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Abstract. In a unit-demand multi-unit multi-item auction, an auction-
eer is selling a collection of different items to a set of agents each inter-
ested in buying at most unit. Each agent has a different private value for
each of the items. We consider the problem of designing a truthful auc-
tion that maximizes the auctioneer’s profit in this setting. Previously,
there has been progress on this problem in the setting in which each
value is drawn from a known prior distribution. Specifically, it has been
shown how to design auctions tailored to these priors that achieve a
constant factor approximation ratio [2, 5]. In this paper, we present a
prior-independent auction for this setting. This auction is guaranteed to
achieve a constant fraction of the optimal expected profit for a large class
of, so called, “regular” distributions, without specific knowledge of the
distributions.

1 Introduction

In a unit-demand multi-unit multi-item auction (UMMA), there are n agents
and a seller selling a set of m items. The seller has a supply of mj units of each
item j. Each agent, say the i-th, has a private value vij for item j, and is only
interested in purchasing one unit. The seller runs an auction to determine whom
to sell to and at what prices. The auction (or mechanism) takes as input a bid
bij from each agent, and based on the collection of bids, determines a feasible4

allocation of items to agents and a price to charge each agent. The question we
consider here is how to design a truthful auction for this unit-demand setting
that maximizes the seller’s profit.

This is an example of a multi-parameter mechanism design problem. While
single parameter truthful mechanism design is reasonably well-understood, the
understanding of truthful multi-parameter mechanism design is still very much
in its infancy. In particular, when the objective of the mechanism designer is
something other than maximizing social welfare, we know very little.
? Supported in part by NSF CAREER Award CCF-0846113.
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4 An allocation is feasible if each agent is allocated at most one item and if no more
than mj items of type j are sold.



Among multi-parameter mechanism design problems, the problem of design-
ing profit maximizing mechanisms for UMMAs has received the most atten-
tion [2,5] and has yielded the greatest breakthroughs so far. The main results in
this area so far concern Bayesian mechanism design, in which each agent’s values
vij are drawn from known prior distributions Fij . In this setting, the goal is, given
knowledge of the priors, to design a truthful mechanism which maximizes the
seller’s expected profit, where the expectation is taken over the random draws
from the prior distributions. For example, Chawla, Hartline, Malec and Sivan [5],
and independently (in somewhat different settings) Bhattacharya, Goel, Golla-
pudi and Munagala [2] have shown how to design truthful mechanisms which
are guaranteed to obtain a constant fraction of the optimal expected profit. In
addition, Cai, Daskalakis and Weinberg [4] have recently shown how to design
PTASes for some special cases of the problem. For a large class of Bayesian
combinatorial auction settings, where the priors are known to the mechanism
designer, Alaei [1] gives a general framework for approximately reducing the
mechanism design problem for multiple buyers to single buyer subproblems,
which applies to revenue problems such as the one we consider here.

Inspired by [8], we present a “prior-independent” mechanisms for this prob-
lem. By prior-independent, we mean two things: first, that there exist prior
distributions from which the agents’ values are drawn, and, second, that the
mechanism designer has no knowledge of these priors. Thus, the mechanism
has to work well, that is, guarantee a constant fraction of the expected profit
achieved by the optimal mechanism tailored to the particular prior distributions,
without any knowledge of these priors, and no matter what they happen to be,
as long as the distributions satisfy a relevant “regularity” condition. In an in-
dependent and and contemporaneous work, Roughgarden, Talgam-Cohen and
Yan [12] shows that, for settings that are very similar to ours, a simple “wel-
fare maximization with supply reduction” mechanism is also a prior-independent
constant approximation mechanism.

Our main theorem is the following:

Theorem. Consider a UMMA setting where for each item j, vij is drawn inde-
pendently from an arbitrary regular distribution Fj. There is an efficiently imple-
mentable, truthful mechanism M that, with no knowledge of the Fj’s, achieves

Ev [M(v)] ≥ 1
8 (Ev [OPT(v)]).

Here OPT is the optimal deterministic mechanism tailored to the priors Fj.5

To prove this theorem, we build on a number of of ideas from previous works.
First, we take advantage of a reduction from Chawla et al [5] that shows that the
optimal expected profit achievable in the unit-demand auction setting is upper
bounded by the optimal expected profit achievable in a certain single-parameter
5 In [6], Chawla, Malec and Sivan show that for UMMA, the profit of the optimal

randomized and deterministic mechanisms are within a constant factor of each other.
Therefore, our mechanism also obtain a constant factor of the profit of the optimal
randomized mechanism.



variant of the problem. We then show how to design a prior-independent mech-
anism for this related single-parameter variant and, also, how to convert this
mechanism back to a multi-parameter mechanism. To design a prior-independent
mechanism for the single-parameter variant, we use three ideas. First, we take
advantage of our understanding of the optimal mechanism in single-parameter
settings, namely the Myerson mechanism [11]. Second, we relax the unit-demand
constraint and instead design a mechanism for a relaxed global supply constraint.
The effect of this relaxation is to convert the feasibility constraint on the subset of
simultaneously served agents from a matroid intersection constraint to the much
easier to handle matroid constraint. Finally, we use a Bulow-Klemperer [3] style
result due to Hartline and Roughgarden [10] that shows that in single-parameter
matroid settings, if each agent is duplicated, and only one of each pair of dupli-
cates is served in any allocation, then VCG is a 2-approximation to Myerson’s
optimal mechanism. Putting these ideas together, we are able to design a prior-
independent mechanism for the single-parameter variant of the problem. The
conversion back to a multi-parameter mechanism consists of an attempt to sim-
ulate the single-parameter mechanism by offering each agent a menu of prices
and letting the agent choose his favorite item. However, this simulation is not
(and cannot be) faithful because of the differences between the single parameter
and multi-parameter setting. Thus we need to show that in expectation not too
much revenue is lost, which we prove by taking advantage of the interchange-
ability of the random variables vij , 1 ≤ i ≤ n (that is a consequence of the fact
that they are independent draws from the same distribution).

Other results. We present a simpler mechanism that obtain a constant factor
approximation to the optimal mechanism in the case where there is exactly one
unit of each item. Depends on the number of agents and items, the approximation
factor of this mechanism can be better than the mechanism in our main result.

We also obtain Bulow-Klemperer type result for some special cases of the
problem. In particular, we show that VCG with duplicates approximates the op-
timal mechanism when either there is no constraint on the supplies of the items,
or the distributions of the values satisfy the “monotone hazard rate condition”.
For these results, we allow each value vij to be drawn from a different distribu-
tion. However, due to the space limit, these results, as well as most proofs, are
deferred to the full paper.

2 Preliminaries

2.1 Settings and Definitions

We define UMMA environments. In such an environment, a seller has k items,
with mj units of item j. Each agent i has, as her private information, a valuation
vij for obtaining each item j and would like to buy at most one unit. We will as-
sume that the values vij are drawn independently from underlying distributions
Fij . Formally,



Definition 1. A UMMA environment E is a tuple (N,M,S,F) where

– N = {1, 2, . . . n} is the set of bidders
– M = {1, 2, . . .m} is the set of items; there are mj units of item type j.
– S is the collection of possible allocations given the supply constraints and the

unit-demand constraint. Each S ∈ S is a set of pairs (i, j), which represents
the assignment of items to agents. Thus, for each bidder i, each set S con-
tains at most one pair containing i, and for each item j, each set S contains
at most mj pairs containing j.

– F =
∏

i∈N,j∈M Fij where Fij is the distribution of vij. Defining F to be a
product distribution is equivalent to assuming that all values are independent.

In this paper, we will assume that Fij = Fj for all i. For v that is a valuation
profile drawn from F, we call the tuple (N,M,S,v), sometimes abbreviated to
(E,v), an instance of E.

Similarly, a single-parameter environment is defined by a tuple (N,S,F)
where N is the set of agents, S is the feasible set system (i.e., the subsets of
agents N that can be simultaneously served) and F is the distribution of the
valuation profiles. This environment corresponds to the scenario where a seller
is offering a service (or goods), and the subsets in S are the sets of agents that
can feasibly be served simultaneously. (For example, if we are describing a t-unit
auction, then S consists of all subsets of agents of size at most t.) We will only
consider scenarios where the set system is downward-closed, that is, every subset
of a feasible set is also feasible. In this setting, each agent i ∈ N , has a value vi

for being served, where vi is drawn from prior distribution Fi.
A mechanism takes as input a set of bids from the agents, where in the

UMMA environment bij is agent i’s bid for item j, and in the single-parameter
setting bi is agent i’s bid for service. The mechanism then outputs an allocation
and payments. The outcome of a (deterministic) mechanism on a UMMA in-
stance consists of a set of (item, bidder) pairs represented by an 0/1 allocation
vector x and a payment vector p. Here xij = 1 if and only if item j is assigned
to i and pi represents the amount bidder i has to pay. Similarly for a single-
parameter mechanism, the outcome is a set of winning agents and a payment
vector. Again we will use the allocation vector x as an indicator for which agents
are served: xi = 1 if agent i ∈ N is served and, again, pi is agent i’s payment.

Given the outcome of a mechanism, the utility of a single-parameter agent i
is defined by ui = xivi − pi, while the utility of a unit-demand multi-parameter
agent i is ui =

∑
j xijvij − pi. We assume that agents act to maximize their

utility, and we will focus on the design of truthful mechanisms.

Definition 2. A mechanism is truthful if each bidder i maximizes her utility
by bidding her true values, no matter what other agents do.

As we have already discussed, our goal will be to design truthful mechanisms
for the UMMA environment that maximize the expected profit of the auctioneer
without knowledge of the priors from which agent’s values are drawn. The fact



that a prior-independent mechanism does not use information about the priors
means that for any two environments E and E′ that differ only on the distribu-
tions from which the agents’ values are drawn, a prior-independent mechanism
does not distinguish between (E,v) and (E′,v) for any valuation profile v which
is in the support of both distributions.

In the rest of this section, we review a number of important prior results that
we will be using.

2.2 VCG

The VCG mechanism [7, 9, 13] is a truthful mechanism for maximizing social
welfare in the various environments we consider in this paper. (It also applies
much more generally.)

In the single-parameter environments we are discussing, the VCG mechanism
takes as input a vector of bids b and chooses as its output the feasible set S that
maximizes social welfare, i.e.

∑
i∈S bi. The payment of an agent is its threshold

bid, the minimum value it could have bid and still been part of the winning set.

2.3 Myerson’s optimal mechanism for single-parameter
environments

We will rely heavily on Myerson’s optimal mechanism [11] for profit maximiza-
tion in single-parameter environments with known priors. This result assumes
that agent’s valuations are drawn from a product distribution F = F1×F2×· · ·×
Fn. Thus, the agents’ values are independently (but not identically) distributed.

Given a value vi drawn from the distribution Fi, the virtual value corre-
sponding to vi, denoted by φFi(vi) is defined by

φi(vi) = vi −
1− Fi(vi)
fi(vi)

.

Fi is regular if the function φi is monotone nondecreasing, and a product distri-
bution F =

∏
i Fi is regular if each Fi is regular. The class of regular distributions

is very large and includes many common distributions such as exponential and
normal distributions.

Myerson’s result is then the following.

Theorem 1 ([11]). Let (N,S,F) be a single-parameter environment, where F is
a regular product distribution. For any truthful mechanism for this environment,
characterized by an allocation and a payment rules x and p, we have

Ev

[∑
i
pi(v)

]
= Ev

[∑
i
φi(vi)xi(v)

]
.

The Myerson mechanism Mye for regular distributions is a truthful mechanism
that optimizes the quantity inside the expectation on the right hand side point-
wise. In other words, given a set of bids b as input, Myerson selects as winners
the feasible subset S such that

∑
ı∈S φFi

(bi) is maximized. This mechanism max-
imizes the expected profit among truthful mechanisms.



2.4 Reduction from UMMA environments to single-parameter
environments

Definition 3. Given a UMMA environment E = (N,M,S,F), the representa-
tive environment Rep (E) of E is a single-parameter environment represented by
the tuple (N ′,S ′,F) where

– N ′ = {ij : i ∈ N, j ∈M},
– Each set S′ ∈ S ′ is constructed by taking a set S ∈ S and replacing each

pair (i, j) by the agent ij.

Each single-parameter agent ij is a representative of the unit-demand agent i.

Chawla et al [5] show that for UMMA, the optimal revenue in the representa-
tive environment upper bounds the optimal revenue of the original environment.

Lemma 1 (Corollary of Lemma 5 in [5]). Let E = (N,M,S,F) be a UMMA
environment and let Rep (E) be its representative environment. Also, let OPT be
the optimal deterministic mechanism for E. We have

Ev∼F [OPT(E,v)] ≤ Ev∼F [Mye (Rep (E),v)]

2.5 Bulow-Klemperer type results

We first review the concept of duplicates.

Definition 4. Given a single parameter environment E, the environment with
duplicates Dup (E) is obtained by adding a new agent i′ for each agent i in E
such that:

– The value of i and i′ are drawn from the same distribution.
– A feasible set in Dup (E) is constructed by taking a feasible set in E and

replace some of the agents by their duplicates.

Hartline and Roughgarden [10] prove the following results:

Lemma 2 (Theorem 4.4 in [10]). Suppose E = (N,S,F) is a single-parameter
environment where S is a matroid set system (the feasible sets are independent
sets in a matroid on N) and F is a regular product distribution. Then the ex-
pected revenue of VCG on Dup (E) is at least 1/2 the expected revenue of Mye on
E, i.e.

Eu∼F×F [VCG (Dup (E),u)] ≥ 1
2Ev∼F [Mye (E,v)].

3 Prior-independent mechanism for UMMA

We design a prior-independent mechanism that approximates, in expectation,
the revenue of the optimal mechanism for UMMA. Since there is no known
characterization of the optimal mechanism for UMMA, we will make use of
Lemma 1 and design a mechanism that approximates the revenue of Myerson’s
optimal auction on the representative environment, via a sequence of reductions
using a few intermediate environments. To introduce the elements of this process,
we start by considering a very simple special case.



3.1 Unit-demand multi-item auction with unit supply

As a warm-up, we consider the case where there is exactly one unit of each item,
and m, the number of items, is at most the number of agents, n. Let E be the
original unit-demand environment, Rep (E) be the representative environment
of E. An important intermediate environment in our reduction is obtained by
relaxing the unit-demand constraint in Rep (E).

Definition 5. Let E be a single-parameter environment where the agents can
be partitioned into t groups such that at most one agent in each group can be
served. Then Global (E) is the environment where this constraint is replaced by
the constraint that overall, at most t agents can be served.

In particular, the environment Global (Rep (E)), or in short, G.R(E), is ob-
tained by replacing the unit-demand constraint in Rep (E) by the constraint that
in total, at most n representatives can be served.

In the special case where m < n, the global constraint that at most n rep-
resentatives can be served is subsumed by the supply constraint. Therefore,
G.R(E) is equivalent to a combination of m independent single-unit auctions.
For each single-unit auction, Bulow and Klemperer [3] show that the second-
price auction obtains at least n−1

n times the expected profit of Mye. This implies∑
j SPAj(G.R(E)) ≥ n−1

n Mye (G.R(E)), where SPAj is second price auction on
the representatives interested in item j. Hence, it suffices to design a mechanism
that simulates these second price auctions.

The straightforward approach is to offer to sell to each agent every item at a
price equal to the highest bid of other agents for that item and ask her to choose
her favorite one, as described in Fig. 1

Mechanism M1 for unit-demand multi-item auctions with unit supply

Offer each agent i a price menu pi where pij = maxi′ 6=i vi′j , and ask her to choose
her favorite item.

Fig. 1. A mechanism for unit-demand multi-item auction where there is exactly one
unit of each item.

It is immediate that M1 is truthful and outputs a feasible allocation. To
analyze the the revenue of M1, let pj be the second highest bid for item j and
ij be the highest bidder for item j. Moreover, let ξj be the event that i` 6= ij for
all ` 6= j. Then if ξj happens, M1 gets at least pj from item j. Therefore,

E [M1(E)] ≥
∑

j
pjPr [ξj ] =

∑
j
pj(n−1

n )m−1

= (n−1
n )m−1

∑
j
SPAj(G.R(E)) = (n−1

n )mMye (G.R(E))

≥ (n−1
n )mMye (Rep (E)) ≥ (n−1

n )mOPT (E)



While we start with the assumption that m ≤ n to motivate the decompose
of G.R(E) into m single-item auctions, the above analysis is independent of this
assumption. This yields the following theorem.

Theorem 2. For unit-supply unit-demand multi-item auction with m items and
n agents,M1 approximates the revenue of the optimal mechanism within a factor
of ( n

n−1 )m.

In particular, when m = O (n), M1 is a constant approximation to the
optimal mechanism. When m ≤ n, the approximation ratio is at most 4 for
n ≥ 2, and converges to e when n tends to ∞.

Remark 1. There is a mechanism, which is a combination ofM1 and the mecha-
nismM described in the next section, which approximates the expected revenue
of the optimal mechanism for unit-supply unit-demand multi-item auction within
a factor of 2( n

n−1 )n+1, even when m is much larger than n. This approximation
ratio is worse than that of M when n is small. However, as n tends to ∞, it
approaches 2e.

3.2 Unit-demand multi-unit multi-item auction

We turn to the general case where there are more than one unit of each items.
For the ease of representation, we will assume that n, the number of agents, is
even. (If the number of agents is odd, we can simply discard one agent at a small
loss in revenue.)

We use the same approach as in the previous section: simulating a prior-
independent mechanism for the single-parameter environment by offering a price
menu to each agent. To this end, we have to construct a prior-independent single-
parameter mechanism for Rep (E). Lemma 2 gives us a starting point. To use this
result, we introduce duplicates. We restrict Rep (E) to half of the agents and use
the remaining agents as duplicates. Moreover, since the resulting environment is
not a matroid environment, we will relax the unit-demand constraint to a global
constraint, as discussed in the previous section, to transform it into a matroid
environment.

Formally, we make use of the following intermediate environments:

– H.R(E) (an abbreviation of Half (Rep (E))) is the environment obtained by
restricting Rep (E) to the set of representatives {ij : 1 ≤ i ≤ (i+ n/2)}.

– G.H.R(E) (an abbreviation of Global (Half (Rep (E))) is the environment ob-
tained by relaxing the unit-demand constraint in H.R(E) to the constraint
that, overall, at most n/2 representatives can be served.

– D.G.H.R(E) (an abbreviation of Dup (Global (Half (Rep (E))))) is the environ-
ment obtained by adding a duplicate for each representative in G.H.R(E). We
use the representatives discarded by Half as the duplicates, i.e., D.G.H.R(E)
contains the representatives of all agents inN , and for each i ∈ {1, 2, . . . , n/2}
and each j, ij and (i+ n/2)j are duplicates of each other.



We will show that VCG (D.G.H.R(E)) is a good approximation of OPT (E)
and then design a multi-parameter mechanism M that approximates
VCG (D.G.H.R(E)). The chain of reductions is summarized as follows

E [OPT (E)] ≤ E [Mye (Rep (E))] ≤ 2E [Mye (H.R(E))] ≤ 2E [Mye (G.H.R(E))]
≤ 4E [VCG (D.G.H.R(E))] ≤ 8E [M(E)] (1)

This chain is the proof of our main theorem.
Lemma 1 already gives us the first inequality.
Intuitively, the revenue Mye gets from Rep (E) is at most the revenue it gets

from H.R(E) and the environment obtained by restricting Rep (E) to the other
half of the representatives. Since these two restricted environment are identical,
the optimal revenue in Rep (E) is at most twice the optimal revenue in H.R(E).
Hence the second inequality holds.

The third inequality follows from the fact that Mye (G.H.R(E)) optimizes the
virtual surplus over a relaxed set of constraints as compared to Mye (H.R(E)).

The fourth inequality follows from Lemma 2 and the fact that D.G.H.R(E)
is a matroid environment.

It remains to describe M and prove the last inequality. As discussed, M
would offer each agent i a price menu pi and ask her to choose her favorite item.
The question is how to determine pij for each i and j. Since we would like to
simulate VCG (D.G.H.R(E)), the straightforward answer is to set pij to the VCG
price of representative ij.

However, this straightforward approach does not work, as the VCG price of
ij may be determined by the value of another representative of i; hence the
menu offered to i is not independent of her bid. This complication stems from
the fact that the VCG price of ij is computed by comparing the welfare of
other representatives when (i) ij is included and (ii) ij is excluded from the
environment. The important observation is that if in (ii), instead of excluding
only ij, we excluded all representatives of i, the price menu would be independent
of i’s bids. In another word, pij should be the externality that i would impose
on other representatives of D.G.H.R(E) by taking item j. This leads to our
mechanism M, detailed in Fig. 2.
M is clearly truthful. The following two lemmas complete (1) and the proof

of our main theorem.

Lemma 3. M outputs a feasible allocation.

Proof. The unit-demand constraint is automatically satisfied because each agent
is asked to choose one item. On the other hand,M offers each item j to at most
mj agents at prices smaller than their bids for it. Therefore, at most mj agents
would buy j and the supply constraint is satisfied. ut

Lemma 4. The expected revenue of M is at least 1/2 the expected revenue of
VCG (D.G.H.R(E)).

To prove this lemma, we first give a condition so thatM and VCG (D.G.H.R(E))
get the same revenue from an agent.



Mechanism M for UMMA a

For each agent i, do the following

1. Compute a price menu pi, where pij is the externality i would impose on other
representatives in D.G.H.R(E) by taking item j. In another word, let E−i be
D.G.H.R(E) with all representatives of i removed, then pij is the maximum
of three quantities:
– the value of ij’s duplicate,
– the value of mj-th winner of item j in E−i, i.e. the smallest value among

the winners if we are to sell mj unit of item j and nothing else.
– the value of the n

2
-th winner in E−i.

2. Offer pi to agent i and ask her to choose her favorite item.

a This description of the mechanism assumes the absence of ties. When ties are
present, extra steps are required to make sure that M and VCG (D.G.H.R(E))
break ties in the same way. The detailed mechanism is deferred to the full paper.

Fig. 2. A prior-independent, truthful mechanism for UMMA.

Lemma 5. Consider welfare maximization in environment D.G.H.R(E) with
and without representative ij. If representative ij is served in the former and
none of i’s representatives ij′ are served in the latter then the payment of rep-
resentative ij in VCG (D.G.H.R(E)) equals that of agent i in M.

Proof. First, inM, pij′ > vij′ for any j′ 6= j. This is because surplus maximiza-
tion without ij failed to assign an item to ij′, so the externality from serving ij′

(thus, the payment i must make for item j) must be greater than vij′ . Hence, i
would not buy any item j′ 6= j.

Second, the payment of i for item j in M is the externality when all of i’s
representatives are removed, whereas the payment in VCG for ij is the external-
ity when just ij is removed. By the assumption of the lemma, even when we just
remove ij, surplus maximization chooses not to serve another representative of
i, so these externalities are the same. ut

Based on this lemma, we can now prove Lemma 4.

Proof (of Lemma 4). Let us condition on the set of values drawn from each distri-
bution and the pairing of values given by the duplicates, i.e., from each distribu-
tion Fj draw n/2 pairs of values, but defer the decision of which representatives
belong to which agents until later. Given this conditioning, VCG (D.G.H.R(E))
is deterministic, i.e., both the winning representatives and their payments are
fixed6.
6 For example, the winning set can be calculated as follows: (i) choose the highest-

valued representative in each pair; (ii) among the representatives chosen in (i), choose
the mj highest-valued ones for each item j; and (iii) among the representatives



We argue that M’s revenue from each item j is at least 1/2 of
VCG (D.G.H.R(E))’s revenue from it. To this end, fix the representatives that
win copies of item j and let representative ij be one of them. Now consider
(as in the statement of Lemma 5) finding the surplus maximizing allocation in
D.G.H.R(E) with ij removed. Since D.G.H.R(E) is a matroid environment, ij
will be replaced by some other representative i′j′ and all of VCG’s other winners
will remain winners. This process allocates at most n/2 units of items other
than item j to representatives of at most n/2 distinct agents. While we have
conditioned on the representatives that win units of item j, the agents whose
representatives win the other items have not yet been fixed. We now consider
realizing the assignment of these other representatives to agents. The probability
that agent i is assigned one of these (at most) n/2 representatives is at most 1/2.
Hence, the assumption of Lemma 5 holds for representative ij with probability
at least 1/2. Therefore, ij’s expected contribution toM’s revenue is at least half
its contribution to VCG’s revenue.

The lemma follows. ut
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