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Abstract

We use techniques from sample-complexity in machine
learning to reduce problems of incentive-compatible mech-
anism design to standard algorithmic questions, for a wide
variety of revenue-maximizing pricing problems. Our re-
ductions imply that for these problems, given an optimal (or
β-approximation) algorithm for the standard algorithmic
problem, we can convert it into a(1+ ε)-approximation (or
β(1+ε)-approximation) for the incentive-compatible mech-
anism design problem, so long as the number of bidders is
sufficiently large as a function of an appropriate measure of
complexity of the comparison class of solutions. We apply
these results to the problem of auctioning a digital good,
the attribute auctionproblem, and to the problem of item-
pricing in unlimited-supply combinatorial auctions. From
a learning perspective, these settings present several chal-
lenges: in particular, the loss function is discontinuous and
asymmetric, and the range of bidders’ valuations may be
large.

1. Introduction

A common goal in the design of many pricing mecha-
nisms is that of obtaining more profit than is possible from
a single sale price. There are two prevalent practices in dis-
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criminatory pricing. The first is using public information
about each consumer in the calculation of offer prices. Such
pricing is the de facto standard, for example, in pricing au-
tomobile insurance. The second is to distinguish between
the products for sale in a way that causes consumers to have
different preferences for the products. A single price for
each product, then, effectively charges consumers different
prices when they choose different products. This is standard
procedure in the sale of all sorts of commodities; common
examples include computer software, computer hardware,
and airline tickets. When either of these types of discrim-
inatory pricing is possible, auctions that approximate the
optimal single price sale, e.g., [11, 4], may no longer be
near-optimal.

We consider the design of pricing mechanisms in a game
theoretic setting where the consumers (a.k.a., agents or bid-
ders) may choose to dishonestly report their preferences
if it might benefit them. We will adopt the now standard
paradigm of considering onlyincentive compatiblemecha-
nisms, i.e., ones explicitly designed so that each bidder has
a dominant strategy of reporting their true preferences.

Our main result is to use techniques from sample-
complexity in machine learning theory to reduce the de-
sign of revenue-maximizing incentive-compatible mecha-
nisms to standard algorithmic questions. When the number
of agents is sufficiently large as a function of an appropri-
ate measure of complexity of the class of solutions being
compared to, this reduction loses only a1 + ε factor in so-
lution quality; that is, an algorithm (orβ-approximation)
for the standard algorithmic problem can be converted to a
(1 + ε)-approximation (orβ(1 + ε)-approximation) for the
incentive-compatible design problem. We do this in a fairly
general setting that includes the following as special cases:

Auction of digital goods to indistinguishable bidders.
In this problem, studied in [11, 7], we have a digital



good (a good of unlimited supply with zero marginal
cost) andn bidders, where each bidderi has some
valuationvi between 1 andh. Our goal is to sell our
good so as to make profit comparable to the best single
price: the pricep maximizingp × |{i : vi ≥ p}|.

For this problem, Goldberg et al. [11] give a simple
auction based on random sampling and show that it
gives near 6-approximation so long as the optimal rev-
enue is large compared toh.1 We analyze a slight
variant and show (Theorem 6) that it is a(1 + ε)-
approximation so long as the optimal revenue is large
compared toh

ε2 log(1/ε).

Attribute Auctions. In many generalizations of the digital-
good auction, the bidders are not a priori indistinguish-
able; instead, publicly known information about bid-
ders may allow (or even require) differential treatment.
For example, the motion picture industry uses region
encodings so that they can charge different prices for
DVDs sold in different markets.

This introduces the natural question of how to use
the distinguishing features of consumers to price-
discriminate to the maximum benefit of the seller. We
consider the following abstraction of these situations.
The bidders in anattribute auctionare not indistin-
guishable but instead have a set of publicly-knownat-
tributesand the goal is to achieve revenue comparable
to the best pricing function over these attributes from
some available class,G, of pricing functions. For ex-
ample, [3] considers the special case of 1-dimensional
attributes and a comparison classG of piece-wise con-
stant functions. Piece-wise constant functions divide
the attribute space into contiguous regions (a.k.a., mar-
kets) and charge a single price in each. We give bounds
for this setting more generally, including a generaliza-
tion of the class of functions considered in [3] to higher
dimensions.

Item-pricing in combinatorial auctions. This problem is
a different generalization of the first problem above,
and studied in [12, 15]. The setting here is we have
m different items, each in unlimited supply (like a
supermarket), and bidders have valuations onsubsets
of items. Our goal is to achieve revenue nearly as
large as the best sale that uses item prices (assigns
a separate price to each item), a natural comparison
class. Our results imply that̃O(hm2/ε2) bidders are
sufficient to achieve revenue close to the optimum
item-pricing (assuming the algorithmic problem can be

1This problem has also been considered in a framework where the auc-
tion’s performance is compared to the profit obtained from the optimal sale
price that results in a sale ofat least twoitems [7]. In this context the best
known auction is13/4-competitive [14].

solved for the given bidders), no matter how compli-
cated those bidders’ valuations are. In the unit-demand
case, when each bidder wants at most one item (such
as in pricing different versions of the same software
or pricing airline tickets), our bounds give a(1 + ε)-
approximation when the optimal revenue is large com-
pared toÕ(hm/ε2) which improves by roughly a fac-
tor of m over the results of [12].

The basic reduction we apply to solve these auction prob-
lems is as follows. Given an algorithmA (exact or ap-
proximate) for the non-incentive-compatible pricing prob-
lem (finding the optimal pricing function in classG for a
given set of bidders) and given a set of biddersS, we will
split bidders randomly into two setsS1 andS2, run the algo-
rithm separately on each set (perhaps adding an additional
penalty term to the objective to penalize solutions that are
too “complex” according to some measure), and then apply
the solution found onS1 to S2 and the solution found onS2

to S1. Sample-complexity techniques from machine learn-
ing theory can then give a guarantee on the quality of the
results if the number of bidders is sufficiently large com-
pared to an appropriate measure of the complexity of the
class of possible solutions. From a learning perspective, the
mechanism-design setting presents a number of technical
challenges: in particular, the loss function is discontinuous
and asymmetric, and the range of bid values may be large.

In addition to the generic reduction, we also give spe-
cific analyses for several of the above problems, using their
structure to yield better bounds on the number of bidders
needed to achieve a desired approximation factor.

Related work: Several papers [4, 3] have applied ma-
chine learning techniques to mechanism design in the con-
text of online auctions. The online setting is more difficult
than the “batch” setting we consider, but the flip-side is that
as a result, that work only applies to quite simple mecha-
nism design settings where the classG of comparison func-
tions has small size and can be easily listed.

Structure of this paper: We begin by defining our gen-
eral setting (Section 2) and giving a basic reduction at this
level of generality (Section 3). We then proceed to give
a tighter analysis for the basic auction of a digital good
(Section 4) and describe in Section 5 how the complexity
measures of Section 3 can be instantiated for the case of at-
tribute auctions. We consider item-pricing in combinatorial
auctions in Section 6 and the multicast pricing problem in
Section 7. We give our conclusions and some outstanding
research directions in Section 8.

2. Definitions

We will be considering mechanism design problems of
the following general form. We have a setS of n bidders,



and we assume that each bidderi has some private infor-
mation privi (like how much they are willing to pay for
a digital good), as well as public informationpubi (such
as their location in a network). The game itself will be
defined by an abstract space of legaloffers (like an offer
to sell a good at $17) together with a mappingρ that de-
fines how much profit a given offer yields from a given bid-
der. For example, in the case of auctioning a digital good,
ρ(“offer $17”, privi) = 17 if privi ≥ 17 and 0 otherwise.
We can think ofρ as defining the assumption about how bid-
ders behave as a function of their private values. The stan-
dard assumption in incentive compatible mechanism design
is that bidders prefer the outcome that maximizes theirutil-
ity which is defined as the difference between theirvalua-
tion for the outcome (as specified by their preferences) and
the payment they are required to make.

Definition 1 A comparison class, G, of pricing functions
is a set of functionsg that map the public information
of a bidder to an offer. Theprofit of a function g is
∑

i ρ(g(pubi), privi). Note that we are implicitly consider-
ing onlyunlimited supplymechanism design problems, be-
cause the profit from bidderi does not depend on whetherg
received profit from other bidders.

Given a comparison class,G, thealgorithm designproblem
is: given both the public and private information inS, find
theg ∈ G of highest total profitOPTG . Some of the prob-
lems we consider will also have costs for various functions
g: for instance, in multicast pricing, a comparison function
g consists of both a tree and a proposed price at each node,
and its cost is the cost of the tree. In this case, we should
think of ρ as arevenuefunction, and the algorithm design
problem will be to find theg of highest revenue minus cost.
In our reductions, we may also want to perform “structural
risk minimization”, which adds additional fake penalties to
different functionsg based on some measure of their com-
plexity, in which case we will need to assume we have an
algorithm that optimizes revenue minus penalty.

We now need to define what we mean by an incentive
compatible mechanism. An incentive-compatible mecha-
nism is a function that takes in the public information of all
the bidders, plus the private information of all biddersex-
ceptthe given bidderi and outputs an offer. Our goal will
be to design such a mechanism whose total profit is nearly
as large as the profit of the best function in comparison class
G. Note that typically our mechanisms will not actually be-
long toG, such as offering one price to some subset of bid-
ders and another price to another even if our classG is the
set of all single price functions.

One final point at this level of generality: we will assume
that we are given an upper boundh on the value ofρ; that
is, no individual bidder can influence profit by more thanh.
This term will come into our sample-complexity bounds.

2.1. Examples

Auction of digital goods to indistinguishable bidders.
As described in the introduction, in this setting the bid-
ders have no public information (equivalently, all the bid-
ders have thesamepublic informationpub) and the private
information of bidderi is exactly its valuationvi for the dig-
ital good, which is a real number between1 andh. Here, a
natural comparison classG = {gp} is the class of all func-
tions that offer a single pricep, andρ is a function defined
by ρ(p, privi) = p if p ≤ privi andρ(p, privi) = 0 other-
wise.

Attribute Auctions. This is the same as the setting above
except now each bidderi is associated a publicattribute
pubi ∈ X whereX is theattribute space. We viewX as
an abstract space, but one can envision it asR

d, for example.
G is then a class of pricing functions fromX to R+, such
as all linear functions or all functions that partitionX into
k markets (say based on distance tok cluster centers) and
offer a different price in each. The mappingρ is a function
from R+ × [1, h] to [0, h] defined (as in the case of indis-
tinguishable bidders) byρ(p, privi) = p if p ≤ privi and
ρ(p, privi) = 0 otherwise. We will give analyses of several
interesting classes of comparison functions in Section 5.

Combinatorial Auctions. Here we have a setJ of m dis-
tinct items, each in unlimited supply. Each consumer has
a private valuationvi(s) for each bundles ⊆ J of items,
which measures how much receiving bundles would be
worth to the consumeri. The private information of bid-
der i can be described by a vector of all its valuations on
subsets ofJ (for simplicity, we assume bidders are indis-
tinguishable, i.e., no public information). A natural class
of comparison functionsG (studied in [15]) is the class of
functions that assign a separate price to each item, such that
the price of a bundle is just the sum of the prices of the items
in it (called item-pricing). The mappingρ is then defined by
assuming bidders will buy the bundle (if any) with largest
positive gap between its value to them and its total cost.

3. Generic reductions

We are interested in reducing incentive-compatible
mechanism design to the standard algorithm design prob-
lem. Our reductions will be based on random sampling. Let
A be an algorithm for the (non incentive-compatible) prob-
lem of optimizing overG. The simplest mechanism that we
consider, which we call RSOPF(G,A) (Random Sampling
Optimal Pricing Function), is the following generalization
of the random sampling digital-goods auction from [11]:

1. Randomly split the bidders into two groupsS1 andS2,
flipping a fair coin for each bidder.



2. RunA to determine the best (or approximately best)
function g1 ∈ G over S1, and similarly the best (or
approximately best)g2 ∈ G overS2.

3. Finally, applyg1 to S2 andg2 to S1.

We will also consider various more refined versions of
RSOPF(G,A), that discretizeG or perform some type of
structural risk minimization(in which case we will need to
assumeA can optimize over the modifications made toG).

3.1. The Basic Analysis

In order to simplify notation, for a given setting (de-
fined by ρ and G), defineg(i) for a pricing functiong
and bidderi to be the profit made byg on i; i.e., g(i) =
ρ(g(pubi), privi). Similarly, for a set of biddersS′ ⊆ S,
let g(S′) =

∑

i∈S′ g(i). So,OPTG = maxg∈G g(S). Note
that if g1(i) = g2(i) for all i ∈ S then they are equivalent
from the point of view of the auction; we will use|G| to
denote the number ofdifferentsuch functions inG.

The following lemma is key to our analysis. Note that
using Hoeffding bounds would produce anh2 term in the
exponent; by applying McDiarmid’s inequality instead we
only need to lose a factor ofO(h).

Lemma 1 Consider a pricing functiong and a profit level
p. If we randomly partitionS into S1 andS2, then the prob-
ability that |g(S1) − g(S2)| ≥ ε max [g(S), p] is at most
2e−ε2p/(2h).

Proof: Let Y1, . . . , Yn be i.i.d random variables such that
Yi is 1 with probability 1/2 and Yi is 2 with probabil-
ity 1/2, and that define the partition ofS into S1 andS2.
Let t(y1, ..., yn) =

∑

i:yi=1 g(i). So, as a random vari-
able,g(S1) = t(Y1, ..., Yn) and clearlyE[t(Y1, ..., Yn)] =
g(S)/2. Assume first thatg(S) ≥ p. From the McDi-
armid concentration inequality (see Appendix A) we get:
Pr{|g(S1) − g(S)/2| ≥ ε

2g(S)} ≤ 2e−ε2g(S)/(2h). This is
true since by pluggingci = g(i) in Theorem 15, we get:

Pr
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Since
∑n

i=1 g(i)2 ≤ maxi{g(i)}
∑n

i=1 g(i), we obtain:
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Moreover, sinceg(S1) + g(S2) = g(S) and g(S) ≥ p,
we get thatPr{|g(S1) − g(S2)| ≥ εg(S)} ≤ 2e−ε2p/(2h).
Consider now thatg(S) < p. Again, using the McDiarmid
inequality we have

Pr{|g(S1) − g(S2)| ≥ εp} ≤ 2e

−

2

6

4

ε2p2

2
n
P

i=1
g(i)2

3

7

5

.

Since
∑n

i=1 g(i)2 ≤ hg(S) ≤ ph we obtain again that
Pr{|g(S1) − g(S2)| ≥ εn} ≤ 2e−ε2p/(2h), which gives
us the desired bound.

We can now give our simplest generic reduction, based
on just the number of functions inG. Note that in a number
of settings (see Sections 3.3, 4, and 5.2) we will be able to
get stronger guarantees by a more refined analysis.

Theorem 2 Given comparison classG and a β-
approximation algorithm A for optimizing over G,
then so long asOPTG ≥ βn and the number of biddersn
satisfies

n ≥
8h

ε2
ln(2|G|/δ),

then with probability at least1−δ, the profit of RSOPF(G,A)

is at least(1 − ε)OPTG /β.

Proof: Let g1 be the function inG produced byA overS1

andg2 be the function inG produced byA over S2. Let
gOPT be the optimal function inG overS. Since the optimal
function overS1 is at least as good asgOPT onS1 (and like-
wise forS2), the fact thatA is aβ-approximation implies
thatg1(S1) ≥ gOPT(S1)/β andg2(S2) ≥ gOPT(S2)/β.

By Lemma 1 (usingp = n) and plugging in our bound on
n and applying a simple union bound, with probability1−δ,
everyg ∈ G satisfies|g(S1) − g(S2)| ≤

ε
2 max [g(S), n].

In particular, g1(S2) ≥ g1(S1) − ε
2 max[g1(S), n], and

g2(S1) ≥ g2(S2) −
ε
2 max[g2(S), n].

SinceOPTG ≥ βn, summing the above two inequalities
and performing a simple case-analysis we get that the profit
of RSOPF(G,A), namely the sumg1(S2)+g2(S1), is at least
(1 − ε)OPTG /β.

3.2. Structural Risk Minimization

In many natural cases,G consists of functions at differ-
ent “levels of complexity”k, such as partitioning bidders
into k markets for different values ofk. One natural ap-
proach to such a setting is to performstructural risk min-
imization(SRM), that is, to assign a penalty term to func-
tions based on their complexity and then to run a version
of RSOPF(G,A) in whichA optimizes profit minus penalty.
Specifically, letḠ be a series of pricing function classes
G1 ⊆ G2 ⊆ . . ., and letpen be a penalty function defined
over these classes. Also for simplicity assumeβ = 1 (we
have an optimal algorithm for the underlying problem). We
then define the procedure RSOPF-SRM(Ḡ,pen)as follows:

1. Randomly partition the bidders into two sets,S1 and
S2, flipping fair coin for each bidder.

2. Computeg1 to maximizemax
k

max
g∈Gk

[g(S1) − pen(Gk)]

and similarly computeg2 from S2.



3. Use price functiong1 for bidders inS2 andg2 for bid-
ders inS1.

A straightforward extension of Theorem 2 to this case
would introduce a quadratic dependence inh, but we will
be able to reduce this to nearly linear. DefineOPTk =
OPTGk

.

Corollary 3 Suppose we randomly partitionS into S1 and
S2. With probability at least1 − δ, we obtain that for all
functionsg in Gk such thatg(S) ≥ 2h

ε2

[

ln
(

2
δ

)

+ ln(|Gk|)
]

we have|g(S1) − g(S2)| ≤ εg(S).

Proof: Follows from Lemma 1 by plugging inp = g(S),
for g ∈ Gk and then using a simple union bound.

Notice that a key difference between the above lemma
and Theorem 2 is that the lemma requires only a lower
bound onprofit rather than on the number of bidders. Using
Corollary 3 we can now prove the following lemma:

Lemma 4 Assume that we have an algorithmAk for opti-
mizing overGk and letgi be the best function inGk overSi.
For any given value ofn, ε, andδ, with probability at least
1 − δ we have that ifOPTk ≥ 6

3−ε
72h
ε2 ln(2|Gk|/δ) then

gi(Sj) ≥
1−ε
2 OPTk, for i = 1, 2, i 6= j. In particular, this

implies the revenue of RSOPFGk,Ak
is at least:

(1 − ε)OPTk −pen(Gk),

wherepen(Gk) = 6
3−ε

72h
ε2 ln(2|Gk|/δ).

Proof: We prove that, with probability1 − δ, we
have that ifOPTk ≥ 2

1−ε′
8h
ε′2

ln(2|Gk|/δ) thengi(Sj) ≥
1
2

(1−ε′)2

1+ε′ OPTk; this implies our desired result usingε′ =

ε/3. Notice that if OPTk ≥ 2
1−ε′

8h
ε′2

ln(2|Gk|/δ), then

from Corollary 3, we havegOPT(Si) ≥
8h
ε′2

ln(2|Gk|/δ) for
i = 1, 2, which implies thatgi(Si) ≥

8h
ε′2

ln(2|Gk|/δ) (since
gi(Si) ≥ gOPT(Si)) . Using again Corollary 3 we obtain
thatgi(Sj) ≥

1−ε′

1+ε′ gi(Si) for j 6= i, which then implies the
desired result.

We can finally obtain a guaranteed for the RSOPF-
SRM(Ḡ,pen) mechanism as follows:

Theorem 5 Assuming that we have an algorithm for
solving the optimization problem required by RSOPF-
SRM(Ḡ,pen) then for any given value ofn, ε, and δ, with
probability at least1−δ, the revenue of RSOPF-SRM(Ḡ,pen)

for pen(Gk) = 6
(1−ε)2

72h
ε2 ln(8k2|Gk|/δ) is

max
k

((1 − ε)OPTk −pen(Gk)).

Proof Sketch:Follows from Lemma 4 using the union
bound over valuesδk = δ/(4k2).

3.3. Better Bounds via Cover Arguments
and Discretization

In a number of cases,|G| is overkill as a measure of the
true complexity of the classG. In this section, we discuss a
number of methods that can produce better bounds. These
include bothanalysistechniques, where we do not change
the mechanism but instead provide a stronger guarantee,
anddesigntechniques, where we modify the mechanism to
produce a better bound. Due to space restrictions, we only
outline the methods here. The details can be found in our
full version of the paper.

Discretizing. In many cases, we can greatly reduce|G|
without much affectingOPTG by performing some type of
discretization. For instance, for auctioning a digital good,
there are infinitely many single-price functions but only
log1+ε h ≈ 1

ε lnh prices at powers of(1 + ε). Also, since
rounding down the optimal price to the nearest power of
1+ ε can reduce revenue for this auction by at most a factor
of 1 + ε, the optimal function in the discretized class must
be close to the optimal function in the original class. More
generally, if we can find a smaller classG′ such thatOPTG′

is guaranteed to be close toOPTG , then we can instruct
our algorithmA to optimize overG′ and get better bounds.
Note that we do not know whether the simple(1 + ε)i dis-
cretization is guaranteed to only minimally affectOPT in
the case ofcombinatorial auctions(see Section 6).

Counting possible outputs. Suppose our algorithmA,
run on a subset ofS, can only output pricing functions from
a restricted setGA ⊂ G. Then, we can simply replace|G|
with |GA| (or |GA| + 1 if the optimal function is not one of
them) in all the above arguments. For example, ifA picks
the optimal single price over its input for auctioning a digital
good, then this price must be one of the bids, so|GA| ≤ n.

Using cover size. SupposeG has the property that there
exists a much smaller classG′ that “covers” it, with respect
to the given set of biddersS. In particular, for everyg ∈ G
there existsg′ ∈ G′ such thatg′ extracts the same revenue
asg does from each bidder, up to a1 + ε factor; that is,
|g(i) − g′(i)| ≤ εg(i) for all i. In this case (G′ is anL∞

multiplicative ε-cover ofG), it is clear that if all functions
in G′ perform similarly onS1 as they do onS2, then this
will be true for all functions inG as well. E.g., our results in
Section 5.2 use this type of analysis to avoid discretization.
In the full version of this paper, we show that similar bounds
can be proved withL1-covers, where we require only that
∑

i∈S |g(i) − g′(i)| ≤ ε
∑

i∈S g(i). We also demonstrate
the utility of L1 covers by showing the existence ofL1 cov-
ers of sizeo(n) for the digital good auction; this is not pos-
sible for the other cover notions above.

It is worth noting that a straightforward application of
analogousε-cover results in learning theory [1] (which



would require an additive, rather than multiplicative gap of
ε for every bidder) would add an extra factor ofh into our
sample-size bounds.

4. Auctioning Digital Goods to Indistinguish-
able Bidders

We now consider the simplest problem of auctioning a
digital good to indistinguishable bidders, and competing
against the best single price. We can apply the discretization
technique by definingG to be the set of all constant-price
functions whose pricep ∈ [1, h] is a power of(1 + ε/2): if
we can get revenue at least(1 − ε/2) times the optimal in
this class, we will be within(1−ε) of the optimal fixed price
overall. Applying Theorem 2 (A can trivially find the best
function inG by simply trying all of them), with probability
1− δ we get at least(1− ε) times the optimal fixed price so
long as the number of biddersn is at least32h

ε2 ln(4 lnh
εδ ).

It is interesting to contrast these results with that of
[11] which showed that RSOPF over the set of constant-
price functions is near 6-competitive with the promise that
n � h. A much more complicated analysis of RSOPF in a
slightly different competitive framework is given in [10].

We now present a more refined analysis, which gives us
even better guarantees.

Theorem 6 LetG be the class of constant price functions,
discretized at powers of(1+ ε

2 ), and letδ < 1/2. Then with
probability1 − δ, RSOPF(G,A) obtains profit at least

OPTG −8
√

h OPTG log(2/(εδ)).

So, this implies that forOPTG ≥ (16
ε )2h log(2/(εδ)) we

get profit at least(1 − ε/2)OPTG , which is at least(1 − ε)
times the optimal non-discretized fixed price. So, even in
the worst-case that the optimal single-price solution is at
price 1 (soOPTG = n) we get anO(log log h) improve-
ment over the generic bound, but ifOPTG extracts sub-
stantially more profit on average per bidder, we can get an
improvement of up toO(h log log h).

To prove Theorem 6, let us for convenience defineα to
be the discretization parameter (which wasε/2 above) and
assumeh is a power of(1 + α). For comparison function
gv offering pricev, let nv denote the number of winners
(bidders whose value is at leastv), and letrv = v ·nv denote
the profit ofgv onS. Denote bŷrv the observed revenue of
gv on S1 (and sor̂v = v · n̂v, wheren̂v is the number of
winners inS1 for gv). So, we haveE[r̂v] = rv

2 . We now
begin with the following lemma.

Lemma 7 Let ε < 1, δ < 1/2. With probability at least
1 − δ we have that, for everygv ∈ G the observed revenue
onS1 satisfies:

∣

∣

∣
r̂v −

rv

2

∣

∣

∣
≤ max

(

h log(1/(αδ))

ε
, εrv

)

.

Proof: First for a given pricev let an,v be |n̂v − nv

2 |. To
prove our lemma we will use the consequence of Chernoff
bound we present in Appendix A (see Theorem 16). For

anyv andj ≥ 1 we considern′ = (1+α)j log(1/(αδ))
ε2 , and

so we getPr
{

an,v ≥ ε max
(

nv,
(1+α)j log(1/(αδ))

ε2

)}

≤

2e−2(1+α)j log(1/(αδ)). This further implies that we have

an,v ≥ ε max
(

nv,
(1+α)j log(1/(αδ))

ε2

)

with probability at

most 2(αδ)2(1+α)j

. Therefore forv = h/(1 + α)j

we have Pr
{

∣

∣r̂v − rv

2

∣

∣ ≥ max
(

h log(1/(αδ))
ε , εrv

)}

≤

2(αδ)2(1+α)j

, and so the probability that there exists a
gv ∈ G such that

∣

∣r̂v − rv

2

∣

∣ ≥ max
(

h
ε , εrv

)

is at most

2
∑

j(αδ)2(1+α)j

≤ 2
∑

j′
1
α (αδ)2·2

j′

≤ δ. This implies
that with high probability, at least1 − δ, we have thatsi-
multaneously, for everygv ∈ G the observed revenue onS1

satisfies:
∣

∣r̂v − rv

2

∣

∣ ≤ max
(

h log(1/(αδ))
ε , εrv

)

.

Proof of Theorem 6:Assume now that it is the case that
for every gv ∈ G we have

∣

∣r̂v − rv

2

∣

∣ ≤ max
(

H
ε , εrv

)

,
whereH = h log(2/(αδ)). Let v∗ be the optimal price
level among prices inG, and letṽ∗ be the price that looks
best onS1. Obviously, our gain onS2 is rṽ∗ − r̂ṽ∗ . We have
r̂v∗ ≥

r∗

v

2 − H
ε − εrv∗ = rv∗(1 − 2ε)/2 − H

ε , r̂ṽ∗ ≥ r̂v∗

andr̂ṽ∗ ≤ rṽ∗

2 + H
ε + εrṽ∗ ≤ rṽ∗

2 + H
ε + εrv∗ , and there-

fore rṽ∗ − r̂ṽ∗ ≥ r̂ṽ∗ − H
ε − εrv∗ , which finally implies

that rṽ∗ − r̂ṽ∗ ≥ rv∗

(

1
2 − 2ε

)

− 2H
ε . This implies that

with probability at least1 − δ/2 our gain onS2 is at least
rv∗

(

1
2 − 2ε

)

− 2H
ε , and similarly our gain onS1 is at least

rv∗

(

1
2 − 2ε

)

− 2H
ε . Therefore, with probability1 − δ, our

revenue isOPTG(1 − 4ε) − 4h log(1/(αδ))
ε . Optimizing the

bound we setε =
√

h log(1/(αδ))/OPTG and get a rev-
enue ofOPTG − 8

√

h OPTG log(1/(αδ)), which com-
pletes the proof.

5. Attribute Auctions

We begin by instantiating the results in Section 3 for
market pricing auctions, and connecting to the notion of
VC-dimension. We then give an analysis for general pric-
ing functions over the attribute space that uses the notion of
covers to avoid discretization.

5.1. Market Pricing

For attribute auctions, one natural class of comparison
functions are those that partition bidders intomarketsin
some simple way and then offer a single sale price in each
market. For example, suppose we defineGk to be the set of
functions that choosek biddersb1, . . . , bk, use these as clus-
ter centers to partitionS into k markets based on distance to
the nearest center in attribute space, and then offer a single



price in each market. In that case, if we discretize prices to
powers of(1+ε), then clearly the number of functions inGk

is at mostnk(log1+ε h)k, so Theorem 2 implies that so long
asn ≥ 8h

ε2

[

ln(2/δ) + k lnn + k ln
(

log1+ε h
)]

and we can
solve the algorithmic problem then with probability at least
1 − δ, we can get profit at least(1 − ε)OPTGk

.
Another interesting and general way to do market pricing

is the following. LetC be a class of subsets ofX , which
we will call feasible markets. For k a positive integer, we
considerFk+1(C) to be the set of all pricing functions of the
following form: pickk disjoint subsetss1,...,sk from C, and
k + 1 pricesp0,...,pk discretized to powers of1 + ε. Assign
pricepi to bidders insi, and pricep0 to bidders not in any
of s1,...,sk. For example, ifX = R

d a naturalC might be
the set of axis-parallel rectangles inR

d. The specific case
of d = 1 was studied in [3].

We can apply the results in Section 3 by using the ma-
chinery of VC-dimension to count the number of distinct
such functions over any given set of biddersS. In partic-
ular, letD = V Cdim(C) be the VC-dimension ofC and
assumeD < ∞. DefineC[S] to be the number of dis-
tinct subsets ofS induced byC. Then, Sauer’s Lemma

[1] states thatC[S] ≤
(

en
D

)D
, and therefore the number

of different pricing functions inFk(C) over S is at most
(

log1+ε h
)k (

en
D

)kD
. Thus applying Theorem 2 here, and

performing simple algebra (to remove the “lnn” term from
the right-hand-side) we get:

Corollary 8 Given aβ-approximation algorithmA for op-
timizing overG = Fk(C), then so long asOPTG ≥ βn and
the number of biddersn satisfies

n ≥
16h

ε2

[

ln

(

2

δ

)

+ k ln

(

1

ε
lnh

)

+ kD ln

(

4kh

ε2

)]

,

then with probability at least1− δ, the profit of RSOPFG,A

is at least(1 − ε)OPTG /β.

For certain classesC we can get better bounds. In the
following, denote byCk the concept class of unions of at
mostk sets fromC. E.g., if C is the class of all axis paral-
lel rectangles, then the VC-dimension ofCk is O(kd) [8].
In these cases we can remove thelog k term in our bounds,
which is nice because it means we can interpret our results
(e.g., Corollary 8) as chargingOPT a penalty for each mar-
ket it creates. However, we do not know how to remove this
log k term in general, since in general the VC-dimension of
Ck can be as large as2Dk log(2Dk) (see [2, 6]).

Corollary 8 gives a guarantee in the revenue of
RSOPFFk(C),A so long as we have enough biddersn. In
the following, fork ≥ 0 let OPTk = OPTFk(C). We can
also use Lemma 4 to show a bound that holds for alln, but
with an additive loss term (we assume for simplicity here
thatβ = 1):

Theorem 9 For any given value ofn, k, ε, andδ, with prob-
ability 1 − δ, the revenue of RSOPFFk(C),A is

(1 − ε)OPTk −h · rF (k, D, h, ε, δ),

whererF (k, D, h, ε, δ) = O
(

kD
ε2 ln

(

kDh
εδ

))

.

Finally, using Theorem 5 we can extend our results to
use SRM, where we want the algorithm to optimize overk,
by viewing the additive loss term as a penalty function.

Theorem 10 Let Ḡ be the sequence of pricing function
classesF1(C), F2(C), . . . , Fn(C), and letpen(Fk(C)) be
the additive-loss term below. Then for any value ofn with
probability1 − δ the revenue of RSOPF-SRMḠ,pen

is

max
k

((1 − ε)OPTk −h · r′F (k, D, h, ε, δ)),

wherer′F (k, D, h, ε, δ) = O
(

kD
ε2 ln

(

kDh
εδ

))

.

To illustrate the relevance of Theorem 10, notice that for
the special case of pricing using interval functions (the case
of d = 1 was studied in [3]), the following lower bound
holds.

Theorem 11 There is no randomized incentive compatible
mechanism whose revenue isΩ

(

max
k

(OPTk −o(k)h)
)

.

A similar lower bound holds for most base classes; note
also for the case of intervals on the line, an auction in [3]
essentially matches this lower bound.

5.2 General Pricing Functions over the
Attribute Space

In this section we generalize the results in Section 5.1 in
two ways: to general classes of pricing functions (not just
piecewise-constant functions defined over markets) and by
removing the need for discretization by using the notion of
covers. For example, we might want to consider a compari-
son class of linear functions over the attributes, or quadratic
functions, or perhaps functions that divide the space into
markets and are linear (rather than constant) in each mar-
ket.

Assume thatX ⊆ Rd, and letG be fixed a class of pric-
ing functions over the attribute spaceX . For g ∈ G let
ρg : X × [1, h] → R be its associated profit function.
Let’s denote byρ(G) be the class of the profit functions
corresponding toG. ConsiderOPTG = OPT(S,G) to
be the profit of the optimal pricing function inG over S.
Now, letGd be the class of decision surfaces (inR

d+1) in-
duced byG: that is, to eachg ∈ G we associate the set of
all (x, v) ∈ X × [1, h] such thatg(x) ≤ v. Finally, let
D = V Cdim(Gd). Assume in the following thatD < ∞.

We now give our main lemma.



Lemma 12 If we randomly partitionS intoS1 andS2, then
n ≥ 8h

ε2

[

ln
(

2
δ

)

+ D ln
[

ne
D

(

4
ε lnh + 1

)]]

bidders are suf-
ficient so that with probability at least1−δ for all functions
g in G we have|g(S1) − g(S2)| ≤ ε max [g(S), n].

Proof Sketch:For each bidder(x, v) we conceptually in-
troduceO( 1

α lnh) “phantom bidders” having the same at-
tribute valuex and bid values1, (1 + α), (1 + α)2, · · · , h
(we fix α shortly). LetS∗ be the setS together with the
set of all phantom bidders; letn∗ = |S∗|. Let Split
be the set of possible splittings ofS∗ with surfaces from
Gd. We clearly have|Split| ≤ Gd[n

∗]. For each element
s ∈ Split consider a representative function inG that in-
duces splittings in terms of its winning bidders, and let
SplitG be the set of these representative functions. We
then have thatρ(SplitG) induces a multiplicativeα-cover
for ρ(G)|S with respect to theL∞ norm. That is, for ev-
ery function inG there is a function inSplitG that extracts
nearly the same profit from every bidder. Moreover, by con-
struction, for every function inρg1 ∈ ρ(H), there exists
ρg ∈ ρ(SplitG) such that for every(x, v) ∈ S, we have
both ρg1((x, v)) ≤ (1 + α)ρg((x, v)) and ρg((x, v)) ≤
(1 + α)ρg1((x, v)). This implies that for for every function
in g1 ∈ G, there existg ∈ SplitG s.t.|g1(S1) − g1(S2)| ≤
αg1(S) + |g(S1) − g(S2)|. Choosingα = ε

4 , it follows
that in order to prove the desired result it is enough to show
that with probability at least1 − δ, for each function in
SplitG we have|g(S1) − g(S2)| ≤

ε
2 max [g(S), n]. This

is true since by Lemma 1 for a fixedg ∈ SplitG we have

Pr{|g(S1) − g(S2)| ≥
ε
2 max [g(S), n]} ≤ 2e

h

− ε2n
8h

i

; we

also have|SplitG| ≤
(

n∗e
D

)D

.

Simple algebra (to remove the “n” on the RHS) yields:

Corollary 13 If we randomly partitionS into S1 andS2,
thenn ≥ 16h

ε2

[

ln
(

2
δ

)

+ D ln
(

16h
ε2

(

4
ε lnh + 1

))]

bidders
are sufficient so that with probability at least1 − δ for all
functionsg in G we have|g(S1)−g(S2)| ≤ ε max [g(S), n].

Corollary 13 together with an analysis similar with the
one in Theorem 2 imply that:

Theorem 14 Given comparison classG and a β-
approximation algorithmA for optimizing overG, then so
long asOPTG ≥ βn and the number of biddersn satisfies

n ≥
64h

ε2

[

ln

(

2

δ

)

+ D ln

(

64h

ε2

(

16

ε
lnh + 1

))]

,

then with probability at least1−δ, the profit of RSOPF(G,A)

is at least(1 − ε)OPTG /β.

6 Combinatorial Auctions

Combinatorial auctions have received much attention in
recent years because of the difficulty of merging the com-

plexity issue of computing an optimal outcome with the
game-theoretic issue of incentive compatibility. To date
almost exclusively the focus has been on socially optimal
combinatorial auctions. Deviating from this literature, we
consider the goal of profit maximization of the seller in the
case where the items for sale are available in unlimited sup-
ply. In this section we consider the general version of the
combinatorial auction problem as well as the special cases
of unit-demandbidders (bidders desire only singleton bun-
dles) andsingle-mindedbidders (each bidder has a single
desired bundle).

It is interesting to restrict our attention to the case of
item-pricing, where the auctioneer intuitively is attempting
to set a price for each of the distinct items and bidders then
choose their favorite bundle given these prices. Item-pricing
is without loss of generality for the unit-demand case, and
the general bundle-pricing can be realized with an auction
with m′ = 2m “items”, one for each of possible bundle of
the originalm items.2

For combinatorial auctions, the size of the class of all
possible item-pricings,|G|, is infinite. Nonetheless, we can
use the technique of counting possible outputs (See Sec-
tion 3.3) to get a bound on the performance of the random
sampling auction. This approach calls for bounding|GA|,
the number of different pricings RSOPF(G,A) can possibly
output. We restrict our analysis here to considering exact al-
gorithms for computing the optimal item pricing; for a dis-
cussion of this approach for approximation algorithms, see
the full version of the paper. Our results for this approach
are summarized in the first row of Table 1 and proofs of
these results are given in the full version of the paper.

We can obtain better bounds if we are willing to op-
tomize over a smaller class of discretized item-pricings
(again, see Section 3.3). In particular, if we can find a
small classG′ with the property thatOPTG′ is guaranteed
to be close toOPTG , we can argue that RSOPF(G′,A) per-
forms well compared toOPTG using bounds on the size
of |G′|. No such small setG′ is known to exist for item-
pricing in general combinatorial auctions; however, for the
unit-demand and single-minded special cases we can use
the classes of discretized item-pricings constructed in [13].
Note that these constructions are not as simple as the dis-
cretization for digital-good auctions (Section 4). The dis-
cretization results from [13] are summarized in the second
row of Table 1.

We can apply Theorem 2 to the sizes of the complexity
classes in Table 1 to get good bounds on the profit of ran-
dom sampling auctions for combinatorial item pricing. In
particular, we get that̃O(hm2/ε2) bidders are sufficient to

2We make the assumption that all desired bundles contain at most one
of each item. This assumption can be easily relaxed and our results applied
given any bound on the number of copies of each item that are desired by
any one consumer.



general unit-demand single-minded
|GA| nm22m2

nm(m + 1)2m nm

|G′| O(mm logm
1+ε

n
ε ) O(logm

1+ε
n
ε )

Table 1. Size of comparison classes for com-
binatorial auctions.

achieve revenue close to the optimum item-pricing in the
general case, and̃O(hm/ε2) bidders are sufficient for the
unit-demand case. Also, by using Corollary 3 instead of
Theorem 2 we can replace the condition on the number of
bidders with a condition onOPTG , which is factor ofm
improvement on the bound given by [12].

7 Multicast Pricing

In the multicast pricing problem, each bidder resides at
some node of a tree, and in order to sell its service to some
bidder, the service-provider must have purchased all edges
on the path from the root to that vertex. Given a set of edge
costs, our goal as service-provider is to determine a subtree
together with prices at nodes of this tree that achieves high-
est revenue minus cost. A 4-approximation to this problem,
under the assumption that the optimal solution has revenue
at least 4 times its cost and that there is sufficient competi-
tion at each node is given in [7].

Using our generic results we can say that so long as the
optimal solution has revenue at least1/ε times its cost, and
we have on averagẽO(h/ε2) bidders at each node (using
Theorem 2) or at least̃O(h/ε2) revenue at each node (using
Corollary 3) then we get a(1 + O(ε))-approximation.

Briefly, to apply the generic results, we define our algo-
rithmA so that it finds the revenue-maximizing tree butonly
over the subset of trees whose revenue on the given subset
of bidders is at least(2 + ε)/ε times its cost. By Corollary
3, with high probability the optimal tree has this property
over bothS1 andS2, and so the revenue achieved byA is
nearly that of the optimal tree, and by design the cost of the
tree produced byA is only anO(ε) factor of revenue.

We can also apply structural-risk-minimization in the
case that the total number of bidders is not sufficient for
the entire class of trees. In particular, one interesting case
is the comparison-class of functions that choose some sub-
tree and add fake “markups” between 0 andnh to the edges
of that subtree, and then perform cost-sharing on the result
(also add a “super-root” with a single zero-cost edge into the
root). If we defineGk to be the set of such functions whose
subtree hask edges, then|Gk| ≤ (n log1+ε(nh))k. We can
then perform SRM using Theorem 5. An interesting special
case to consider is a simple depth-1 multicast tree whose
edges have cost 0 and with two bidders at each leaf: one
with value 1 and one with valueh. In this case, there is not

sufficient competition at the leaves for the results of [7], but
we can extractΩ(nh) usingG1.

8. Conclusions

In this work we have made the connection between ma-
chine learning and mechanism design explicit. In doing
so, we obtain a unified approach to considering a variety
of profit maximizing mechanism design problems including
many that have been previously considered in the literature.

Some of our techniques give suggestions for thede-
signof mechanisms and others for theiranalysis. In terms
of design, these include the use of discretization to pro-
duce smaller function classes, and the use of structural-risk-
minimization to choose an appropriate level of complex-
ity of the mechanism for a given set of bidders. In terms
of analysis, these include both the use of basic sample-
complexity arguments, and the notion of multiplicative cov-
ers for better bounding the true complexity of a given set of
functions.

Our bounds on random sampling auctions for digital
goods [11] not only show how the auction profit approaches
the optimal profit, but also weaken the required assump-
tions by a constant factor. Similarly for random sampling
auctions for multiple digital goods [12] our unified analysis
gives a bound that approaches the optimal profit with as-
sumptions weakened by a factor of more thanm, the num-
ber of distinct items. This multiple digital good auction
problem is a special case of the a more general unlimited
supply combinatorial auction problem for which we obtain
the first positive worst-case results by showing that it is pos-
sible to approximate the optimal profit with an incentive-
compatible mechanism. Furthermore, unlike the case for
combinatorial auctions for social welfare maximization, our
incentive-compatible mechanisms can be based on approx-
imation algorithms instead of exact ones.

We have also explored the attribute auction problem pro-
posed in [3], a special case of general profit maximizing
mechanism design, in a very general setting: the attribute
values can be multi-dimensional and the target pricing func-
tions considered can be arbitrarily complex. We bound the
performance of random sampling auctions as a function of
the complexity of the target pricing functions. Our attribute
auction results can be used for more general problems such
as multicast pricing, where there is a cost to be paid by the
mechanism that is a function of its outcome.

Our random sampling auctions assume the existence of
exact or approximate pricing algorithms. Solutions to these
pricing problem have been proposed for several of our set-
tings. In particular, optimal item-pricings for combinato-
rial auctions in the single-minded and unit-demand special
cases have been considered in [15, 13]. On the other hand
for attribute auctions, many of the clustering and market-
segmenting pricing algorithms have yet to be considered at



all.
Probably the most important direction for future work is

in relaxing the assumption that the items for sale are avail-
able in unlimited supply. In the random sampling frame-
work, we propose the following mechanism: randomly par-
tition the bidders into two sets, evenly divide the items
among the two sets, compute the optimalenvy-free3 pric-
ing function for the two partitions, and applying the pric-
ing function to the opposite partition. Of course, a pricing
functiong that is envy-free forS1 may not necessarily be
envy-free forS2. There are several approaches that may
work here. First, we could artificially deplete the supply
by a constant factor and ask for an pricing function that is
envy-free for the depleted supply. Then it may be possible
to argue that it is envy-free for bothS1 andS2 with high
probability. Another option would be to take the bidders of
S1 in an arbitrary (or random) order and allow them to take
an item if they desire one. When we run out of items, stop.
The remaining bidders get none, whether they want one or
not. It is easy to see that the technique outlined above re-
sults in an incentive compatible mechanism. Is it also close
to optimal?

It is possible to further generalize the feasibility con-
straints imposed by limited supply to arrive at the general
single-parameter agent auction problem (See e.g., [9] for a
precise definition). This abstract problem can be viewed as
auctioning a service to a number of agents where the ser-
vice provider must pay a cost that is a function of the agents
served. In its full generality, this cost function could be ar-
bitrary. Note that the multicast pricing problem is a special
case of this problem where the cost function is defined by a
tree. The possibly asymmetric cost function can be viewed
as endowing the agents with public attributes, or the agents
could have additional attributes. A very interesting direc-
tion for future research is in determining for what classes of
cost functions the general problem of profit maximization
in this setting can be solved.
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A Concentration inequalities

Here is the McDiarmid inequality (see [5]) we use in our
proofs:

Theorem 15 Let Y1, ..., Y n be independent random variables
taking values in some setA, and assume thatt : A → R sat-
isfies:

sup
y1,...,yn∈A,yi∈A

|t(y1, ..., yn) − t(y1, ..., yi−1, yi, yi+1, yn)| ≤ ci,

for all i, 1 ≤ i ≤ n. Then for allγ > 0 we have:

Pr {|t(Y1, ..., Yn) − E[t(Y1, ..., Yn)]| ≥ γ} ≤ 2e

"

−
2γ2

PN
i=1

c2
i

#

Here is also a consequence of the Chernoff bound that we used
in Lemma 7.

Theorem 16 Let X1, ..., Xn be independent Poisson trials such

that, for 1 ≤ i ≤ n, Pr[Xi = 1] = 1/2 and letX =
n

P

i=1

Xi.

Then anyn′ we have:

Pr

n˛

˛

˛
X −

n

2

˛

˛

˛
≥ ε max{n, n′}

o

≤ 2e[−2n′ε2]


