal sale prices for each part.

• Run ProfitExtractF ′ on b′′ and ProfitExtractF ′′ on b′.

The intuition for this auction is that ProfitExtractR allows us treat a set of bidders, b,
as one bidder with bid value F(b). Recall that a truthful auction must just offer a price ti
to bidder i who accepts if her value is at least ti. This is analogous to trying to extract a
profit R and actually getting R in profit when F(b) ≥ R. The RSPE auction can then be
viewed as randomly partitioning the bidders into two parts, treating each part as a single
bid and performing the Vickrey auction on these two “bids”. This intuition is crucial for the
proof that follows as it implies that the profit of RSPE is the minimum of F ′ and F ′′.

Lemma 3.27 RSPE is truthful.

Before we prove that RSPE is 4-competitive, we give a simple proof of the following
lemma that will be important in the analysis.

Lemma 3.28 If we flipped k ≥ 2 fair coins, then

E[min{#heads,#tails}] ≥ k/4.

Proof: Let Mi be a random variable for the min{#heads, #tails} after only i coin flips. We
make the following basic calculations (verify these as an exercise):

• E[M1] = 0.

• E[M2] = 1/2.

• E[M3] = 3/4.

We now obtain a general bound on E[Mi] for i > 3. Let Xi = Mi −Mi−1 representing
the change to min{#heads, #tails} after flipping one more coin. Notice that linearity of
expectation implies that E[Mk] =

∑k
i=1 E[Xi]. Thus, it would be enough to calculate E[Xi]

for all i. We consider this in two cases:
Case 1 (i even): This implies that i− 1 is odd, and prior to flipping the ith coin it was not
the case that there was a tie, i.e, #heads 6= #tails. Assume without loss of generality that
#heads ¡ #tails. Now when we flip the ith coin, there is probability 1/2 that it is heads and
we increase the minimum by one; otherwise, we get tails have no increase to the minimum.
Thus, E[Xi] = 1/2.
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Case 2 (i odd): Here we use the crude bound that E[Xi] ≥ 0. Note that this is actually the
best we can claim in worst case since i − 1 is even and it could have been that #heads =
#tails in the previous round. If this were the case then regardless of the ith coin flip, Xi = 0
and the minimum of #heads and #tails would be unchanged.
Case 3 (i = 3): This is a special case of Case 2; however we can get a better bound
using the calculations of E[M2] = 1/2 and E[M3] = 3/4 above to deduce that E[X3] =
E[M3]−E[M2] = 1/4.

Finally we are ready to calculate a lower bound on E[Mk].

Mk =
∑k

i=1
Xi

E[Mk] =
∑k

i=1
E[Xk]

≥ 0 + 1/2 + 1/4 + 1/2 + 0 + 1/2 + 0 + 1/2 . . .

= 1
4

+ bk/2c
2

≥ k/4.

�

Theorem 3.29 RSPE is 4-competitive.

Proof: Recall our metaphor of using ProfitExtractR to treat one partition of the bids b′ as
a single bid with value F ′ = F (2)(b′), the other partition b′′ as a single bid with value F ′′ =
F (2)(b′′), and then running the Vickrey auction on these two bids. With this intuition it is
obvious that the profit of RSPE is min(F ′, F ′′). In what remains, we analyze E[min(F ′, F ′′)].

Assume that F (2)(b) = kp has with k ≥ 2 winners at price p. Of the k winners in F (2),
let k′ be the number of them that are in b′ and k′′ the number that are in b′′. Since there
are k′ bidders in b′ at price p, then F ′ ≥ k′p. Likewise, F ′′ ≥ k′′p.

E[RSPE(b)]

F (2)(b)
=

E[min(F ′, F ′′)]

kp

≥
E[min(k′p, k′′p)]

kp

=
E[min(k′, k′′)]

k
≥ 1/4.

The last inequality follows from applying Lemma 3.28 when we consider k ≥ 2 coins and
heads as putting a bidder in b′ and a tails as putting the bidder in b′′.

It is evident that RSPE is no better than 4-competitive via an identical proof to that of
RSOP. �

The conclusion from Exercise 3.1 is that the Vickrey auction in the case that n = 2 is
2-competitive. Since this matches the lower bound, the Vickrey auction is the optimal 2-
bidder auction. We can then view RSPE as partitioning the bidders into two parts, treating
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each part like a bid that is equal to its optimal single price revenue, and then running the
optimal two bidder auction. The best known competitive auction has competitive ratio 3.25
and is based on randomly partitioning into three parts, treating each part as a single bid
with value equal to its optimal single price revenue, and then running the optimal 3-bidder
auction on these three “bids”.

4 Online Auctions

In this section we consider the problem of selling a digital good online. In an online selling
setting, we imagine that the bidders arrive one at a time and the auction must decide whether
to sell to each bidder and at what price, before the next bidder arrives. The assumption
that we are selling a digital good implies that we do not have to worry about running out.

The online auction we consider proceeds in rounds. In round i, bidder i arrives. The
auctioneer must decide whether to allocate, xi, and at what price, pi. Then bidder i leaves,
either with or without a copy of the good, and does not return. Our goal is to obtain a
truthful online auction that maximizes the profit of the seller.

As before it will be useful to consider the problem of determining xi and pi for a truthful
auction from ti, the minimum bid value that bidder i can bid and still win. As before, xi = 1
and pi = ti if bi ≥ ti, otherwise xi = pi = 0. The following constraints on ti are imposed by
online truthful auctions:

• For truthful auctions the offer price ti is not a function of bidder i’s bid.

• For online auctions the offer price ti is not a function of future bids.

This second constraint comes from the fact that we cannot tell the future. At time i when
bidder i arrives we must decide ti. Thus, we consider the offer price to bidder i to be
ti(b1, . . . , bi−1).

What function ti(b1, . . . , bi−1) gives a good auction profit? As with the offline digital
good auction we would like an auction to obtain profit close to that of the optimal single
price sale, F(b). In the remainder of this section we answer this question.

4.1 Learning from Expert Advice

The problem of online auctions is closely related to the machine learning problem of learning
from expert advice. Compare the following problems statements:
Online Auction:

• bid range: [1, h],

• n bidders, and

• in round i the auction

1. chooses offer price ti,
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2. learn bi, and

3. get payoff pi = ti if ti ≤ bi, 0 otherwise.

• Goal: profit close to optimal single price sale in hindsight.

Online Learning:

• k experts,

• n iterations, and

• in round i the expert algorithm:

1. chooses an expert j,

2. learn payoffs q
(i)
1 , . . . , q

(i)
k , and

3. get payoff q
(i)
j .

• Goal: profit close to payoff of best expert in hindsight, OPT = maxj

∑n
i=1 q

(i)
j .

The prototypical example of a problem of learning from expert advice is that of predicting
the weather. In this example we imagine that the experts are weather reporters. A weather
reporter receives payoff of one if their prediction is correct and zero otherwise. The problem
of learning from expert advice calls for designing a strategy for selectively adopting the
predictions of the weather reporters so as to be correct almost as often as the best one.

Is is not too difficult to see how to reduce the Online Auction problem to the problem
of Online Learning from Expert Advice. Consider instantiating an expert j for the online
learning problem that suggests single sale price of 2j . The payoff of such an expert when
facing bidder i is precisely 2j when 2j ≤ bi and zero otherwise. In this application k, the
number of experts, is log h since we have assumed that all bid values are in the interval
[1, h]. In this reduction there is a 1-to-1 correspondence between the best expert and the
best single sale price that is a power of two. This implies that an expert algorithm that has
performance as good as the best expert in hindsight can be used to derive an online auction
that has performance as good as the optimal single sale price that is a power of two. It
is clear that the best power of two sale price is within a factor of two of the profit of the
optimal sale price, F .

Of course we could also apply the above reduction with expert j advocating a sale price
of (1+ α)j which would result the best expert being within a factor of (1 + ε) of the optimal
sale price. In this lecture we omit the details of optimizing constants in the online learning
and auction problems and will use “2” in place of “1 + ε” and “1/2” in place of “1/(1 + ε)”.

Consider the following algorithm and the example below that shows that it does not solve
the online learning problem.

Definition 4.1 (Follow the Leader) The follow the leader algorithm:

• Let s
(i)
j =

∑i
i′=1 q

(i′)
j be the total payoff of expert j up to and including round i.
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• In round i choose expert j = argmaxj s
(i−1)
j .

Example 4.2 Consider input:
1 2 3 4 5

Expert 1: 1/2 0 1 0 1 · · ·
Expert 2: 0 1 0 1 0 · · ·

The standard approach to learning from expert advice is to randomize a little bit so that
examples like the one above are unlikely to be a problem. Probably the most well known
algorithm for learning from expert advice is the weighted majority algorithm.

Definition 4.3 (Weighted Majority) The weighted majority algorithm for expert payoffs
in [0, h]:

• Let s
(i)
j =

∑i
i′=1 q

(i′)
j (as before).

• In round i choose expert j with probability proportional to 2s
(i−1)
j

/h.

Theorem 4.4 When expert payoffs are in [0, h], Weighted Majority satisfies E[Payoff] ≥
OPT /2− O(h

k
log k).

By plugging in our reduction from Online Auctions to Online Learning we obtain:

Corollary 4.5 The Online Auction via Weighted Majority has E[Profit] ≥ F/4−O(h log log h).

4.2 Kalai’s Online Learning Algorithm

Definition 4.6 (Perturbed Follow-the-Leader) The perturbed follow-the-leader algo-
rithm when expert payoffs are in [0, h] is:

1. Hallucinate: set s
(0)
j = h×# heads flipped in a row.

2. Follow the leader: in round i choose expert j = argmaxj′ s
(0)
j′ + s

(i−1)
j′

Theorem 4.7 the perturbed follow-the-leader algorithm satisfies E[Payoff] ≥ OPT /2 −
O(h log k).

Note that this is the same bound given for the Weighted Majority algorithm. Kalai’s proof
of this theorem follows from two steps. First, he shows that if Step 2 was “be the leader”
instead of “follow the leader”, i.e., if we choose expert j = argmaxj′ s

(0)
j′ + s

(i)
j′ in round i

then we would obtain profit within O(h log k) of OPT. Second, he shows that the using
the follow-the-leader subroutine is pretty similar to using be-the-leader as about half the
time they make the same choices. Therefore, the expected profit of the randomly perturbed
follow-the-leader algorithm is within a factor of two of the expected profit of the randomly
perturbed be-the-leader algorithm. We make these arguments explicit in the following two
lemmas.
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Lemma 4.8 Perturbed be-the-leader has E[Profit] ≥ OPT−O(h log k).

Proof: Fix the random coins flipped in the algorithm. The score of the best expert with
hallucination initially is H0 = maxj s

(0)
j . At the end of the algorithm, the score of the best

expert with hallucination is Hn = maxj s
(0)
j +s

(n)
j . Consider the difference in the score of the

best expert with hallucination between two consecutive rounds, Hi −Hi−1. Notice that the
be-the-leader algorithm must obtain payoff of Hi −Hi−1 in round i. This is simply because
the total score of the leading expert in round i is exactly Hi, while this experts score is a
most Hi−1 in the previous round. The change in an expert’s score from one round to the
next is their payoff. Thus, the leaders payoff is at least Hi − Hi−1. We can conclude that
the be-the-leader algorithm has total payoff at least Hn −H0.

We are interested in the expected payoff of the algorithm. By linearity of expectation
this is just E[Hn] − E[H0]. Clearly, Hn ≥ OPT as Hn is the maximum of expert scores
with added hallucination and OPT is just the maximum of the scores. To get a bound on
E[H0] we wish to know the expected value of h times the maximum of k geometric random
variables. The maximum of k geometric random variables is well known to be O(log k).
Thus, E[H0] = O(h log k).

We conclude that the lemma holds and that the expected profit of the perturbed be-the-
leader algorithm is OPT−O(h log k). �

Lemma 4.9 Perturbed follow-the-leader has expected payoff at least half of the expected pay-
off of the perturbed be-the-leader algorithm.

Proof: We show that in each round the probability that the leader in the previous round is
the same as the new leader is 1/2. Thus, with this probability follow-the-leader obtains the
same payoff as be-the-leader. This, along with the simple observation that when the leaders
in these consecutive rounds are not the same then follow-the-leader at least has non-negative
payoff, shows that the expected payoff in each round for follow-the-leader is half of that of
be-the-leader. Linearity of expectation, then, proves the lemma.

We now focus on a single round and show that the probability that the leader before
and afterwards are the same with probability 1/2. Think about time i after tallying the
payoffs of the experts in this round. The scores of the experts without hallucinations are
s
(i)
0 , . . . , s

(i)
k . Now consider adding in the hallucinations in the following way:

1. Initially for all j, s
(0)
j = 0, all hallucinations are zero.

2. Pick the expert j with the lowest score plus hallucination, i.e., j = argminj′ s
(0)
j′ + s

(i)
j′ .

3. Flip a coin:

(a) Heads: add an additional h to expert j’s hallucination, s
(0)
j ← s

(0)
j + h.

(b) Tails: permanently discard this expert. Their final hallucination is their current

value of s
(0)
j and they are total score with hallucination is worse than all other

remaining experts. They cannot be the best expert at this point.
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4. Repeat from Step 2 until there is only one expert remaining.

Notice that in the preceding algorithm the final hallucinations of all discarded experts
are precisely those of a geometric distribution. For each of these expert we flipped a coin
until we get tails and give them an additional score of h times the number of heads they
obtained. The final remaining expert j, on the other hand, is definitely the leader after this
round; however, j still has a coin to flip for calculating their total initial hallucination.

Consider the possible outcomes of expert j’s next coin flip. We now argue that if this
coin comes up heads then both the follow-the-leader and be-the-leader algorithms picked
expert j. Since this happens with probability 1/2, it completes the lemma. Notice that if
the coin comes up heads then this expert, who was already leading, is now leading by more
than h. Even if we subtracted the score of this expert for this round, q

(i)
j , which is at most

h, the expert would still be leading. Since this expert is leading with their total score from
the previous round, they must have also lead the previous round. �

To conclude, the perturbed follow-the-leader algorithm solved the problem of learning
from expert advice and we have given a proof that its performance matches the performance
bound of the more standard weighted majority algorithm. It turns out that this proof is
more revealing of the problem we are solving than the proof of the analogous bound for the
weighted majority algorithm. In what follows, we show how to take advantage of Kalai’s
proof to derive an online auction with expected profit at least F/4−O(h).

4.3 Non-uniform Bounds on Payoff

Notice that it was important that we had a bound of h on the payoff of each expert. It was
no coincidence that when we hallucinated, we added multiples of h the experts’ scores. In
particular, it was important in the proof of Lemma 4.9 that h was bigger than q

(i)
j , so that

one additional h from hallucination insured that the best expert after round i was also best
before round i.

In our auction application of expert learning there is a special structure of the payoffs of
the experts. In particular the expert that suggest “offer price 2j” will always either make
profit 2j or zero. Thus, we can establish non-uniform bounds on each expert’s payoff, hj = 2j.
Consider the following algorithm.

Definition 4.10 (Non-Uniform Perturbed Follow-the-Leader) The non-uniform per-
turbed follow-the-leader algorithm when expert j’s payoff in [0, hj] is:

1. Hallucinate: set s
(0)
j = hj ×# heads flipped in a row.

2. Follow the leader: in round i choose expert j = argmaxj′ s
(0)
j′ + s

(i−1)
j′

Theorem 4.11 The non-uniform perturbed follow-the-leader algorithm satisfies E[Payoff] ≥
OPT /2− 1

2

∑

j hj.
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Notice that when we apply this to our auction example with hj = 2j the additive loss
term telescopes to become 1

2

∑

j hj = h. Thus, we have the corollary:

Corollary 4.12 The online auction constructed from the non-uniform perturbed follow-the-
leader algorithm has E[Profit] ≥ F/4− h.

Theorem 4.11 follows from the following lemmas. The non-uniform perturbed be-the-
leader algorithm below corresponds to replacing Step 2 in the above non-uniform perturbed
follow-the-leader algorithm with the be-the-leader algorithm.

Lemma 4.13 Non-uniform perturbed be-the-leader has E[Profit] ≥ OPT−
∑

j hj.

Proof: The proof of this theorem is identical to the proof of Lemma 4.13 except in the
final step when we get a bound on E[H0], the expected maximum hallucination. Instead we
argue that the expected maximum hallucination is certainly less than the expected sum of
the hallucinations. Using linearity of expectation and the fact that the expected number of
heads flipped in a row is one, it is easy to see that E[H0] =

∑

j hj . This gives the desired
bound. �

Lemma 4.14 Non-uniform perturbed follow-the-leader has expected payoff at least half of
the expected payoff of the non-uniform perturbed be-the-leader algorithm.

Proof: This mirrors the proof of Lemma 4.9 substituting the fact that q
(i)
j ≤ hj in the

appropriate place. �

This concludes our analysis of online auctions. There are two interesting directions
this work has taken that we have not discussed here. The first is to online posted price
mechanisms. In online posted price mechanisms in each round the seller must post an offer
price; however, unlike in the auction setting, the seller only learns if the bidder accepted or
rejected this price. The seller does not learn the bidder’s actual valuation. We view this
as the partial information version of the online auction problem and it can be solved with
the partial information version of the problem of learning from expert advice, a.k.a., the
multi-armed bandit problem (See [4, 3]).

The other interesting direction is in limited supply online auctions. Here, we have a fixed
number of units of the item for sale. The limited supply constraint introduces state into
the auction problem. With state in an online optimization problem, a decision in one round
affects the payoff (or set of allowable decisions) in subsequent rounds. In particular, if we
run out of items to sell, then we are not allowed to sell any more units. This presents a
difficulty because the auctioneer may run out of units before encountering a number of really
high valued bidders. Solutions to this problem assume that the bidders arrive in a random
order which makes a prefix of the bidders appear like a random sample. Analysis similar to
that of the random sampling optimal price auction from the preceding section can then be
applied (See [7]).
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