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Abstract

Systems wherein strategic agents compete for limited resources are
ubiquitous: the economy, computer networks, social networks, conges-
tion networks, nature, etc. Assuming the agents’ preferences are drawn
from a distribution, which is a reasonable assumption for small mecha-
nisms in a large system, Bayesian mechanism design governs the design
and analysis of these systems.

This article surveys the classical economic theory of Bayesian mech-
anism design and recent advances from the perspective of algorithms
and approximation. Classical economics gives simple characterizations
of Bayes-Nash equilibrium and optimal mechanisms when the agents’
preferences are linear and single-dimensional. The mechanisms it
predicts are often complex and overly dependent on details of the
model. Approximation complements this theory and suggests that
simple and less-detail-dependent mechanisms can be nearly optimal.
Furthermore, techniques from approximation and algorithms can be
used to describe good mechanisms beyond the single-dimensional,
linear model of agent preferences.



1
Introduction

The Bayesian1 approach to optimization assumes that an input to the
optimization problem is drawn from a distribution and requests that
an output be found that is good in expectation. This approach is both
compatible with the standard worst-case approach to algorithm design
and suggests a rich problem space that is relatively unexplored from an
algorithmic perspective. The approach is to partition the optimization
problem into two stages. In the first stage, a distribution is given and
can be preprocessed so as to construct an algorithm tailored to the
distribution. In the second stage inputs to the distribution are drawn
and the algorithm is run on these inputs. For instance, this approach
is similar to data structure problems such as Huffman [64] coding and
search problems such as nearest neighbor, cf., Cover and Hart [36].

1We say “Bayesian” here instead of “stochastic” to connote settings where Bayesian updat-
ing is relevant. As an example, if the distribution over inputs is correlated and an optimiza-
tion algorithm must make decisions before all the input is known, the algorithm should
perform Bayesian updating to refine its beliefs about remaining inputs. That said, many
of the methods and results described in this survey pertain to the special case that the
inputs are independent and the term “Bayesian” is only used for consistency in presenting
the result in the context of the greater literature within which they are contained.
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Furthermore, the algorithm practitioner’s design and analysis
framework can be abstracted as being Bayesian. As a caricature, such
a practitioner will design and test her algorithm on a class of data sets
that she deems relevant. When the attempted improvements to the
algorithm on these data sets fail to significantly increase performance,
she will deploy the final algorithm. Methodologies for the Bayesian
framework for algorithm design can then potentially be applied to this
form of practical algorithm design (see, e.g., the Bayesian reductions
of Section 7).

This survey focuses on a large class of Bayesian optimization
problems that exhibit both algorithmic and economic challenges. In
particular, in a departure from traditional algorithms, we assume that
the desired input to the algorithm is the private information of self-
interested agents. These agents can report this information to the algo-
rithm (if requested) but can equally well misreport if it benefits them
and the algorithm cannot tell the difference. Our abstract question per-
tains to how a designer should structure the rules of a system so that in
the equilibrium of strategic play, the designer’s objective is optimized.
This is the question of mechanism design.

Mechanism design has broad applications; however, we will focus
on potential applications to computer systems. In so far as scarce
system resources must be shared amongst parties with diverse and
selfish interests, mechanism design governs the proper working of
computer systems. When incentives are not properly accounted for,
strategic misbehavior is common. A few examples include spam in
email systems (see Dwork et al. [44]), link-spam and Sybil networks
in the ranking of Internet search results (see Dwork et al. [45] and
Gyongyi and Garcia-Molina [55]), and freeloading in file-sharing
networks (see Vishnumurthy et al. [92]).

The literature that melds algorithmic and economic issues in mech-
anism design, a.k.a., algorithmic mechanism design, since its inception
over a decade ago, has predominantly focused on worst-case mecha-
nisms with dominant strategy equilibria. The strategic agents should
have a single best action no matter what the actions of other agents,
and the designed mechanism should be good for any preferences the
agents may have. As a motivating example, the second-price auction
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for selling a single item serves the highest bidder at price equal to the
second highest bid. Truthtelling is a dominant strategy in the second-
price auction; therefore, in dominant strategy equilibrium the bidder
with the highest true value wins and, for any values the bidders might
possess, the auction maximizes social welfare. In this line of worst-
case dominant-strategy mechanism design, Lehmann et al. [70] ini-
tiated the merger of algorithmic complexity and economic incentive
considerations for the objective of social welfare maximization, Nisan
and Ronen [75] initiated the study of mechanisms for non-linear objec-
tives such as makespan in machine scheduling, and Goldberg et al. [50]
initiated the study of objectives that depend on agent payments (e.g.,
revenue). The latter two agendas are related in that, even absent com-
putational constraints, the economic incentives of the agents preclude
a pointwise optimal mechanism. As an example, notice that for the
single-item auction, a seller would could obtain more revenue by set-
ting a reserve price between the highest and second highest value, but
to do so requires knowledge of the agent values. Therefore, for these
problems the worst-case optimization question under consideration is
inherently one of approximation akin to the competitive analysis of
online algorithms (e.g., Borodin and El-Yaniv [16]).

In the classic microeconomic treatment of mechanism design, the
non-pointwise-optimality of mechanisms is resolved by formulating the
problem as one of Bayesian design. A distribution over the preferences
of the agents is given, and the designer seeks to optimize her objective in
expectation over this distribution. For any specific distribution, there
is such an optimal mechanism. The Bayesian assumption also allows
the strategic incentives of the agents to be relaxed. Given that the
agents’ preferences are drawn from a distribution, instead of requiring a
mechanism to have dominant strategies, mechanisms can be considered
where agents’ actions are best responses to the distribution of actions
of other agents.

Both the Bayesian and worse-case (henceforth, prior-free) frame-
works for mechanism design have merits and, recognizing this, a
Bayesian branch of algorithmic mechanism design has emerged.
Paramount of study in Bayesian algorithmic mechanism design are
algorithmic techniques, approximation, and computational issues. The
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goal of this survey is to discuss the most fundamental of these results
in the context of classical Bayesian mechanism design.

1.1 Topics Covered

This survey is organized into the following sections. For environments
with agents with linear and single-dimensional preferences, Section 2
characterizes the equilibrium of strategic play in auction-like games,
Section 3 characterizes optimal auctions for welfare and revenue, and
Section 4 describes simple, practical mechanism that are approxi-
mately optimal. For environments where agents have multi-dimensional
and non-linear preferences, Section 5 characterizes optimal auctions
and Section 6 describes simple approximation mechanisms. Finally,
Section 7 gives generic performance-preserving reductions from mech-
anism design to algorithm design for both single-dimensional and
multi-dimensional agent preferences. Mathematical reference is given
in Appendix A.

Section 2: Equilibrium. In Bayesian games an agent’s strategy
maps her private information to an action in the game; the distribution
of private information and strategies induce a distribution of actions
in the game; and a profile of strategies is in equilibrium if the strategy
of each agent is a best response to this distribution of actions. The
classical Bayesian approach to mechanism design starts with a char-
acterization of equilibrium. For single-dimensional environments, i.e.,
when an agent’s private preference is given by a single number denoting
her value for a single abstract service, Myerson [74] characterized all
possible equilibria. This characterization states that an agent’s prob-
ability of service should be monotonically non-decreasing in her value
and it gives a formula for her expected payment. This payment identity
implies the revenue equivalence of auctions with the same equilibrium
outcome. Moreover, it suggests a method for solving for equilibrium.

Section 3: Optimal Mechanisms. For welfare maximization, the
well known Vickrey-Clarke-Groves (VCG) mechanism is pointwise
optimal [91, 35, 53]. For revenue maximization in single-dimensional
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environments, Myerson [74] gives a reduction from the non-pointwise
problem of maximizing revenue in expectation over the distribution,
to the problem of optimizing a pointwise virtual welfare. The reduc-
tion works by transforming the agent values to virtual values, and then
optimizing in the transformed space. In the special case where values
are i.i.d. from a distribution from a sufficiently well-behaved class, this
optimal mechanism is simply the second-price auction with a suitably
chosen reserve price. Bulow and Roberts [20] give a microeconomic rein-
terpretation Myerson’s virtual values as the derivative of an appropri-
ate revenue curve, a.k.a., as a marginal revenue. Alaei et al. [5] observe
that this characterization is based on the “revenue linearity” of optimal
mechanisms for single-dimensional agents.

Section 4: Approximation Mechanisms. While the optimal
mechanism is often complex and impractical, there is often a simple
and practical mechanism that is approximately optimal. For example,
the second-price auction with reserve is widely prevalent even though it
is not optimal beyond the ideal setting of symmetric agents with values
drawn from a well-behaved distribution. Of course, even more preva-
lent are simple posted-pricing mechanisms, e.g., most stores sell goods
by posting take-it-or-leave-it while-supplies-last prices on the goods for
sale. Approximation can resolve this disconnect between theory and
practice. Chawla et al. [29, 30] and Hartline and Roughgarden [62] show
that reserve pricing is approximately optimal in many environments.
Similarly, Chawla et al. [30], Yan [94], and Chakraborty et al. [27] show
that posted pricings (take-it-or-leave-it while-supplies-last prices) are
approximately optimal quite broadly.

As discussed previously, for many mechanism design problems
there is not a single optimal mechanism. For a given prior distribution,
the optimal mechanism generally depends on the prior distribution.
Nonetheless, there may still be a single prior-independent mecha-
nism that is approximately optimal. I.e., for any distribution, the
prior-independent mechanism approximates the optimal mechanism
for that distribution. Dhangwatnotai et al. [41] show that a single
sample from the distribution gives a sufficient market analysis for
obtaining a two approximation to the revenue-optimal auction in
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many single-dimensional environments; moreover, a single sample can
be easily attained on-the-fly as the mechanism is being run. Hartline
and Roughgarden [61] provide a post hoc Bayesian justification of the
preceding literature on prior-free revenue approximation (e.g., Gold-
berg et al. [49]) and show that prior-free approximation with respect
to an appropriate prior-free benchmark implies prior-independent
approximation.

Section 5: Multi-dimensional and Non-linear Preferences.
Revenue maximization in multi-dimensional environments is much
more complex than in single-dimensional environments. Nonetheless,
a series of recent papers has given an algorithmic generalization of
the single-dimensional reduction to virtual welfare maximization of
Myerson [74] to multi-dimensional preferences. Cai et al. [22] and
Alaei et al. [4] do so for environments where welfare is optimized by a
greedy algorithm; and Cai et al. [23] extend these results to general
environments with additive preferences. These results tie the theory of
optimal mechanism design to a natural convex optimization problem.
While these approaches result in mechanisms that have polynomial
complexity in the number of agents, they rely on brute-force solutions
to single-agent pricing problems.

An important special case of multi-dimensional mechanism design is
single-agent pricing; the unit-demand pricing problem is a paradigmatic
challenge problem. Consider a single agent who desires one of a set of
items. This agent is multi-dimensional in that she may have a distinct
value for each item. The agent’s multi-dimensional preference is drawn
from a distribution and, given this distribution, we would like to price
items to maximize revenue. Briest et al. [18] show that this problem
can be solved in time polynomial in the number of distinct agent types.
Unfortunately, when the agent’s values for the items are independent,
the type space is exponentially big in the number of items.

Section 6: Approximation for Multi-dimensional and Non-
linear Preferences. The aforementioned unit-demand pricing prob-
lem with independently distributed values can be simplified with
approximation. Chawla et al. [29, 30] show that there is a simple two
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approximation to the optimal item pricing. Moreover, Chawla et al. [32]
show that this two approximation to the optimal item pricing is in
fact also a four approximation to the optimal mechanism which, in
addition to pricing items, may also price lotteries over items. Chawla
et al. [30, 32], Bhattacharya et al. [11], Chakraborty et al. [27], and
Alaei [2] extend these results quite broadly to show that often for unit-
demand auction problems simple to find posted-pricing-based mecha-
nisms are approximately optimal.

As described above, in both single-dimensional and multi-
dimensional revenue maximization, the (non-pointwise) Bayesian
mechanism design problem reduces to a (pointwise) virtual welfare
maximization problem. It should be noted, however, that the single-
dimensional case and multi-dimensional case have rather different
structure. In the single-dimensional case, the transformation from
value space to virtual value space is deterministic and separates across
agents; whereas, in the multi-dimensional case, the transformation
requires solving a convex optimization problem on all the agents
together and it may be stochastic. Alaei et al. [5] show that, in fact,
there is a transformation for the multi-dimensional case, with similar
structure and economic intuition as in the single-dimensional case,
that is approximately optimal.

Section 7: Computation and Approximation Algorithms. It
is standard (from the prior-free mechanism design literature) that
there is a reduction from exact welfare maximization with incentives
to exact welfare maximization without incentives. I.e., if we have an
optimal algorithm for maximizing welfare, we can convert that algo-
rithm into an optimal mechanism that, in the dominant-strategy equi-
librium of strategic play, maximizes welfare. The resulting mechanism
is known as the Vickrey-Clarke-Groves (VCG) mechanism [35, 53, 91].
Lehmann et al. [70] point out, however, this reduction is incompatible
with generic approximation algorithms. I.e., from a generic approxima-
tion algorithm we cannot instantiate the reduction to obtain a generic
approximation mechanism which has an equilibrium with performance
comparable to the original algorithm.
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While mounting evidence suggests that such generic approximation-
compatible reductions (see Chawla et al. [31] and Dobzinski and
Vondrák [42]) do not exist for prior-free mechanisms, they do for
Bayesian mechanisms. For welfare maximization in single-dimensional
environments, Hartline and Lucier [60] give a generic approximation-
preserving reduction from Bayesian mechanism design to Bayesian algo-
rithm design. (Notice that, of course, a worst-case algorithm is also a
Bayesian algorithm.) Via the reduction from revenue to welfare max-
imization of Myerson [74], this reduction can be adapted to the rev-
enue objective. Hartline et al. [59] and Bei and Huang [9] generalize
the above single-dimensional reduction to multi-dimensional environ-
ments. The multi-dimensional approach is brute-force in each agent’s
type space and it is an open question as to whether a similar reduction
exists for large but succinctly represented type spaces.

Appendix A: Mathematical Reference. A number of mathemat-
ical constructs play a prominent role in our treatment of Bayesian
mechanism design. These are submodular set functions which cap-
ture the concept of diminishing returns, matroid set systems which
represent substitutability (e.g., Oxley [76]), and convex optimization
within which most questions in Bayesian mechanism design reside (e.g.,
Schrijver [86]).

1.2 Topics Omitted

Having described above the material covered by this survey, we now
turn to related material that is not covered. We have omitted discussion
of almost all of the literature on prior-free mechanism design. Prior-
free mechanism design and recent results relating to computational
tractability and approximation are a topic warranting a survey of their
own, which to cover adequately, would be even longer than this survey.

Also notably absent from this survey is discussion of non-revelation
mechanisms, i.e., mechanisms that do not have truthtelling or otherwise
easy-to-find equilibria. The big challenge of analyzing non-revelation
mechanisms is that almost any departure from simple symmetric
environments renders solving for equilibrium analytically intractable
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(cf. Section 2.4). To address this challenge, methodologies from the
literature on quantifying the price of anarchy, i.e., the suboptimality
of performance that results from strategic behavior, can be employed.
Instead of explicitly solving for equilibrium, a price-of-anarchy analysis
considers minimal necessary properties of equilibria to argue that any
equilibrium must be pretty good. Of course, this would be a problem-
atic exercise if we believed that, just as we cannot solve for equilibrium,
neither can the agents. Fortunately, because the analysis employs only
minimal assumptions, a frequent corollary of a price-of-anarchy anal-
ysis is that best-response dynamics and no-regret learning algorithms
have good performance even if they never reach an equilibrium.

To illustrate the power of the price-of-anarchy approach, we will
describe a few recent results. Consider the welfare objective in multi-
agent multi-item environment (which we consider in Section 5 and
Section 6 for the revenue objective). Suppose instead of running a
simultaneous auction that coordinates the sale of the items, we run
independent first- or second-price auctions either simultaneously or
sequentially. These auctions are strategically complex, e.g., because
there is an exposure problem where an agent may win multiple items
even if she only wants one. A series of papers, Bikhchandani [13],
Christodoulou et al. [34], Bhawalkar and Roughgarden [12], Hassidim
et al. [63], Paes Leme and Tardos [78], Paes Leme et al. [79], Rough-
garden [83], and Syrgkanis and Tardos [88, 89] showed that in various
configurations the price of anarchy of independent auctions for multiple
items is often a constant like two. Paes Leme et al. [77] give a short
survey of these results.

Price of anarchy approaches have also been applied to an auction
known as the generalized second-price auction which is used by Internet
search engines to sell advertisements that are displayed alongside search
results (see, e.g., Fain and Pedersen [46]). In this auction, bidders are
ranked by bid and each bidder is charged the bid of her successor. This
auction does not have simple equilibria as does the second-price auc-
tion. Gomes and Sweeney [51] show that even in symmetric Bayesian
settings the generalized-second-price auction may not have any effi-
cient equilibria; subsequent work of Caragiannis et al. [25] bounded the
potential inefficiency of its equilibria by a factor of slightly under three.



1.2 Topics Omitted 153

A final class of results looks at non-revelation mechanisms based
on approximation algorithms (because, as mentioned above, there are
no general approaches for converting approximation algorithms into
mechanisms without Bayesian assumptions). Lucier and Borodin [71]
consider multi-dimensional combinatorial auctions based on greedy
approximation algorithms. They show that in equilibrium, a mecha-
nism based on a greedy β approximation algorithm is at worst a (β + 1)
approximation in equilibrium.

The results described above are primarily for the welfare objective,
and methodologies from the price of anarchy have seen relatively less
success for the revenue objective. One exception is by Lucier et al. [72]
who give revenue bounds for the previously discussed generalized-
second-price auction.



2
Equilibrium

The goal of equilibrium analysis is to first understand how players
behave in strategic environments and then to make a prediction of
what will happen in such an environment.

Consider the second-price auction which solicits sealed bids, awards
the item to the highest bidder, and charges the winner the second
highest bid. Suppose Alice has value for winning the item of v, how
should she bid in such an auction? This question is relatively easy to
answer. Suppose the highest other bid is v̂. Notice that if Alice bids
above v̂ she wins and pays v̂ and if she bids below v̂ she loses and
pays nothing. Her utilities for these two outcomes are v − v̂ and 0,
respectively. She prefer winning when v − v̂ is non-negative, and losing
otherwise. Therefore, if v ≥ v̂ she should bid any b ≥ v̂ and if v ≤ v̂
then she should bid any b ≤ v̂. Of course, bidding b = v satisfies both
conditions and furthermore does not depend on v̂. Truthful bidding is
a dominant strategy! If all bidders follow this natural strategy then we
can predict that the winner will be the bidder who had the highest
value for the item.

Now consider the first-price auction which solicits sealed bids,
awards the item to the highest bidder, and charges the winner her

154
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bid. How can we predict the outcome of such an auction? How should
Alice bid in such an auction? If she knows the highest other bid, call it
v̂, then with value v > v̂ she would want to bid v̂ + ε. There is no domi-
nant strategy equilibrium as knowledge of the bids of others affects her
strategy.

In order to analyze the equilibrium of the first-price auction we need
to posit the availability of more information. Suppose the bidders in
the auction are Alice and Bob and that their values for the item are
drawn uniformly at random from the [0,1] interval, i.e., with cumulative
distribution function F (z) = z. Further suppose that Alice believes that
Bob will bid half of his value. Notice that the distribution of Bob’s value
and the assumption on his strategy induces a distribution on his bid,
i.e., that it is uniform on [0,1/2]. This is enough information for Alice
to calculate her optimal bid b for any value v she might have. Her utility
u in the auction is v − b if she wins and zero, otherwise. Therefore,

E[u(v,b)] = (v − b) × Pr[Alice wins with bid b] .

Calculate

Pr[Alice wins with bid b] = Pr[Bob’s bid ≤ b] = Pr
[
1
2Bob’s value ≤ b

]

= Pr[Bob’s value ≤ 2b] = F (2b) = 2b.

So,

E[u(v,b)] = (v − b) × 2b

= 2vb − 2b2.

To optimize Alice’s bid, differentiate the function with respect to b and
set its derivative equal to zero. The result is d

db(2vb − 2b2) = 2v − 4b =
0 and we can conclude that Alice’s optimal bid is b = v/2. Of course,
if our assumption was that Bob was bidding half his value and this
assumption prompts Alice to bid half her value, then by symmetry,
Bob will bid half his value if Alice is so doing. In fact the strategy
profile where Alice and Bob both bid half of their values is an equilib-
rium. From these strategies we can again deduce that in equilibrium
the bidder with the highest value will win.
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If the goal of the auctioneer is to maximize the social surplus, i.e.,
to give the item to the bidder with the highest value for the item, then
both the first-price and second-price auction achieve that goal. What
if the auctioneer’s goal was instead to maximize revenue. To discuss
this question we can calculate the expected profit of both the first- and
second-price auctions in our example scenario where Alice and Bob
(i.e., two bidders) have values uniformly distributed on [0,1]. A useful
fact about uniform distributions is that in expectation a set of uniform
random variables evenly divide the interval they are over. Therefore,
for two uniform random variables on [0,1], the expected minimum is
1/3 and the expected maximum is 2/3. The revenue of the second-
price auction is, by definition, the second highest bid, which in our
truthtelling equilibrium is the second highest value, and is therefore 1/3
in expectation. The revenue of the first-price auction is by definition
the highest bid, which in our bid-half-your-value equilibrium is half the
highest value, which is 1/3 in expectation. Both auctions have the same
revenue in expectation!

The “revenue equivalence” exhibited by the example above is not a
coincidence, in fact it is a general principle. In this section, we will for-
malize the notion of equilibrium in games of incomplete information,
characterize these equilibria and in particular show revenue equiva-
lence, and finally give a simple method for solving for equilibrium in
symmetric auction-like games. Chawla and Hartline [28] give a gen-
eral revenue-equivalence-based method for showing that this symmet-
ric equilibrium is the unique Bayes-Nash equilibrium; however, we will
not cover it here.

2.1 Equilibrium

We will assume that each agent has some private information and this
information affects the payoff of this agent in the game. We will refer
to this information as the agent’s type and denote it by ti for agent i.
The profile of types for the n agents in the game is t = (t1, . . . , tn).

A strategy in a game of incomplete information is a function that
maps an agent’s type to any of the agent’s possible actions in the game
(or a distribution over actions for mixed strategies). We will denote by
si(·) the strategy of agent i and by s = (s1, . . . ,sn) a strategy profile.
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The first- and second-price auctions described above are games of
incomplete information where an agent’s private type is her value for
receiving the item, i.e., ti = vi. We saw that the second-price auction
has a dominant strategy equilibrium of truthtelling.

Definition 2.1. A dominant strategy equilibrium (DSE) is a strategy
profile s such that for all i, ti, and b−i (where b−i generically refers
to the actions of all players but i), agent i’s utility is maximized by
following strategy si(ti).

Naturally, many games of incomplete information do not have
dominant strategy equilibria. Of course, equilibria in these games
are not well defined without an additional assumption. We therefore,
make the assumption that the agents’ types are drawn from a known
distribution.

Definition 2.2. Under the common prior assumption, the agent types
t are drawn at random from a prior distribution F (a joint probability
distribution over type profiles) and this prior distribution is common
knowledge.

The distribution F over tmay generally be correlated. Which means
that an agent with knowledge of her own type must do Bayesian
updating to determine the distribution over the types of the remaining
agents. We denote this conditional distribution as F−i

∣∣
ti
. Of course,

when the distribution of types is independent, i.e., F is the product
distribution F1 × · · · × Fn, then F−i

∣∣
ti
= F−i.

A strategy profile is a mapping for each agent of her private type
to an action in the game. Notice that a prior F and strategies s induce
a distribution over the actions of each of the agents. With such a dis-
tribution over actions, the problem each agent faces of optimizing her
own action is fully specified.

Definition 2.3. A Bayes-Nash equilibrium (BNE) for a game and com-
mon prior F is a strategy profile s such that for all i and ti, si(ti) is a
best response when other agents play s−i(t−i) for t−i ∼ F−i

∣∣
ti
.
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In Bayesian games it is useful to distinguish between stages of the
game in terms of the knowledge sets of the agents. The three stages of
a Bayesian game are ex ante, interim, and ex post. The ex ante stage
is before values are drawn from the distribution. Ex ante, the agents
know this distribution but not their own types. The interim stage is
immediately after the agents learn their types, but before playing in
the game. In the interim, an agent knows her own type and assumes
the other agent types are drawn from the prior distribution conditioned
on her own type, i.e., via Bayesian updating. In the ex post stage, the
game is played and the actions of all agents are known.

Reasoning about equilibria in Bayesian games can be challenging.
For mechanism design, however, the revelation principle often implies
that it is without loss of generality to restrict attention to mechanisms
with truthtelling as an equilibrium. The principle states that if there
is a game with a good equilibrium, then there is a mechanism where
truthtelling is a good equilibrium. The construction is simple: given a
game with a good equilibrium and the profile of equilibrium strategies,
consider the revelation mechanism that (a) assumes its inputs are the
true types of the agents, (b) simulates the strategies of the agents with
these types in the original game, and (c) outputs the outcome of this
simulation. Clearly, the new mechanism has a truthtelling equilibrium
and its outcome in this equilibrium is good.

Definition 2.4. A mechanism is Bayesian (resp. dominant strategy)
incentive compatible if truthtelling is a Bayes-Nash (resp. dominant
strategy) equilibrium.

Proposition 2.1 (Revelation Principle, Myerson [74]). For any
mechanism and Bayes-Nash (resp. dominant strategy) equilibrium of
the mechanism, there exists a Bayesian (resp. dominant strategy) incen-
tive compatible mechanism with the same equilibrium.

The revelation principle fails to hold in some environments of
interest. Two such environments, for instance, are where agents only
learn their values over time, or where the mechanism designer does
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not know the prior distribution (and hence cannot simulate the agent
strategies).

2.2 Independent, Single-dimensional, and Linear Utilities

In the classical economic environments for mechanism design it is
assumed that agents’ types are independent and single dimensional,
and that their utilities are linear. Such a single-dimensional type rep-
resents an agent’s value for an abstract service and her utility is the
difference in her value for service and the price she must pay for service.
The outcome of a mechanism in such an environment can be specified
by allocation and payment vectors x = (x1, . . . ,xn) and p = (p1, . . . ,pn)
where xi is an indicator for whether agent i is served or not and pi is
agent i’s required payment. Denoting agent i’s private value for service
by vi, her utility for such an outcome is thus ui = vixi − pi.

A mechanism and a profile of equilibrium strategies induce ex post
allocation and payment rules that map the type profile v = (v1, . . . ,vn)
to an allocation x(v) and payments p(v). Importantly, agents in a
game act in the interim stage, i.e., when their own type is known, but
the types of the other agents are random from the prior distribution.
Because the agents’ utilities are linear and their types are independent,
we can summarize the relevant interim allocation and payment rules
as xi(z) = Ev−i∼F−i [xi(z,v−i)] and pi(z) = Ev−i∼F−i [pi(z,v−i)]. Here
xi(vi) is the probability that agent i is served when her value is vi;
pi(vi) is her expected payment.

Bayes-Nash equilibrium and dominant strategy equilibrium respec-
tively require; for all i, v, and z; that agent i has higher utility for her
strategy at vi than following her strategy for value z, i.e.,

vi · xi(v) − pi(v) ≥ vi · xi(z,v−i) − pi(z,v−i) (DSE)

vi · xi(vi) − pi(vi) ≥ vi · xi(z) − pi(z). (BNE)

Importantly, (BNE) assumes the types of the agents are independent.
A strategy profile is onto if for each agent i and each possible action bi
of i in the mechanism, there is a value for which si(vi) = bi. Note
that the truthtelling equilibrium of the revelation mechanism where
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the space of actions is equal to the space of types is onto. For strat-
egy profiles that are onto, the converse also holds: (DSE) and (BNE)
imply dominant strategy and Bayes-Nash equilibrium, respectively. The
truthtelling equilibrium of an incentive compatible mechanism is onto;
therefore, for incentive compatible mechanisms equations (DSE) and
(BNE) are “if and only if.”

In the examples above, we have discussed the dominant strategy
equilibrium of the second-price auction and the Bayes-Nash equilibrium
of the first-price auction. Both auctions have ex post allocation rule (in
equilibrium):

xi(v) =

{
1 if ∀j, vi ≥ vj

0 otherwise.

Moreover, for two players with uniformly distributed values the allo-
cation rule of each player is vi(v) = F (v) = v (the probability that v
exceeds the other player’s value). The interim payment rule can be cal-
culated as pi(v) = v2/2. (In the first-price auction an agent with value
v wins with probability v and pays her bid which is v/2; in the second-
price auction an agent with value v wins with probability v and pays
the expected value of the other agent conditioned on being at most v
which is v/2.)

Both the first- and second-price auction with bidder values drawn
uniformly from [0,1] are examples of independent, single-dimensional,
and linear utilities. In these auction problems, the auctioneer also has
a feasibility constraint that at most one agent can win the item, i.e.,∑

ixi ≤ 1. Notice that the auctioneer’s feasibility constraint does not
directly play a role in the incentive constraints of the agents.

2.3 Equilibrium Characterization

The characterization of Bayes-Nash equilibria is given below. Anal-
ogous characterizations hold for dominant strategy equilibria where
xi(z) and pi(z) are replaced by xi(z,v−i) and pi(z,v−i). See Figure 2.1
for a graphical depiction of the theorem.
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Fig. 2.1 A depiction of the statement of Theorem 2.2. In equilibrium, the auction generates
expected surplus vixi(vi) when agent i has value vi. This surplus is split between the agent
(her utility) and the auctioneer (the payment) as the portion of the surplus that is below
and above the allocation rule, respectively.

Theorem 2.2 (Myerson [74]). For agents with independent, single-
dimensional, and linear utility, a profile of allocation and payment rules
is in Bayes-Nash equilibrium only if for all i,

(a) (monotonicity) xi(vi) is monotone non-decreasing, and
(b) (payment identity) pi(vi) = vixi(vi) −

∫ vi
0 xi(z)dz + pi(0),

where often pi(0) = 0. If the strategy profile is onto then the converse
also holds.

Revenue equivalence is an immediate corollary of the payment iden-
tity in the BNE characterization. If two mechanisms have the same
allocation in equilibrium, then their expected revenues must be the
same.
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2.4 Solving for Equilibrium

The payment identity (a.k.a., revenue equivalence) gives a simple
way to calculate the Bayes-Nash equilibrium in symmetric auctions.
The bid-half-your-value equilibrium in the first-price auction with two
players and uniformly distributed values can be derived from this
method.

Suppose we are to solve for the BNE strategies of mechanism M.
The approach is to obtain and equate two expressions for an agent’s
payment as a function of the agent’s action. The first expression comes
from the definition of mechanism and is in terms of the agent’s action;
the second expression comes from strategically-simple mechanism M†

that is revenue equivalent to M (usually a “second-price” implementa-
tion of M). Setting these terms equal and solving for the agent’s action
gives the equilibrium strategy.

Notice that in the first- and second-price auctions an agent only pays
when she wins. Revenue equivalence then tells us that this expected
payment upon winning must be the same in both auctions. We can
solve for and equate these two expected payments leaving an agent’s
strategy in the first-price auction as a variable. From the resulting
equation we can solve for the equilibrium. Finally, it is important to
double check that the resulting strategies are indeed an equilibrium.

Consider two agents with values drawn from U [0,1]. Conditioned on
winning with value v1, agent 1’s expected payment in the second-price
auction is,

Ev2

[
pSP1 (v) | 1 wins

]
= Ev2 [v2 | v2 < v1] = v1/2, (2.1)

because of the dominant strategy truthtelling equilibrium and because
conditioned on agent 1 winning with value v1, agent 2’s value is U [0,v1].
Of course, in a first-price auction agent 1 pays her bid when she wins,

Ev2

[
pFP1 (v) | 1 wins

]
= s1(v1). (2.2)

Equating (2.1) and (2.2) gives,

s1(v1) = v1/2.
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Indeed, this is an equilibrium. First, if agents follow the suggested sym-
metric strategies s1(z) = s2(z) = z/2 then the agent with the highest
value wins. Second, bidding over si(1) is dominated by bidding si(1) as
both bids always win, but the later gives a lower payment. This second
check is important as the suggested strategies do not map the set of
values onto the set of actions (cf. Theorem 2.2).



3
Optimal Mechanisms

Consider the example of selling a single-item to one of two potential
buyers each with value drawn uniformly from [0,1]. We saw in Section 2
that both the first-price auction and the second-price auction maximize
social surplus, i.e., they award the item to the buyer who has the highest
value for it. Similarly, both these auctions have the same expected
revenue of 1/3. Is this revenue optimal, or is there another auction
that obtains a higher revenue?

Consider the second-price auction with reserve price 1/2. This auc-
tion awards the item to the highest bidder as long as her bid is at least
the reserve price. It charges the winner the maximum of the second
highest bid and the reserve price. It is relatively easy to calculate the
revenue of the second-price auction with reserve 1/2 for our two buyers
with values uniform on [0,1]; its revenue is 5/12.1 As 5/12 > 1/3 this
results in the perhaps surprising conclusion that a seller can make more

1The calculation proceeds as follows with v(i) denoting the ith highest value: There are
three cases (i) 1/2 > v(1) > v(2), (ii) v(1) > 1/2 > v(2), and (iii), v(1) > v(2) > 1/2. Case
(i) happens with probability 1/4 and has no revenue; case (ii) happens with probability
1/2 and has revenue 1/2; and case (iii) happens with probability 1/4 and has expected
revenue E

[
v(2) | case (iii) occurs

]
= 2/3. The calculation of the expected revenue in case

(iii) follows from the conditional values being U [1/2,1] and the fact that, in expectation,
uniform random variables evenly divide the interval they are over. The total expected
revenue can then be calculated as 5/12.

164
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money by sometimes not selling the item even when there is a buyer
willing to pay.

In this section we describe a simple method for optimizing over
Bayes-Nash equilibria to derive the Bayesian optimal mechanism. This
optimization will allow us to conclude that indeed the second-price
auction with reserve 1/2 is optimal for U [0,1] agents.

3.1 Single-dimensional Environments

We have focused thus far on describing the preferences of agents with
independent, single-dimensional, and linear utilities. We now consider
the preferences and constraints of the mechanism designer. The out-
come of a mechanism is denoted by an allocation x = (x1, . . . ,xn) and
prices p = (p1, . . . ,pn). Typically, the designer will have a constraint X
specifying which allocations are feasible. For instance, in the single-item
auctions discussed previously, the designer had a constraint

∑
ixi ≤ 1.

The designer’s constraint is downward closed if any subset
of a feasible set is feasible. I.e., if x is feasible then x−i =
(x1, . . . ,xi−1,0,xi+1, . . . ,xn) is feasible. Downward closure is standard
for allocation problems where there are items to be allocated and it is
possible to leave some items unallocated.

Interesting classes of mechanism design problems can be described
within this framework. Suppose there is a set of n agents and a set of
m items. Suppose for each agent i there is a set of items Si that the
agent wants. An agent i with type vi has “or” preferences if vi repre-
sents her value for any one of the items j ∈ Si and she desires at most
one; she has “and” preferences if her value is vi only if she receives the
entire bundle Si of items. The case where all agents have or-preferences
is essentially a bipartite matching problem; we will alternatively refer
to such scenarios as (single-dimensional) matching environments. The
case where all agents have and-preferences is essentially the set pack-
ing problem; the corresponding auction problem is the single-minded
combinatorial auction; and we will refer to these environments as such.

Other environments we will discuss are

single-item environments: The feasibility constraint permits at
most one agent to be served.
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multi-unit environments: The feasibility constraint permits at
most a specific number (usually denoted k) of agents to be
served.

matroid environments: The feasible sets of agents correspond to the
independent sets of amatroid set system. Importantly, matroids
correspond exactly to the set systems for which the greedy-
by-weight algorithm solves weighted optimization subject to
feasibility, i.e., maxx∈X

∑
i vixi for weights v = (v1, . . . ,vn).

Single-dimensional matching environments will be our motivat-
ing example of matroid environments; matroid environments
also include multi-unit and single-item environments as special
cases. See Section A.2 for further discussion.

downward-closed environments: The feasible sets of agents are
constrained only so that subsets of feasible sets are feasible.
Single-minded combinatorial environments will be our moti-
vating example of a downward-closed environment. Downward
closed environments include everything discussed above; an
example of a non-downward-closed environment is that of a
public project which is given by the all-or-nothing set system.

There are two classical economic objectives for mechanism design,
social surplus and revenue. The social surplus of an outcome is the
cumulative utility of all participants. For value v and outcome (x,p) the
social surplus is

∑
i vixi; importantly, the payments arise positively in

the auctioneer’s utility and negatively in the agent’s utility and cancel
from the objective. The revenue of an outcome (x,p) is

∑
i pi. The

theory of optimal mechanisms is quite different for these two objectives.
Notice that surplus maximization gives a monotone allocation rule,

i.e., if an agent’s value is increased, her allocation is not decreased.
Therefore, the dominant-strategy version of Theorem 2.2 implies that
there is an auction with this outcome as a dominant strategy equi-
librium. Furthermore, the payments of this auction are given by the
payment identity. Denoting OPT(v) = maxx∈X

∑
i vixi, the payment

of an agent i is:

pi =

{
OPT(v−i) − OPT(v) + vi if xi = 1,

0 otherwise.
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Notice that when xi = 1, OPT(v) − vi can be easily calculated with-
out knowing vi as its value is just the optimal surplus from agents
other than i subject to the constraint that i is served. This surplus
maximizing mechanism is often referred to as the Vickrey-Clarke-
Groves (VCG) mechanism [91, 35, 53]; it is the natural generaliza-
tion of the second-price auction, previously discussed, to more complex
environments.

Proposition 3.1 (Vickrey [91], Clarke [35], Groves [53]). The
surplus maximizing mechanism is dominant-strategy incentive compat-
ible and it optimizes social surplus pointwise.

The revenue objective, on the other hand, is more challenging to
optimize. Notice that the surplus of a mechanism is given by the allo-
cation on the given valuation profile. The revenue, on the other hand,
is given by the sum of the agent payments which, via the payment
identity of Theorem 2.2, depend on the allocation rule of each agent
(in particular, on xi(z) for z ≤ vi for agent i). This allocation rule is
derived from the specification of what the mechanism does on all val-
uation profiles. Changes to the allocation rule, therefore, can tradeoff
revenue on one valuation profile for revenue on another. This tradeoff
can be optimized in expectation for a valuation profile v drawn from
distribution F . Importantly, though, there is no mechanism that is
revenue-optimal pointwise.

To illustrate this absence of a pointwise optimal mechanism, con-
sider a single agent with value v drawn uniformly from [0,1]. If her
value is 0.2, then it is pointwise optimal to offer her the item at price
0.2. This corresponds to the allocation rule which steps from 0 to 1 at
0.2. Similarly if her value is 0.7, then it is pointwise optimal to offer
her the item at price 0.7. Of course, offering a 0.7-valued agent a price
of 0.2 or a 0.2-valued agent a price of 0.7 is not optimal. In contrast,
given a distribution over the agent’s value, we can easily optimize for
the mechanism with maximum expected revenue: post the price p that
maximizes p · (1 − F (p)). For the uniform distribution where F (p) = p,
this optimal price is p = 1/2.
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We conclude that social surplus is special among objectives in that
there is a pointwise optimal mechanism; in general, a mechanism’s per-
formance should be optimized in expectation over a distribution.

3.2 Single-agent Revenue Maximization

Before looking at the problem of optimizing revenue in an multi-agent
mechanism, we will look at a few fundamental single-agent optimiza-
tion problems. A mechanism for a single agent is simply a menu of
outcomes where, after the agent realizes her type from the distribu-
tion, she chooses the outcome she most prefers. This observation is
known as the taxation principle (see Wilson [93]). The outcomes on the
menu are allowed to be probabilistic, e.g., “with probability 0.5 you
are served and you pay 0.25.” A single-agent problem is then to find
the menu of outcomes that maximizes revenue subject to any imposed
constraints.

We will first look at single-agent problems where the constraint is
on the ex ante service probability, i.e., the probability that an agent is
served given the randomization in her type and her chosen outcome.
From these we can define a “revenue curve” as the optimal revenue as a
function of the ex ante service probability. We will then look at a more
general class of constraints, describe a “revenue-linearity” condition,
and show that revenue linearity implies that optimal single-agent mech-
anisms for these general constraints can be decomposed into optimal
single-agent mechanisms for the simpler ex ante constraints. We will
see that this decomposition implies that the optimal revenue for gen-
eral constraints is equal to the cumulative “marginal revenue” (given
by the derivative of the revenue curve). Finally, we show that a single-
dimensional agent is in fact revenue linear.

The revenue-linearity based approach described here, which is due
to Alaei et al. [5], is more involved than the original derivation of the
optimal auction by Myerson [74]. In contrast, Myerson starts with the
payment identity of Theorem 2.2, takes expectation with respect to
the distribution, and simplifies to derive “virtual values” which Bulow
and Roberts [20] observe are equivalent to the aforementioned marginal
revenue (see the survey of Hartline and Karlin [58]). The advantage of
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the revenue-linearity based approach, in addition to exposing important
structure of optimal mechanisms, is that it is not reliant on the specific
form of the payment identity and is therefore generalizable beyond
single-dimensional agents (see Section 5).

3.2.1 Inverse Demand Curve

Consider an agent Alice with a single-dimensional linear preference as
described in Section 2.2. Alice’s preference is described by her value v
which is drawn from distribution F . The economic geometry of opti-
mal mechanisms is more apparent when the preferences are indexed by
strength relative to the distribution (a.k.a., quantile) instead of value
(see Figure 3.1). The definition below formalizes the correspondence
between the value and distribution representation and the quantile and
inverse demand curve representation for any single-dimensional agent.

Definition 3.1. The quantile of a single-dimensional agent with value
v ∼ F is the measure with respect to F of stronger values, i.e., q =
1 − F (v); the inverse demand curve maps an agent’s quantile to her
value, i.e., V (q) = F−1(1 − q).

Fig. 3.1 Depicted are the cumulative distribution function and inverse demand curve cor-
responding to a single-dimensional linear agent with value v drawn from distribution with
density function f(v) = 1/4 for v ∈ [0,3] and f(v) = 1/20 for v ∈ (3,8], i.e., the distribution
that is uniform on [0,3] with probability 3/4 and uniform on (3,8] with probability 1/4. The
inverse demand curve is obtained from the cumulative distribution function by rotating it
90 degrees counterclockwise.
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3.2.2 Revenue Curves

Given Alice’s inverse demand curve V (·) and a target ex ante proba-
bility of service q̂ we can ask what is the revenue optimal mechanism
(i.e., menu) that serves her with the given probability. As we vary q̂ we
get revenue as a function of probability of sale.

Definition 3.2. The revenue curve R(q̂) is the optimal revenue from
an agent (with implicit distribution F ) as a function of her ex ante
probability of service q̂. The mechanism for ex ante sale probability q̂
that has revenue R(q̂) is the q̂ ex ante optimal mechanism.

One way to sell to Alice with ex ante probability q̂ is to post a price
that she accepts with probability q̂, i.e., the price V (q̂). The revenue
from this price-posting approach is P (q̂) = q̂ · V (q̂). This approach gives
a lower bound on the revenue curve, i.e., R(q̂) ≥ P (q̂). In fact, it is
easy to see what price posting is missing in terms of revenue. If P (q̂) is
not concave then we can get a higher revenue than P (q̂) by taking the
convex combination of two mechanisms so that the final sale probability
is q̂. In fact, R(q̂) is exactly given by the smallest concave function that
upper bounds P (q̂). See Figure 3.2(a).

Proposition 3.2. R(q̂) is the smallest concave function that upper
bounds P (q̂).

3.2.3 Allocation Rules and Revenue

In Section 2.2 we defined the allocation rule for an agent as a func-
tion of her value as x(·). In Section 2.3 we characterized the allocation
rules that can arise in Bayes-Nash equilibrium as the class of monotone
non-decreasing functions (of value). Consider the allocation rule instead
in quantile space, i.e., y(q) = x(V (q)). Since quantile and value are
indexed in the opposite direction, y(·) will be monotone non-increasing
in quantile.



3.2 Single-agent Revenue Maximization 171

Fig. 3.2 Depicted are the revenue curve, price-posting revenue curve, and their allocation
rules corresponding to ex ante allocation constraint q̂ for a single-dimensional linear agent
with value v drawn from distribution with density function f(v) = 1/4 for v ∈ [0,3] and
f(v) = 1/20 for v ∈ (3,8], i.e., the distribution that is uniform on [0,3] with probability 3/4
and uniform on (3,8] with probability 1/4. For such a distribution the revenue curve R(·)
(thin, black, solid line) is obtained from the price-posting revenue curve P (·) (thick, grey,
striped line) by averaging on interval [a,b]. The allocation rule for posting price V (q̂) is the
reverse step function at q̂ (thick, grey, striped line). For q̂ ∈ [a,b] as depicted, the allocation
rule (thin, black, solid line) for the q̂ ex ante optimal mechanism is the appropriate convex
combinations of the reverse step functions at a and b. The area under both allocation rules
is equal to the ex ante service probability q̂.

Notice that the allocation rule of the mechanism that posts price
V (q̂) is simply the reverse step function that starts at 1 and steps from 1
to 0 at q̂. The allocation rule of the q̂ ex ante optimal mechanism, when
it is given by a convex combination of two price postings, is given by the
same convex combination of two reverse step functions. Figure 3.2(b)
depicts these allocation rules.

Notice that the allocation rule from posting price V (q̂) is “strong”
in the sense that it allocates with certainty to the highest q̂ measure
of Alice’s values. The ex ante optimal mechanism, optimizing subject
to the same constraint, can choose to use a “weaker” allocation rule.
In Figure 3.2(b) the highest a < q̂ measure of values is served with
certainty, while the remaining q̂ − a service probability is spread out
among the next b − q̂ measure of values. The following proposition is
immediate and, though it gives a coarser picture than Proposition 3.2,
it will be sufficient for deriving the main results of this section.
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Proposition 3.3. For any ex ante service probability, the optimal
mechanism has a weaker allocation rule and higher revenue than price
posting.

An allocation rule y is a monotone non-increasing function from
[0,1] to [0,1]. As reverse step functions form a basis for such functions
and reverse step functions are the allocation rule for price postings,
we can construct a single-agent mechanism with allocation rule y by
taking the appropriate convex combination of price postings. Consider
the distribution Gy(z) = 1 − y(z), draw q̂ ∼ Gy, and post price V (q̂).
The resulting mechanism has allocation rule exactly y(·) and its
expected revenue is equal to the convex combination of revenues
P (q̂) from posting price V (q̂). This revenue is as follows, via Gy’s
density function −y′(q) = − d

dqy(q) at q, integration by parts, and the
assumption that P (0) = P (1) = 0 (there is no revenue from always
selling or never selling).

Eq̂∼Gy [P (q̂)] = Eq
[
−y′(q) · P (q)

]

= Eq
[
P ′(q) · y(q)

]
,

where P ′(q) = d
dqP (q) is the marginal increase in price-posting revenue

for an increase in ex ante allocation probability, a.k.a., the marginal
price-posting revenue at q. By revenue equivalence (Theorem 2.2), any
mechanism with the same allocation rule has the same revenue.

Proposition 3.4. A single-agent mechanism with allocation rule y
has expected revenue equal to the cumulative marginal price-posting
revenue Eq[P ′(q) · y(q)].

3.2.4 Optimal and Cumulative Marginal Revenue

We now show that optimal single-agent mechanisms can be decom-
posed into convex combinations of ex ante optimal mechanisms (with
various service probabilities). To do so, we consider a more general
single-agent mechanism design problem. The ex ante probability that
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allocation rule y(·) allocates to the strongest q̂ measure of quantiles is
Y (q̂) =

∫ q̂
0 y(q)dq; we refer to Y (·) as cumulative allocation rule for y(·).

The monotonicity of allocation rules implies that cumulative allocation
rules are concave. As follows, we can view an allocation rule ŷ(·) as a
constraint via its cumulative allocation rule. If y(·) satisfies constraint
ŷ(·), relatively, it has service probability shifted from stronger quantiles
to weaker quantiles.

Definition 3.3. Given an allocation constraint ŷ with cumulative con-
straint Ŷ , the allocation rule y with cumulative allocation rule Y is
weaker (resp. ŷ is stronger) if and only if it satisfies Y (q̂) ≤ Ŷ (q̂) for
all q̂; denote this relationship by y ( ŷ.

In comparison to the q̂ ex ante optimal mechanism which is con-
strained so as to serve all quantiles with total probability at most q̂, the
allocation constraint ŷ gives a more fine-grained control by constrain-
ing the ex ante service probability of any q̂ measure of quantiles by
Ŷ (q̂). Clearly, ŷ is the strongest allocation rule for constraint ŷ. From
this notion of strength we can take an allocation rule as a constraint
and consider the optimization question of finding a weaker allocation
rule with the highest possible revenue.

Definition 3.4. The optimal revenue subject to allocation constraint
ŷ(·) is Rev[ŷ], the mechanism that attains it is the ŷ optimal
mechanism.2

One approach to find a mechanism that satisfies a given alloca-
tion constraint ŷ would be to take the convex combination of ex ante
optimal mechanisms for q̂ drawn from Gŷ (cf. the construction of
Proposition 3.4). Using the ex ante optimal mechanisms improves on
price postings in that for each q̂ the optimal mechanism’s revenue R(q̂)
may exceed the price-posting revenue P (q̂). Moreover, it produces an

2Subsequently, when ŷ comes from the interim mechanism for a given agent (i.e., the mech-
anism that internalizes the other agents’ types as random draws from the distribution) we
refer to this mechanism as the ŷ interim optimal mechanism.
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allocation rule that is weaker than ŷ (e.g., see Figure 3.3(d)) as each
ex ante optimal mechanism may have a weaker allocation rule than the
reverse step function at q̂ (e.g., see Figure 3.2(b)). The optimal rev-
enue for allocation constraint ŷ can be no less than the revenue of this
convex combination. Therefore, as above, we have:

Rev[ŷ] ≥ Eq̂∼Gŷ [R(q̂)]

= Eq
[
−ŷ′(q) · R(q)

]

= Eq
[
R′(q) · ŷ(q)

]
,

where R′(q) = d
dqR(q) is the marginal revenue at q.

Definition 3.5. The cumulative marginal revenue of an allocation con-
straint ŷ is MargRev[ŷ] = Eq[R′(q) · ŷ(q)].

3.2.5 Revenue Linearity

The above derivation says the cumulative marginal revenue of an allo-
cation constraint is a lower bound on its optimal revenue. A central
dichotomy in optimal mechanism design is given by the partitioning
of single-agent problems (given by the agent’s type space, distribu-
tion, and utility function) into those for which this inequality is tight
and those when it is not. Notice that linearity of the revenue operator
Rev[·] implies, by the above derivation, that the optimal revenue and
cumulative marginal revenue are equal.

Definition 3.6. A single-agent problem is revenue linear if Rev[·] is
linear, i.e., if when ŷ = ŷ† + ŷ‡ then Rev[ŷ] =Rev[ŷ†] + Rev[ŷ‡].

Proposition 3.5. For a revenue-linear single-agent problem and any
allocation constraint, the optimal revenue is equal to the cumulative
marginal revenue, i.e., for all ŷ, Rev[ŷ] = MargRev[ŷ].

Revenue linearity of single-dimensional linear agents stems from
two main ingredients: Proposition 3.3 (price posting gives less revenue
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with a stronger allocation rule than the ex ante optimal mechanism)
and Proposition 3.4 (essentially, revenue equivalence). Optimal revenue
equaling cumulative marginal revenue for single-dimensional agents is
an immediate corollary.

Theorem 3.6 (Alaei et al. [5]). An agent with single-dimensional
linear utility is revenue linear.

Proof. Before we begin, notice that for a revenue curve R(·) and allo-
cation rule y(·) the cumulative marginal revenue MargRev[y] can be
equivalently expressed as

Eq
[
−R(q)y′(q)

]
= Eq

[
R′(q)y(q)

]
= Eq

[
−R′′(q)Y (q)

]
+ R′(1)Y (1)

via integration by parts (with R(1) = R(0) = Y (0) = 0). Two
observations:

(a) The first term shows that a pointwise higher revenue curve
gives no lower a revenue (as −y′(·) is non-negative). In par-
ticular, the cumulative marginal revenue exceeds the cumu-
lative price-posting revenue as R(q) ≥ P (q) for all q (by
Proposition 3.3).

(b) The last term shows that for concave revenue curves, i.e.,
where −R′′(·) is non-negative, e.g., R(·) not P (·); a stronger
allocation rule gives higher revenue. In particular, the allo-
cation rule y obtained by optimizing for ŷ has no higher
cumulative marginal revenue than does ŷ.

We have already concluded that the cumulative marginal revenue
lower bounds the optimal revenue; to prove the theorem it then suffices
to upper bound the optimal revenue by the cumulative marginal rev-
enue. Suppose we optimize for ŷ and get some weaker allocation rule y,
then y is a fixed point of Rev[·] (optimizing for allocation constraint y
gives back allocation rule y); therefore,

Rev[ŷ] =Rev[y].
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By revenue equivalence (Proposition 3.4), the revenue of any allocation
rule is equal to its cumulative marginal price-posting revenue, so

Rev[y] = Eq
[
P ′(q) · y(q)

]
.

By observation (a), for y the cumulative marginal revenue is at least
the cumulative marginal price-posting revenue,

Eq
[
−y′(q) · P (q)

]
≤ E

[
−y′(q) · R(q)

]
.

By observation (b), the cumulative marginal revenue for ŷ is at least
that of y,

E
[
−R′′(q) · Y (q)

]
≤ E[−R′′(q) · Ŷ (q)] .

This sequence of inequalities implies that the cumulative marginal rev-
enue is at least the optimal revenue for ŷ,

Rev[ŷ] ≤MargRev[ŷ].

Corollary 3.7 (Myerson [74], Bulow and Roberts [20]). For an
agent with single-dimensional, linear utility, the optimal revenue equals
the marginal revenue, i.e.,

Rev[ŷ] = MargRev[ŷ] = E
[
R′(q)ŷ(q)

]
.

3.3 Multi-agent Revenue Maximization

We now return to the question of optimal auction design for a set of n
agents with values drawn from a product distribution. To solve multi-
agent revenue maximization we take a standard economic approach.
First, relax the incentive constraints (in particular, the monotonicity
requirement of Theorem 2.2). Second, optimize revenue. Third, check
to see if the incentive constraints have been violated. If the constraints
have not been violated, then the solution found is optimal.

Corollary 3.7 says that the expected revenue of each agent is equal
to that agent’s cumulative marginal revenue. Given the distribution
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we can easily map the valuation profile to a quantile profile to a
marginal revenue profile. To optimize marginal revenue pointwise on
this valuation profile we should serve the agents to maximize the sum
of the marginal revenues of served agents subject to feasibility, i.e.,
with allocation y ∈ X to maximize

∑
iR

′(qi) · yi. E.g., for single-item
auctions we would serve the agent with the highest positive marginal
revenue. Since this maximizes marginal revenue pointwise, it certainly
maximizes cumulative marginal revenue (i.e., in expectation).

Reconsidering the incentive constraints, observe as follows that the
allocation rule of marginal revenue maximization is monotone. The
concavity of revenue curves (Proposition 3.2) implies that the marginal
revenues are monotonically non-increasing (in quantile). If an agent
increases her value, her marginal revenue does not decrease, therefore
the implied allocation rule is monotone. The price each agent is charged
is given by (the dominant strategy version of) Theorem 2.2; it is the
minimum bid the agent can submit and still win. We refer to this
mechanism as the marginal revenue mechanism.

Theorem 3.8 (Myerson [74], Bulow and Roberts[20]). For
single-dimensional environments, the marginal revenue mechanism
is dominant strategy incentive compatible and revenue-optimal in
expectation.

Proof. The optimal mechanism induces some profile of interim alloca-
tion rules (y1, . . . ,yn), the optimal revenue for these allocation rules is
given by their cumulative marginal revenues (by Corollary 3.7), the
marginal revenue mechanism induces a profile of interim allocation
rules with no lower total cumulative marginal revenue. Therefore, the
marginal revenue mechanism is optimal.

It is interesting to consider the commonality between Theorem 3.8
and Proposition 3.1 (the analogous result for surplus maximization).
While the surplus maximization mechanism finds the allocation y to
maximize

∑
iVi(qi) · yi, the revenue maximizing mechanism finds the

allocation y to maximize
∑

iR
′
i(qi) · yi. It is useful to view the marginal

revenue for a given quantile of an agent as a virtual value for which the
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marginal revenue mechanism can then be viewed as optimizing virtual
surplus (see Definition 3.8, below). Similarly, we will see in Section 5
that cumulative marginal revenue maximization is not optimal when
the single-agent problems are not revenue linear; however, there will
still be a virtual-value-based approach for which maximizing virtual
surplus is optimal (e.g. Theorem 5.9). Existence of a virtual value func-
tion for which virtual surplus maximization is optimal in expectation
reduces the revenue maximization problem to a simpler surplus maxi-
mization problem.

The characterization of the optimal mechanism in Theorem 3.8 is
perhaps a bit mysterious; the next section will serve to demystify it.

3.4 Regular Distributions and Ironing

In the derivation of the optimality of the marginal revenue mechanism
above it should be clear that (a) the price-posting revenue curve played
an important role and (b) that when the price-posting and optimal
revenues are equal then the marginal revenue mechanism and its proof
of optimality are less complex. Indeed, in such a case the allocation
rule y that is optimal for constraint ŷ is essentially y = ŷ. In this section
we delve into the details of this distinction.

Definition 3.7. A distribution F is regular if its revenue curve and
price-posting revenue curve are equal (equivalently, if the price-posting
revenue curve is concave).

Below we will reinterpret the characterization of the optimal auction
in terms of standard auctions which are typically described in value
space. The following definition translates our derivation of the marginal
revenue in quantile space back to value space.

Definition 3.8. The virtual value of an agent with v ∼ F is φ(v) =
R′(1 − F (v)); virtual values have a closed-form formula as φ(v) = v −
1−F (v)
f(v) when the distribution F is regular. The virtual surplus of an

allocation is the sum of the virtual values of the agents served.3

3 In much of the literature, the term “virtual value” is used specifically for the marginal
price-posting revenue, the term “ironed virtual value” is used for the marginal revenue,
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3.4.1 Regular Distributions

For regular distributions the revenue, marginal revenue, and virtual
value functions have simple forms. Consider as an example an agent
with value drawn uniformly from [0,1] (distribution function F (v) = v;
inverse demand curve V (q) = 1 − q). The price-posting revenue is
calculated as follows. A price of V (q̂) = 1 − q̂ is accepted with proba-
bility q̂. Therefore, P (q̂) = q̂ · (1 − q̂) as with probability q̂ the agent
pays 1 − q̂. This function is concave, the uniform distribution is reg-
ular, and R(·) = P (·). The marginal revenue R′(q) = 1 − 2q is strictly
decreasing and has a unique inverse. The distribution function enables
transformation back and forth from value to quantile space; the vir-
tual value function from this transformation is φ(v) = R′(1 − F (v)) =
2v − 1.

Consider the unconstrained single-agent problem. What is the opti-
mal single-agent auction? The revenue curve R(q̂) specifies the optimal
revenue from selling with any ex ante probability q̂. If we have a single
agent and are allowed to not sell the item if we do not want to, then
we should pick q̂ to maximize R(q̂) and run the q̂-optimal mechanism.
Since R(·) is concave it has a global maximum at some q̂! where its
derivative satisfies R′(q̂!) = 0. For our U [0,1] example, q̂! = 1/2 and
the q̂!-optimal mechanism posts price v̂! = V (q̂!) = 1/2. We refer to v̂!

as the monopoly price as it is the price at which a monopolist would
sell to a single agent.

What is the optimal auction for two players with values drawn uni-
formly from [0,1]? By Theorem 3.8, the agent with the highest positive
marginal revenue should win. If the quantiles of the agents are q =
(q1,q2) then agent 1 wins whenever R′

1(q1) > max(R′
2(q2),0). Because

the marginal revenue curve is the same for both agents and strictly
decreasing, we can deduce that agent 1 wins whenever q1 <min(q2, q̂!),
or, back in value space, whenever v1 >max(v2, v̂!). This auction is the
second-price auction with reserve v̂!.

and the terms coincide for regular distributions. To preserve the semantic definition of
virtual value as the quantity to be optimized, we will only ever refer to unironed virtual
values as marginal price-posting revenues.
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Corollary 3.9 (Myerson [74]). For agents with values drawn
i.i.d. from a regular distribution, the optimal single-item auction is
the second-price auction with the monopoly reserve price.

Recall our calculation at the section’s onset of the expected rev-
enue of the second-price auction with reserve 1/2 from two agents with
uniformly distributed values. It is now apparent that v̂! = 1/2 is the
optimal reserve price and that the auction’s revenue of 5/12 is indeed
optimal among all mechanisms. It is also readily apparent that the
choice of reserve price does not depend on the number of agents.

In fact, Corollary 3.9 generalizes beyond single-item environments.
Whenever surplus maximization subject to feasibility is optimized by
the greedy-by-value algorithm, the optimal auction maximizes surplus
subject to the monopoly reserve price. The greedy-by-value algorithm
is optimal if and only if the feasibility constraint is given by a matroid
set system (Section A.2, Theorem A.2). Therefore, e.g., the optimal
auction for i.i.d., regular, single-dimensional matching environments
(a.k.a., or-preferences) is surplus maximization with the monopoly
reserve price.

It is worthwhile to reemphasize where regularity is used in the proof
of Corollary 3.9. For an irregular distribution two distinct values that
exceed the monopoly price may correspond to the same marginal rev-
enue and therefore, maximizing cumulative marginal revenue does not
always allocate to the highest-valued agent whose value exceeds the
monopoly price. Importantly, as we will discuss in the next section, a
tie in marginal revenue must be broken consistently, e.g., randomly or
lexicographically, but not as a function of an agent’s value.

3.4.2 Irregular Distributions

Now consider the case where the value distribution is irregular, i.e., the
revenue curve is strictly larger than the price-posting revenue curve
for some interval of quantiles I = (a,b). Since the revenue curve is the
smallest concave function that upper bounds the price-posting rev-
enue curve, the marginal revenue on this interval must be constant,
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i.e., R′′(q) = 0 for q ∈ I. We refer to I as an ironed interval as the
non-concavity of P (·) is “ironed” on this interval to obtain the con-
cave revenue curve R(·) (equivalently, the non-monotonicity of P ′(·) is
ironed to obtain the monotone marginal revenue R′(·)).

Since the marginal revenue for q in an ironed interval I is con-
stant, the marginal revenue mechanism (which maximizes cumulative
marginal revenue) should treat all quantiles in this interval the same.
Since the measure, i.e., probability q ∈ I, of this set is b − a > 0 there
is a measurable probability of ties in the marginal revenue mechanism.
Ties can be broken randomly or arbitrarily; it is instructive to view
random tie breaking as the uniform distribution over all lexicographi-
cal tie-breaking rules.

Fix a lexicographical tie-breaking rule. For each agent i, if we fix
the quantiles q−i of the other agents, i faces a critical quantile q̂i
at which she goes from winning to losing. Furthermore with lexico-
graphical tie-breaking, this quantile q̂i cannot be within any ironed
interval I. Agent i, thus, faces the q̂i-optimal mechanism at a q̂i that
satisfies R(q̂i) = P (q̂i) so it is simply the posted pricing of V (q̂i). Impor-
tantly, the q̂-optimal mechanisms for q̂ strictly contained within some
ironed interval I are never required for the construction of an optimal
mechanism.

For an alternative viewpoint, reconsider the single-agent problem
of optimizing revenue subject to an allocation constraint ŷ (i.e., solv-
ing Rev[·]). Recall that ŷ is a constraint, but the allocation rule y of
the optimal mechanism subject to ŷ may be generally weaker than ŷ,
i.e., y ( ŷ. Just as we can view the ironing of the price-posting revenue
curve on interval I as averaging marginal price-posting revenue on this
interval, we can so view the optimization of y subject to ŷ. To opti-
mize a weakly monotone function R′(·) subject to ŷ we should greedily
assign low quantiles to high probabilities of service except on ironed
intervals where quantiles are assigned to the average probability of ser-
vice for the ironed interval. Therefore, the desired allocation rule y can
be obtained via the resampling transformation σ that, for quantile q
in some ironed interval I, resamples the quantile from this interval,
i.e., as y(q) = Eσ[ŷ(σ(q))]. The cumulative allocation rule Y is exactly
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Fig. 3.3 The optimal single-item auction is depicted for three agents with values drawn from
irregular distribution defined by density function f(v) = 1/4 for v ∈ [0,3] and f(v) = 1/20
for v ∈ (3,8], i.e., the distribution that is uniform on [0,3] with probability 3/4 and uniform
on (3,8] with probability 1/4. The price-posting revenue curve P (·) is depicted by a thick,
grey, dashed line in Figure 3.3(a). The revenue curve (thin, black, solid line) is its concave
hull. The ironed interval (a,b) where R(q) > P (q) is depicted. The allocation constraint
ŷ(q) = (1 − q)2 (Figure 3.3(d), thick, grey, dashed line) corresponds to lowest-quantile-wins
for three agents; the allocation rule y(q) (thin, black, solid line) results from optimizing
Rev[ŷ]. Simply, ironing corresponds to a line-segment for revenue curves and cumulative
allocation rules and to averaging for marginal revenues and allocation rules.

equal to the cumulative allocation constraint Ŷ except every ironed
interval is replaced with a line segment. In other words, the revenue
optimization of Rev[·] can be effectively solved by superimposing the
revenue curve and the allocation constraint on the same quantile axis
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and then ironing the allocation constraint where the revenue curve is
ironed. If the environment is downward-closed, meaning we are free to
exclude the agent when her marginal revenue is negative, we further
drop y to zero after the quantile q̂! of the monopoly price; equivalently
Y is flat after q̂!. Figure 3.3 illustrates this construction.



4
Approximation Mechanisms

In this section we will answer a number of questions about approxi-
mation of the optimal mechanism for single-dimensional environments
by mechanisms that are simpler and more practical. We consider
three main obstacles. First, optimal mechanisms for asymmetric
environments, e.g., when agents’ values are not identically distributed,
are not reserve-price based. Instead they involve careful optimization
with respect to the agents’ distinct marginal revenue curves. We give
several bounds that show that surplus maximization subject to reserve
prices yields a good approximation to the optimal auction. Second, we
consider the issue that auctions can be a slow and inconvenient way
to allocate resources. In many contexts posted pricing is preferred to
auctions. The results we present give economic justification to such
a preference as posted pricing mechanisms are often approximately
optimal. As posted pricing mechanisms are fundamentally collusion
resistant, these results imply that good collusion resistant mecha-
nisms exist. Third, we consider the impracticality of the necessity of
knowledge of the distribution of agent preferences (a.k.a., the prior dis-
tribution) in prescription of the Bayesian optimal auction. To address
this impracticality, we discuss the design of several prior-independent

184
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mechanisms that are good approximations to the optimal mechanism
for any prior distribution.

4.1 Reserve Pricing

One of the most intriguing conclusions from the preceding section is
that for i.i.d., regular, single-item environments the second-price auc-
tion with a reservation price is revenue optimal (Corollary 3.9). This
result is compelling as the solution it proposes is quite simple; therefore,
making it easy to prescribe. Furthermore, reserve-price-based auctions
are often employed in practice so this theory of optimal auctions is also
descriptive. Unfortunately, i.i.d., regular, single-item environments are
hardly representative of the scenarios in which we would like to design
good mechanisms. Furthermore, if any of the assumptions are relaxed,
reserve-price-based mechanisms are not optimal.

As an example consider a 2-agent single-item environment with
agent 1’s value from U [0,1] and agent 2’s value from U [0,2]. For
regular distributions (Definition 3.7) it is often most convenient to
work with marginal revenues in value space, i.e., with virtual val-
ues (Definition 3.8). For our two agents, the virtual value functions
are φ1(v1) = 2v1 − 1 and φ2(v2) = 2v2 − 2. We serve agent 1 whenever
φ1(v1) > max(φ2(v2),0), i.e., when v1 >max(v2 − 1/2,1/2). This auc-
tion is not the second-price auction with reserves; in particular, agent
2 has an additive handicap of 1/2.

What we see from the above example is that with non-identical
distributions the optimal single-item auction indeed needs the exact
marginal revenue functions to determine the optimal allocation. This
contrasts to the i.i.d., regular case where all we needed was a single
number, the monopoly price for the distribution, and reserve pricing
with this number is optimal.

The following theorems approximately generalize Corollary 3.9 to
the case of asymmetric agents. With asymmetric agents, i.e., with val-
ues vi ∼ Fi, the monopoly reserve prices v̂!

i may be distinct. The second-
price auction with distinct reserves first removes any agent whose value
does not meet her reserve, then it offers the item to the highest-valued
surviving agent (if any) at a price that is the maximum of her reserve
price and the second highest value of a surviving agent.
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Theorem 4.1 (Chawla et al. [29]). For single-item environments
and agents with values drawn independently from regular distributions,
the second-price auction with (asymmetric) monopoly reserve prices
obtains at least half the revenue of the optimal auction.

The main idea behind the proof of this theorem is that the rev-
enue of the optimal auction can be attributed to two cases (a) that
where the two auctions serve the same agent and (b) that where
the two auctions serve distinct agents. It is easy to observe that the
total revenue from the monopoly-reserves auction upper bounds the
optimal revenue of each case. This is because the monopoly-reserves
auction’s virtual value upper bounds the optimal auction’s virtual
value in case (a); and because the monopoly reserve auction’s pay-
ment upper bounds the optimal auction’s payment in case (b). The
first is because in case (a) the virtual values are equal; the second
is because the monopoly-reserves auction serves the highest valued
agent at a price of at least the second highest surviving agent value
which is an upper bound on what the optimal auction could charge
the winner in case (b). Like Corollary 3.9, this result generalizes to
single-dimensional environments with a matroid constraint such as
single-dimensional matching environments (a.k.a., or-preferences), see
Hartline and Roughgarden [62].

While the monopoly-reserves auction (parameterized by n numbers)
is significantly less complex than the optimal auction (parameterized
by n functions), it is not often used in practice. In practice, even in
asymmetric environments, auctions are often parameterized by a single
anonymous reserve price. The following theorem shows that the second-
price auction with an anonymous reserve is a good approximation to
the optimal auction.

Theorem 4.2 (Hartline and Roughgarden [62]). For single-item
environments and agents with values drawn independently from reg-
ular distributions, the second-price auction with a (suitably chosen)
anonymous reserve price obtains at least a fourth of the revenue of the
optimal auction.
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This theorem has several proofs, the most intuitive takes the fol-
lowing steps. First, show that the second-price auction in a duplicate
environment, i.e., with two agents from each distribution, obtains at
least half the optimal revenue of the original environment. (The proof
is similar to that of Theorem 4.1.) Viewing one agent from each pair
as the original and the other as the duplicate, we can view the dupli-
cate agents as imposing a random (and anonymous) reserve price on
the original agents that is distributed according to the maximum value
from the distributions. The second-price auction with a random reserve
chosen from this distribution obtains at least half the revenue of the
second-price auction in the duplicate environment; therefore, it is a four
approximation to the optimal auction. Of course the best anonymous
reserve is better than this random one.

There are two things to note about this anonymous-reserve four
approximation. First, it does not extend beyond single-item auctions
as does the monopoly-reserves two approximation, in fact for k-unit
auctions its approximation factor is Ω(logk). Second, it is not known
to be a tight analysis (for the k = 1 case); the only known lower bound
for the anonymous-reserve auction is two. This lower bound is exhib-
ited by an n = 2 agent example where agent 1’s value is a point-mass
at one and agent 2’s value is drawn from the equal revenue distribution
on [1,∞), i.e., F2(z) = 1 − 1/z. Importantly, for the equal revenue dis-
tribution, posting any price v̂ ≥ 1 gives an expected revenue of one. For
this asymmetric setting the revenue of the second-price auction with
any anonymous reserve is at most one. On the other hand, an auction
could first offer the item to agent 2 at a very high price (for expected
revenue of one), and if (with very high probability) agent 2 declines,
then it could offer the item to agent 1 at a price of one. The expected
revenue of this mechanism in the limit is two.

Both Theorem 4.1 and Theorem 4.2 require that the distributions
of the agents be regular; neither generalizes to the case of irregular
distributions. For irregular distributions the approximation factor of
monopoly and anonymous reserves are Ω(logn). Such a logarithmic
lower bound is easy to exhibit with a set of distributions based on
the same principles as the equal revenue distribution described in the
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preceding paragraph. For instance, if agent i’s value is 1/i with proba-
bility 1/n2 and zero otherwise.

4.2 Posted Pricing

Two problematic aspects of employing auctions to allocate resources
are that (a) they require multiple rounds of communication (i.e., they
are slow) and (b) they require all agents to be present at the time
of the auction. Often both of these requirements are prohibitive. In
routing in computer networks a packet needs to be routed, or not,
quickly (and if our network is like the Internet then without state in
the routers); therefore, auctions are unrealistic for congestion control.
In a supermarket where you go to buy lettuce, we should not hope to
have all the lettuce buyers in the store at once. Finally, in selling goods
on the Internet, eBay has found empirically that posted pricing via the
“buy it now” price is more appropriate than a slow (days or weeks)
ascending auction.

In a posted pricing, distinct prices can be posted to the agents
with first-come-first-served and while-supplies-last semantics. We will
describe below two results for posted pricing in single-dimensional
environments as well as some consequences. First, we show that obliv-
ious posted pricing, where agents arrive and consider their respective
prices in any arbitrary order, gives a two approximation to the optimal
auction. Second, we show that sequential posted pricing, where the
mechanism chooses the order in which the agents are permitted to con-
sider their respective posted prices, gives an improved approximation
of e

e−1 ≈ 1.58 with respect to the optimal auction. Both results hold
for objectives of revenue and social surplus and for any independent
distribution on agent values (i.e., regularity is not assumed).

4.2.1 Oblivious Posted Pricings and the Prophet Inequality

The oblivious posted pricing theorem we present is an application of a
prophet inequality theorem from optimal stopping theory. Consider the
following scenario. A gambler faces a series of n games, one on each of
n days. Game i has prize vi distributed independently according to Fi.
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The order of the games and distribution of the game prizes are fully
known in advance to the gambler. On day i the gambler realizes the
prize vi ∼ Fi of game i and must decide whether to keep this prize and
stop or to return the prize and continue playing. In other words, the
gambler is only allowed to keep one prize and must decide whether or
not to keep a given prize immediately on realizing the prize and before
any other prizes are realized.

A threshold strategy is given by a single threshold v̂ and requires
the gambler to accept the first prize i with vi ≥ v̂. Threshold strategies
are clearly suboptimal as even on day n if prize vn < v̂ the gambler
will not stop and will, therefore, receive no prize. We refer to the prize
selection procedure when multiple prizes are above the threshold as the
tie-breaking rule. The tie-breaking rule implicit in the specification of
the gambler’s game is lexicographical, i.e., by “smallest i.”

Theorem 4.3 (Samuel-Cahn [85]). There exists a threshold strat-
egy such that the expected prize of the gambler is at least half the
expected value of the maximum prize; moreover, for continuous distri-
butions with non-negative support one such threshold strategy is the
one where the probability that the gambler receives no prize is exactly
1/2; moreover, the bound is invariant with respect to the tie-breaking
rule.

Theorem 4.3 is a prophet inequality: it suggest that even though the
gambler does not know the realizations of the prizes in advance, she can
still do half as well as a prophet who does. Notice that the order of the
games makes no difference in the determination of the threshold, and if
the distribution above or below the threshold changes, nothing about
the bound or suggested strategy is affected. Moreover, the invariance of
the performance bound to tie-breaking rule suggests the bound can be
applied to other related scenarios. The profit inequality is quite robust.

Proof. Define q̂i = 1 − Fi(v̂) = Pr[vi ≥ v̂] as the probability that prize i
is above the threshold v̂ and χ =

∏
i(1 − q̂i) as the probability that the

gambler rejects all prizes. The proof follows in three steps. In terms
of the threshold v̂ and failure probability χ, we get an upper bound
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on the expected prophet’s payoff. Likewise, we get a lower bound on
expected gambler’s payoff. Finally, assuming that the prize distribu-
tions are continuous and non-negative,1 we plug in χ = 1/2 to obtain
the result.

The prophet’s expected payoff is

P = E[maxi vi] = v̂ + E[maxi(vi − v̂)]

≤ v̂ + E
[
maxi(vi − v̂)+

]

≤ v̂ +
∑

i
E
[
(vi − v̂)+

]

where (vi − v̂)+ denotes max(vi − v̂,0).
We will split the gambler’s payoff into two parts, the contribution

from the first v̂ units of the prize and the contribution from the remain-
ing vi − v̂ units of the prize. The first part is G1 = (1 − χ) · v̂. To get a
lower bound on the second part we consider only the contribution from
the no-tie case. For any i, let Ei be the event that all other prizes j are
below the threshold v̂ (but vi is unconstrained). The bound is:

G2 ≥
∑

i
E
[
(vi − v̂)+ | Ei

]
Pr[Ei]

≥ χ ·
∑

i
E
[
(vi − v̂)+

]
.

The second line follows because χ =
∏

j(1 − q̂j) ≤
∏

j &=i(1 − q̂j) =
Pr[Ei] and because the conditioned variable (vi − t)+ is independent
from the conditioning event Ei. Therefore, the gambler’s payoff is at
least:

G ≥ (1 − χ) · v̂ + χ ·
∑

i
E
[
(vi − v̂)+

]
.

Plugging in χ = 1/2 gives the result.

We now wish to use the prophet inequality to show that there
is an oblivious posted pricing that guarantees half the optimal rev-
enue. The main idea is to transform from value space to virtual value
space (Definition 3.8) and to consider the implications of the gambler’s

1The theorem is true, modulo a more sophisticated choice of χ, without the continuity and
non-negativity assumptions; we omit the discussion necessary to derive this more general
result.
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threshold strategy in virtual value space. A uniform virtual pricing is
v̂ = (v̂1, . . . , v̂n) that satisfies φi(v̂i) = φj(v̂j) for all i and j. The revenue
of an oblivious posted pricing is worst if the agents arrive in increas-
ing order of price, that way if multiple agents can afford their offered
price, the one with the minimum price wins. For this ordering, the
prophet inequality guarantees that the expected virtual value of the
winning agent is at least half the maximum expected virtual value.
Corollary 3.7 which says that expected revenue is equal to expected
virtual surplus then implies that the oblivious posted pricing revenue
approximates the optimal revenue.

Theorem 4.4 (Chawla et al. [30]). For single-item environments
and agents with independent values, there is a uniform virtual pricing
whose expected revenue under any order of agent arrival is at least half
of that of the optimal auction.

One important consequence of the approximate optimality of obliv-
ious posted pricings is their inherent robustness to collusion, see e.g.,
Goldberg and Hartline [48]. As the prices posted are fixed in advance,
losing agents cannot manipulate the price of the winning agent. Anal-
ogously, competition between agents is not a crucial driver of revenue.

The oblivious posted pricing theorem extends easily to multi-unit
environments and in Section 6.3 we describe its extension to the a
bipartite matching environment were agents correspond to edges. It is
conjectured that oblivious posted pricing is a constant approximation
for any matroid environment; the closest result to this is by Kleinberg
and Weinberg [66] who show that, if prices can be adjusted as agents
arrive, then there is a posted pricing mechanism that adjusts to any
arrival order and is a constant approximation.

4.2.2 Sequential Posted Pricings and Correlation Gap

The sequential posted pricing theorem we present is an application
of a correlation gap theorem from stochastic optimization. Consider a
non-negative real-valued set function g over subsets S of an n element
ground set N = {1, . . . ,n} and a distribution over subsets given by D.
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Let q̂i be the ex ante2 probability that element i is in the random set
S ∼ D and let DI be the distribution over subsets induced by inde-
pendently adding each element i to the set with probability equal
to its ex ante probability q̂i. The correlation gap is then the ratio of
expected value of the set function for the (correlated) distribution D,
i.e., ES∼D[g(S)], to the expected value of the set function for the inde-
pendent distribution DI , i.e., ES∼DI [g(S)].

As pointed out by Yan [94], correlation gap is central to the theory
of approximation for sequential posted pricings. As an example consider
a single-item auction. Let D be the distribution by which the optimal
auction selects a winner. Importantly, only sets of cardinality at most
one are in the support of D. The probability that any individual agent
is served by the optimal mechanism is q̂i. Of course, the revenue that
the optimal mechanism generates from agent i is upper bounded by
the optimal revenue that can be attained from agent i when served
with ex ante probability q̂i. This is exactly given by the revenue curve
(Definition 3.2) as Ri(q̂i).

Assume for now that the distribution is regular and that the rev-
enue of Ri(q̂i) = q̂iv̂i is obtained by posting price v̂i = Vi(q̂i). An upper
bound on the optimal revenue is

∑
iRi(q̂i) =

∑
i q̂iv̂i. This upper bound

is equal to the expected value of the maximum-weight-element set func-
tion g(S) = maxi∈S v̂i for S ∼ D (the distribution of the winner in the
optimal auction).

Consider as an alternative to the optimal auction, posting prices
v̂ = (v̂1, . . . , v̂n). Clearly our revenue is optimized by arranging these
agents in decreasing order of price. Let S denote the set of agents
whose values are at least their prices, i.e., S = {i : vi ≥ v̂i}. Each agent
i is in S independently with probability q̂i. Importantly, S may have
cardinality larger than one, but when it does, the ordering of agents
by price implies that the agent i ∈ S with the highest price wins. The
revenue of the sequential posted pricing is given by the expected value
of the maximum-weight-element set function g(S) on S ∼ DI .

2 In probability theory, this probability is also known as the marginal probability of i ∈ S;
however to avoid confusion with usage of the term “marginal” in economics, we will refer
to it via its economic interpretation as an ex ante probability as if S was the feasible set
output by a mechanism.
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It is immediately clear that the ratio of the sequential posted
pricing revenue to the optimal auction revenue (and its upper bound,
above) is given by the correlation gap. A typical analysis of correlation
gap will consider specific families of set functions g in worst case over
distributions D. For instance, when the set function is submodular
(Definition A.1) then the correlation gap is e

e−1 . The maximum-weight-
element set function, which corresponds to single-item auctions, is
submodular. In fact, it is a special case of the set function given by
the maximum weight independent set in a matroid, a.k.a., the matroid
weighted rank function, which is submodular (Theorem A.1).

Theorem 4.5 (Agrawal et al. [1]). The correlation gap for a sub-
modular set function and any distribution over sets is e

e−1 .

Theorem 4.5 is technical and we refer readers to Agrawal et al. [1].
Instead we give a proof of the simpler maximum-weight-element special
case.

Lemma 4.6 (Chawla et al. [30]). The correlation gap for the
maximum-weight-element set function and any distribution over sets
is e

e−1 .

Proof. This proof proceeds in three steps. First, we argue that it is
without loss to consider distributions D over singleton sets. Second, we
argue that it is without loss to consider set functions where the weights
are uniform, i.e., the one-or-more set function. Third, we show that
for distributions over singleton sets, the one-or-more set function has a
correlation gap of e

e−1 .

(1) We have a set function g(S) = maxi∈S v̂i. Add a dummy
element 0 with weight v̂0 = 0; if S = ∅ then changing it to
{0} affects neither the correlated value nor the independent
value. Moreover, the correlated value ES∼D[g(S)] is unaf-
fected by changing the set to only ever include its highest
weight element. This change to the set function only (weakly)
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decreases the ex ante probabilities q̂ = (q̂1, . . . , q̂n) and the
independent value ES∼DI [g(S)] is monotone increasing in
the ex ante probabilities. Therefore, this transformation only
makes the correlation gap larger. We conclude that it is suf-
ficient to bound the correlation gap for distributions D over
singleton sets for which the ex ante probabilities sum to one,
i.e.,

∑
i q̂i = 1.

(2) With set distribution D over singletons and a maximum-
weight-element set function g(S) = maxi∈S v̂i, the correlated
value simplifies to ES∼D[g(S)] =

∑
i q̂iv̂i. Scaling the weights

v̂ = (v̂1, . . . , v̂n) by the same factor has no effect on the corre-
lation gap; therefore, it is without loss to normalize so that
the correlated value is

∑
i q̂iv̂i = 1. We now argue that among

all such normalized weights v̂, the ones that give the largest
correlation gap are the uniform weights v̂i = 1 for all i. This
special case of the maximum-weight-element set function is
the one-or-more set function, g(S) = 1 if |S| ≥ 1 and other-
wise g(S) = 0.
Sort the elements by v̂i and let ci =

∏
j<i(1 − q̂j) denote

the probability that no element with higher weight than i
is in S and, therefore, i’s contribution to the independent
value is ciq̂iv̂i. Let δi = q̂i · (v̂i − 1) be the difference in the
expected contribution to the correlated value of the ith ele-
ment with value v̂i or one. The expected independent value
for the maximum-weight-element set function is

∑
i
ciq̂iv̂i =

∑
i
ci · (q̂i + δi) ≥

∑
i
ciq̂i. (4.1)

where the inequality follows from monotonicity of ci and
the fact that

∑
i δi = 0. The right-hand side of (4.1) is the

expected independent value of the one-or-more set function.
As the correlated value is normalized to one, uniform weights
give no lower a correlation gap.

(3) The correlation gap of the one-or-more set function on any
distribution D over singletons can be bounded as follows.
First, the expected correlated value is one. Second, the
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expected independent value is, for S ∼ DI ,

E[g(S)] = Pr[|S| ≥ 1] = 1 − Pr[|S| = 0] = 1 −
∏

i
(1 − q̂i)

≥ 1 − (1 − 1/n)n ≥ 1 − 1/e,

where the first inequality follows because the product of a
set of positive numbers with a fixed sum is maximized when
the numbers are equal.

We now pause to consider the implications of irregularity of the
distribution (Definition 3.7) on the analysis of the approximation fac-
tor of sequential posted pricing via the correlation gap. In the regular
case, the optimal mechanism for selling to an agent with value v ∼ F
with some given ex ante probability q̂ is attained by posting the price
v̂ = F−1(1 − q̂). In the irregular case, when q̂ falls within an interval
where values are ironed, the optimal mechanism is to mix between
the prices that correspond to the end points of the ironed interval so
as to sell to the agent with the desired ex ante probability q̂. Recall
that we refer to this optimal single-agent mechanism as the q̂ optimal
mechanism.

If it is unproblematic to randomize the prices posted, then the ran-
domized prices from the q̂i optimal mechanism can be posted to each
of the agents sequenced in order of bang-per-buck, i.e., R(q̂i)/q̂i. If,
however, a deterministic sequential posted pricing is desired, the fol-
lowing approach gives one that weakly improves revenue. First, when
given a sequential posted pricing, it always weakly improves revenue to
sequence the agents in order of price. Second, when given a random-
ized sequential posted pricing, there must be a posted pricing in the
support of the distribution that has above average revenue. Therefore,
it suffices to consider the posted pricings in the support of the distri-
bution, to sort the agents by price in each posted pricing, and then use
the posted pricing with the highest expected revenue. Alternatively, it
also weakly improves revenue to employ a simple greedy algorithm to
derandomize the price of each agent individually while assuming that
the other agents are regular.
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Corollary 4.7 (Chawla et al. [30], Yan [94]). For single-item
environments and agents with independent values, there is a sequential
posted pricing with revenue that is a e

e−1 approximation to the optimal
auction revenue.

Yan [94] generalized Corollary 4.7 beyond single-item auctions to
matroid environments (e.g., single-dimensional matching) where, by
Theorem 4.5, sequential posted pricings continue to be a e

e−1 approx-
imation. The main idea behind the proof of this extension is that, as
observed above, the weighted matroid rank function is submodular and,
therefore, has a correlation gap of e

e−1 by Theorem 4.5. Yan also consid-
ered multi-unit auctions and showed that the corresponding correlation
gap converges to one with k, the number of units available.

In discussion of sequential posted pricing we have employed the ex
ante probabilities of service q̂ from the optimal auction. However, our
sequential posted pricing is actually approximating something stronger,∑

iRi(q̂i). We may as well optimize q̂ for this objective directly. In fact,
this optimization problem corresponds exactly to the question of con-
structing an auction to meet the feasibility constraint in expectation,
i.e., ex ante. For a single item auction, the feasibility constraint says
that, ex post, for the allocation x(v) produced on valuation profile v,
it must be that

∑
ixi(v) ≤ 1. The relaxed ex ante feasibility constraint

would be
∑

iEv[xi(v)] ≤ 1. In fact, this ex ante optimization problem is
exactly the standard microeconomic problem of optimizing the sale of a
commodity across distinct markets. It is given by the convex program:

max
q̂

∑
i
R(q̂i) (EAMAP)

s.t.
∑

i
q̂i ≤ 1.

As described previously, the marginal revenue interpretation provides
a simple method for solving this program.

For matroid environments the ex ante feasibility constraint requires
that the sum of the ex ante probabilities of any subset of agents be
at most the rank of that subset, i.e., the maximum cardinality of an
independent subset. Let rank(S) denote this matroid rank function
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(see Section A.2). As discussed previously, the matroid rank function
is submodular. Therefore, the resulting feasibility constraint is a poly-
matroid (See Theorem A.3.1).

max
q̂

∑
i
R(q̂i) (EAMAP.M)

s.t.
∑

i∈S
q̂i ≤ rank(S), ∀S ⊂ N.

Again, the marginal revenue approach enables this program to be opti-
mized via a simple greedy algorithm.3

4.3 Prior-independent Approximation

Recall and contrast the results presented previously for revenue and
social surplus maximization. For surplus maximization, there is a sin-
gle optimal mechanism that is not dependent on any distributional
assumptions. On the other hand, for revenue maximization, the optimal
mechanism depends on the distribution from which values are drawn.
In this section we will consider the design of a single mechanism that
is simultaneously a good approximation to the optimal mechanism for
a large class of distributions.

There are generally two approaches for designing mechanisms
without knowledge of a prior. First, a Bayes-Nash mechanism could
ask agents to make reports based on their own distributional knowl-
edge. Caillaud and Robert [24], for example, give a simple ascending
single-item auction that has a revenue-optimal Bayes-Nash equilibrium.
Mechanisms like this rely perhaps too heavily on agents’ ability to
behave optimally in complex environments; for instance, Bergemann
and Morris [10] discuss the inherent non-robustness of this sort of
mechanism. A second approach, is to restrict to dominant strategy
mechanisms that use agent reports of their own values and competi-
tion between agents to ensure a good revenue. We focus on this latter
approach in the sections to follow.

3Discretize quantile space [0,1] into Q evenly sized pieces. Consider the Q-wise union of
the matroid set system (the class of matroid set systems is closed under union). Calculate
marginal revenues of each discretized quantile of each agent. Run the greedy-by-marginal-
revenue algorithm. Calculate q̂i as the total quantile of agent i that is served by algorithm,
i.e., 1/Q times the number of i’s discretized pieces that are served.
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4.3.1 “Resource” Augmentation

A classic result of Bulow and Klemperer [19] states that in i.i.d.,
regular, single-item environments the second-price auction with one
more agent (from the distribution) obtains a higher revenue than the
optimal auction (without the additional agent). This result is often
interpreted as a critique on exogenous entry or a statement about com-
petition being better for revenue than reserve prices.4 Dhangwatnotai
et al. [41] give a third interpretation. The Bulow-Klemperer result
suggests a prior-independent strategy for approximating the revenue
of the optimal mechanism: recruit one more agent.

Theorem 4.8 (Bulow and Klemperer [19]). In i.i.d., regular,
single-item environments, the expected revenue of the second-price auc-
tion on n + 1 agents is at least the expected revenue of the optimal
auction on n agents.

Unfortunately the “just add a single agent” result fails to reasonably
generalize beyond single-item auctions. When k units of an item are
auctioned to n + 1 agents with the (k + 1)st-price auction, the revenue
does not approximate that of the optimal k-unit n-agent auction. In
order to beat the optimal auction, k additional agents must be added.

Theorem 4.9. In i.i.d., regular, k-unit environments the expected rev-
enue of k + 1st-price auction on n + k agents is at least the expected
revenue of the optimal auction on the original n agents.

Consider the extreme case where k = n, a.k.a., a digital good. Notice
that the n + 1st-price auction obtains no revenue (the n + 1st price
is zero). All items are given away for free. Unfortunately, the Bulow-
Klemperer result in such an environment seems less actionable as prior-
independent approach to mechanism design; to obtain at least the

4Recall, that in Section 4.2 we came to (approximately) the opposite conclusion, i.e., that
posted pricings, without competition, are enough to guarantee good revenue. Both view-
points are correct and interesting. The Bulow-Klemperer result provides useful intuition
for competitive environments, where as the Chawla et al. result provides useful intuition
for environments where collusion is an issue.
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revenue of the optimal mechanism we would need to double the size
of the market!

4.3.2 Single-sample Mechanisms

Dhangwatnotai et al. [41] show that the Bulow-Klemperer result can
be approximately extended to multi-unit environments (with one addi-
tional agent) and simultaneously address the question of how large a
marketing sample must be in order to to provide good enough statis-
tical information for the design of approximately optimal mechanisms.
Their answer: one. Suppose instead of recruiting an additional agent to
participate in the mechanism, we find a single agent for market anal-
ysis, and then run a second-price auction with this agent’s reported
value as a reserve price. In i.i.d., regular, multi-unit environments this
auction is a 2-approximation.

Definition 4.1. For k-unit environments, the single-sample auction
draws a single-sample from the distribution and runs the k + 1st-price
auction with the sampled value as a reserve price.

The following lemma can be seen as an equivalent statement to
the n = 1 agent special case of the Bulow-Klemperer result. We give an
alternative geometric proof of it that is due to Dhangwatnotai et al. [41].

Lemma 4.10(Dhangwatnotai et al. [41]). For a single agent with
value drawn from regular distribution F , the revenue from a random
take-it-or-leave-it price v̂ ∼ F is at least half the revenue from the (opti-
mal) monopoly price v̂!.

Proof. Let R(q) be the revenue curve for distribution F . Let q̂! be the
quantile corresponding to the monopoly price, i.e., q̂! = argmaxq̂R(q̂).
The expected revenue from such a price is R(q̂!). Recall that drawing
a random value from the distribution F is equivalent to drawing a
uniform quantile q̂ ∼ U [0,1]. The revenue from such a random price is
Eq̂[R(q̂)]. In Figure 4.1 the area of region A is R(q̂!). The area of region
B is Eq̂[R(q̂)]. Of course, the area of C is less than the area of B, by



200 Approximation Mechanisms

Fig. 4.1 In the geometric proof of the that a random reserve is a 2-approximation to the
optimal reserve, the areas of the shaded regions satisfy A ≥ B ≥ C = A/2.

concavity of R(·), but at least half the area of A, by geometry. The
lemma follows.

It is now a simple exercise to generalize Lemma 4.10 to multi-unit
auctions to give the following theorem. Essentially, a random reserve is
approximately as good as the monopoly reserve. This theorem can also
be generalized to matroid and downward-closed environments where
the mechanism that is a good approximation is surplus maximization
subject to a lazy single-sample reserve. In comparison to reserve-priced
mechanisms we have previously discussed, this lazy-reserve mechanism
finds the surplus maximizing set then serves only the agents in this set
who meet the reserve (clearly, the feasibility of this mechanism requires
downward closure).

Theorem 4.11(Dhangwatnotai et al. [41]). For any i.i.d., regular,
multi-unit environment, the single-sample auction is a 2-approximation
to the optimal auction.
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4.3.3 Prior-independent Mechanisms

To design approximately optimal mechanisms without any prior infor-
mation, as observed by Goldberg et al. [50], Segal [87], Baliga and
Vohra [8], we can use the reports of some agents for market analysis on
other agents. For example, for a digital good environment, i.e., where
all outcomes are feasible, and agents with i.i.d. regular distributions,
the mechanism that pairs the agents and runs a second-price auction on
each pair is a 2-approximation. This result follows as each agent faces
a random reserve from the distribution and Theorem 4.10 implies that
such a reserve is a 2-approximation to the monopoly reserve (which is
optimal).

Theorem 4.12. For i.i.d., regular, digital good environments, the pair-
ing auction, i.e., that randomly pairs the n agents in n/2 second-price
auctions, is a 2-approximation to the optimal revenue.

This approach can be extended to the same environments as the
single-sample auction as follows. Simulate both the surplus maximiz-
ing mechanism and the pairing auction in parallel, but serve only the
winners of both mechanisms (at the higher of their prices).

4.3.4 Beyond Regular Distributions

We have exhibited a few simple approaches for designing prior-
independent mechanisms. These approaches make strong usage of the
regularity of the distribution, the symmetry of identical distributions,
and downward-closure of the feasible set system. The main conclusion
is that market analysis can be done on-the-fly by the mechanism as it
is run; the resulting mechanism is often a good approximation.

The regularity assumption can be relaxed if more samples from
the distribution are available. Of course, in i.i.d. environments for
each agent there are n − 1 other samples from the distribution. The
following random-sampling mechanism from Goldberg et al. [50] is
prior-independent and gives a good approximation fairly generally.
Partition the agents into two parts, estimate the distribution for one
part, and run the optimal mechanism for the estimated distribution on
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opposite part. In some environments this can be done symmetrically
for both parts. See, e.g., Goldberg et al. [50], Baliga and Vohra [8],
and Devanur et al. [40].

The distributional symmetry (of the i.i.d. assumption) can be
relaxed. If the agents are a priori distinguishable by publicly observable
attributes, and there are at least two agents with each attribute, then
agents can be paired with other agents with the same attribute. See,
e.g., Balcan et al. [7], Dhangwatnotai et al. [41].

One final note, the viewpoint presented here on prior-independent
mechanisms is one where there is a prior but the designer just does not
know it. As the mechanisms under discussion are dominant strategy
incentive compatible, the prior is not needed for equilibrium. It is
possible, then, to dispense with the prior completely; however, in doing
so it is not clear to what mechanisms should be compared against
for approximation. Goldberg et al. [49] introduced such a prior-free
framework for mechanism design and studied the aforementioned
digital good environment; their benchmark is the revenue from posting
the best single price for the given valuation profile. Hartline and
Roughgarden [61] give post hoc justification of this benchmark as the
unlimited supply special case of a more general benchmark; specifically,
the supremum over i.i.d. distributions of the revenue for the optimal
auction for that distribution on the given valuation profile. This
benchmark has the nice property that a prior-free mechanism that
approximates it simultaneously approximates the optimal mechanism
for any i.i.d. Bayesian distribution. Devanur et al. [40] consider a
benchmark based on envy freedom which is similar to the Hartline-
Roughgarden benchmark in magnitude, but is structurally easier to
work with. They show that, with a minor technical adjustment, the
partitioning mechanism described above gives a good approximation
to this benchmark quite generally.



5
Multi-dimensional and Non-linear Preferences

Discussion up to this point has assumed that agent preferences are
single-dimensional and linear, i.e., an agent’s utility for receiving a ser-
vice at a given price is her value minus the price. In many settings of
interest, however, agents’ preferences are multi-dimensional and non-
linear. Common examples include (a) multi-item environments where
an agent has different values for each item, (b) agents that are finan-
cially constrained, e.g., by a budget, where an agent’s utility is her value
minus price as long as the price is at most her budget (if the budget
is private knowledge of the agent then this agent is multi-dimensional
and non-linear), or (c) agents who are risk averse; a common way to
model risk averse preferences is to assume an agent’s utility is given by
a concave function of her value minus price.

The challenge posed by multi-dimensional non-linear preferences is
three-fold. First, multi-dimensional type spaces can be large, even opti-
mizing a single-agent problem (like those in Section 3.2) may be analyt-
ically or computationally intractable. Second, we should not expect the
revenue-linearity condition of Theorem 3.6 to hold when agents have
non-linear preferences (in fact, it also does not generally hold for multi-
dimensional preferences). Third, often settings with multi-dimensional

203
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agents have multiple items and the externality an agent imposes on
the other agents when she is served one of these items is, therefore,
multi-dimensional as well.

Our approach to multi-dimensional and non-linear preferences will
be to address the challenges above in roughly the order given.

5.1 Single-agent Optimization

We will consider two representative examples, (a) a single-dimensional
agent with a public budget (a non-linear preference), and (b) a (multi-
dimensional) unit-demand agent with linear utility given by the value
she obtains for a given item minus the price of the item. For these prob-
lems we consider (i) an unconstrained single-agent problem, (ii) the ex
ante constrained single-agent problem, and (iii) the interim constrained
single-agent problem. In the terminology of Section 3.2 we are looking
to understand the single-agent mechanisms that correspond to R(1),
R(q), and Rev[ŷ].

5.1.1 A Mathematical Program for the Unconstrained
Problem

A general agent has a type t drawn from an abstract type space T
according to a distribution F . For finite type spaces, the distribution
F can be specified explicitly by a probability mass function f which
maps each t ∈ T to a probability that the agent has this type. A general
utility function u(t,x,p) maps the agents type, allocation, and payment
to the utility that the agent derives. We can write a mathematical
program for the single-agent mechanism design problem by including a
variable for the allocation and payment of each type, i.e., x(t) and p(t)
for all t ∈ t.

max
x,p

∑
t∈T

p(t)f(t) (SAP)

s.t. u(t,x(t),p(t)) ≥ u(t,x(t†),p(t†)), ∀t, t† ∈ T, (SAP.IC)

u(t,x(t),p(t)) ≥ 0, ∀t ∈ T, (SAP.IR)

x(t) ≤ 1, ∀t ∈ T. (SAP.UF)
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In this program a single-dimensional budgeted agent’s utility, where
we interpret t as her value for service, is u(t,x,p) = tx − p as long as
p ≤ B (where B denotes her budget) and −∞ otherwise. This non-
linearity can be captured in the mathematical program by adding a
constraint on payments of p(t) ≤ B for all types t ∈ T . Monotonicity
of payment (implied by Theorem 2.2) implies that it is sufficient to
constrain only the payment of the highest type, denoted tmax. I.e.,

p(tmax) ≤ B. (SAP.B)

With this formulation the unconstrained single-agent program is linear
and can be solved in time polynomial in the size of the type space, |T |.

To express the unit-demand agent’s utility we assume that there
are m items and write the agent’s type t and allocation x as vectors
t = (t1, . . . , tm) and x = (x1, . . . ,xm) where tj is the agent’s value for
item j and xj is the probability with which she receives item j. The
agent’s utility is then u(t,x,p) = t · x − p where t · x =

∑
j tjxj denotes

the vector product. With respect to (SAP.UF), let x(t) =
∑

j xj(t) be
the total probability that t receives any item. While a unit-demand
agent does not explicitly have linear utility, i.e., her utility for a bundle
of items is the maximum of the item values not the sum of the item
values, if we restrict the bundles to be size at most one then her utility
is linear. Moreover, given that the agent is unit demand, there is no loss
in such a restriction. To be explicit, we add the following constraint.

∑
j
xj(t) ≤ 1, ∀t ∈ T. (SAP.UD)

Briest et al. [18] point out that by this formulation, the unconstrained
single-agent problem is linear and can be effectively solved in time
polynomial in the size of the type space. It should not be taken for
granted, though, that unit-demand type spaces may not be small. For
instance, with m items and independent values for each item, an agent
would have a type space that is exponentially big in the number of items
and direct optimization via the above program would be intractable;
we address this issue with approximation in Section 6.1.

Notice that this formulation of the optimal unit-demand single-
agent mechanism is inherently randomized. It produces a lottery
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pricing, in that the agent faces a priced menu of probabilistic out-
comes. Optimizing over deterministic item pricings is computationally
more difficult and not without loss for unit-demand preferences (see
Section 6).

5.1.2 Mathematical Programs for the Ex Ante and
Interim Problems

The following formulation of the ex ante and interim feasible single-
agent mechanism design problems are from Alaei et al. [4, 5].

To derive the ex ante constrained single-agent problem, consider
any single-agent mechanism. In the case that there are multiple services
available, we will consider the agent to be served if she receives any of
these services and denote this probability by x(t) as above. The ex ante
service probability of the mechanism is then, simply, the probability
that a random type from the distribution is served. For an ex ante
constraint of q̂ on the service probability the following constraint can
be added to the above unconstrained program (SAP).

∑
t∈T

x(t)f(t) ≤ q̂. (SAP.EAF)

From the solution to these single-agent problems, i.e., ex ante allo-
cation constraints q̂ ∈ [0,1], we can again define revenue curves as in
Definition 3.2 of Section 3.2.

Now consider the single-agent optimization subject to an interim
constraint ŷ on the allocation rule, i.e., the problem of optimiz-
ing Rev[ŷ]. The allocation rule of any single-agent mechanism
can be derived as follows. Consider the function defined by the
measure of types that are served with at least a given service
probability, the allocation rule is the inverse of this function, i.e.,
y(q) = sup

{
x† : Prt∼F [x(t) ≥ x†] ≥ q

}
. For discrete type spaces this

allocation rule can be found by making a rectangle of width f(t) and
height x(t) for each type t, and sorting these rectangles in decreasing
order of height. The resulting non-increasing piece-wise constant func-
tion on [0,1] is the allocation rule y. Any mechanism induces such an
allocation rule.

The feasibility constraint in the unconstrained single-agent pro-
gram (SAP) can be modified for an interim allocation constraint ŷ
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with cumulative constraint Ŷ (recall Definition 3.3). Intuitively, Ŷ (q̂)
bounds the probability with which any measure q̂ of types can be
served.

∑
t∈S

x(t)f(t) ≤ Ŷ (f(S)), ∀S ⊆ T. (SAP.IF)

From an optimization point of view it is useful to note that, while the
interim feasibility constraint is defined across all subsets of the type
space, it is easy to optimize. For instance, the concavity of Ŷ (·) and
linearity of f(·), defined as f(S) =

∑
t∈S f(t), imply the submodularity

of Ŷ (f(·)) on subsets of type space and, therefore, that the feasible
space is a polymatroid (see Proposition A.4). Moreover, if we consider
types ordered by decreasing allocation probability (SAP.IF) is only
binding on the linear number of sets corresponding to prefixes of the
ordering.

5.1.3 Analytical Solutions for Budgeted and Unit-demand
Agents

We now consider analytical solutions to special cases of the interim
single-agent problem, i.e., (SAP) with (SAP.IF), with continuous type
spaces. In particular, we will sketch constructions for the case of a
budgeted agent with a regular distribution (Definition 3.7) of non-
decreasing density, and the case of a unit-demand agent with values
for the m items distributed uniformly on the unit hypercube.

Theorem 5.1 (Laffont and Robert [68]; Pai and Vohra [80]).
For a budgeted agent with value distributed from a regular distribu-
tion with non-decreasing density, the optimal single-agent mechanism
for allocation constraint ŷ is parameterized by quantiles q̂† < q̂‡ where
quantiles in [0, q̂†] are ironed,1 quantiles in q ∈ (q̂†, q̂‡] receive the cor-
responding allocation probability ŷ(q), and the remaining quantiles,
(q̂‡,0], are rejected.

1 I.e., each receives the average allocation probability of ŷ for q ∈ [0, q̂†]; this is average
allocation probability is equal to Ŷ (q̂†)/q̂† (cf. Subsection 3.2.4).
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The proof of this theorem follows from the single-dimensional agent
analysis where the objective is rewritten as the cumulative marginal
price-posting revenue of the agents served. The budget constraint
(SAP.B) can be Lagrangian relaxed and incorporated into the objective
with parameter λ. The effective price-posting revenue curve becomes
P λ(q̂) = (q̂ − λ)V (q̂) for q̂ ∈ (0,1] and P λ(0) = 0. Notice that for q̂ < λ
this quantity is non-positive. Regularity and non-increasing density
imply that this Lagrangian price-posting revenue curve is concave on
(0,1]. The observed form of the optimal auction then follows from
observing that the Lagrangian revenue curve, i.e., the smallest con-
cave function that upper bounds the Lagrangian price-posting revenue
curve, irons only on some interval [0, q̂†) and has negative slope after
some q̂‡.

Further discussion optimal mechanisms for agents with public
budgets and the generalization of Theorem 5.1 to arbitrary distribu-
tions is given by Devanur et al. [37].

Theorem 5.2 (Haghpanah [56]). For a unit-demand agent of m
items with value uniformly distributed on the m-dimensional hyper-
cube, the optimal single-agent mechanism for allocation constraint ŷ
projects the agent’s type into a single dimension, by considering only
the agent’s favorite item j! = argmaxj tj, and optimally serves accord-
ing to ŷ and the distribution of the agent’s value for her favorite item.
The single-dimensional value distribution in the projection corresponds
to the maximum of m uniform random variables which is a regular dis-
tribution; therefore, the allocation rule y is the same as ŷ except with
an appropriate reserve price.

The proof of this theorem is technical, but at a high-level fol-
lows the marginal revenue approach (cf. Subsection 3.2.4). Notice that
the marginal revenue approach is a kind of amortized analysis. The
marginal revenue of a type encompasses the change in the total rev-
enue when this type is served along with higher types (i.e., it is the
gain in revenue from serving this type less the loss in revenue from
higher types due to lowering the price so that this type may also be
served). The utility of a type is the surplus of the type for the service
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received less the payment. Analogous to the single-dimensional char-
acterization of Theorem 2.2 where the allocation rule is required to be
monotone and the payment is given by the integral over the allocation
to lower types; a multi-dimensional mechanism is in Bayes-Nash equi-
librium if and only if the utility is convex and the payment is given by a
path integral (e.g., from the low type tmin = (0, . . . ,0); see Rochet [81]).
What makes the multi-dimensional setting complex is that, while with
a single-dimension there is only one path that connects a given type
to the lowest type; in multi-dimensional settings there are many such
paths.

The proof of Theorem 5.2 is by the following high-level argument.
We will write the expected payment of a type as the difference in surplus
and utility (where the surplus can be written in terms of the gradient
of the utility) and take expectation over types. In formulating the pay-
ment as a path integral, use the Euclidean straight-line path from the
origin to the type t, which is interpreted as a point in T = [0,1]m. We
can swap the order of integration (from taking expectation over types
and from the path integral) and reformulate the problem in terms of a
multi-dimensional virtual value times the gradient of the utility func-
tion. This virtual value for the coordinate j! is exactly the marginal rev-
enue of the distribution that corresponds to the maximum ofm uniform
random variables (and is a smaller value for coordinates j .= j!). Relax-
ing the incentive constraints (in this case, the convexity of the utility
function) and optimizing these virtual values suggests sorting types in
probability space by their maximum coordinate and assigning service
probability according to ŷ to those types that meet a given reserve
(given by the monopoly price for the distribution of the maximum of
m uniform random variables). Finally, we reconsider the relaxed incen-
tive constraints (convexity of the agent’s utility) and confirm that they
are satisfied by the mechanism obtained; therefore, it must be optimal.

5.2 Multi-agent Optimization with Revenue Linearity

Consider an environment, like the single-dimensional environments of
Section 3, where agents only impose a single-dimensional externality
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on each other. In these environments each agent would like to receive
an abstract service and there is a feasibility constraint over the set
of agents who can be simultaneously served. Agents may also have
preferences over unconstrained attributes that may accompany service.
Payments are one such attribute; for example, a seller of a car can
only sell one car, but she can assign arbitrary payments to the agents
(subject to the agents’ incentives, of course). Likewise, the seller of
the car could paint the car one of several colors as it is sold and the
agents may have multi-dimensional preferences over colors. Of course,
if the car is sold to one agent then it cannot be sold to other agents so,
while the color plays an important role in the agents’ multi-dimensional
incentive constraints, it plays no role in the feasibility constraints. We
refer to environments with single-dimensional externalities as service
constrained environments. The more general case of multi-dimensional
externalities is deferred to Section 5.4.

Definition 5.1. A service constrained environment is one where
a feasibility constraint restricts the set of agents who can be
simultaneously served, but imposes no restriction on how they are
served.

We now characterize optimal multi-agent mechanisms in terms of
the solution to single-agent problems with the simplifying revenue-
linearity property. Revenue linearity immediately implies that the
optimal cumulative marginal revenue is equal to the optimal revenue
(Proposition 3.5). However, it does not immediately suggest how to
implement cumulative marginal revenue maximization as the mapping
from type space to quantile space is not implicit in a multi-dimensional
type space (as it is in a single-dimensional type space). For example,
we will see shortly that an agent with value uniformly distributed on
an m-dimensional hypercube (recall Theorem 5.2) is revenue linear.
However, it is unclear which type is the stronger, e.g., for m = 3, of
(.9, .2, .2) or (.7, .7, .7)? The definition and theorem below resolve this
issue.
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Definition 5.2. A single-agent problem given by a type space and
distribution is orderable if there is an equivalence relation on types
and an ordering over equivalence classes, such that for every allocation
constraint ŷ, the optimal mechanism for ŷ, i.e., solving Rev[ŷ], induces
an allocation rule that is greedy by the given ordering with ties broken
uniformly at random and with types in a special lowest equivalence
class ⊥ (if any) rejected.

Notice that the single-dimensional budgeted example is not order-
able by the above definition. Though, the agent’s values give a weak
ordering on types, the optimal mechanism for ŷ irons so as to meet
the budget constraint with equality and the values in ironed intervals
depend on the allocation constraint ŷ (see Theorem 5.1).

Theorem 5.3 (Alaei et al. [5]). For any single-agent problem, rev-
enue linearity implies orderability.

The main intuition behind Theorem 5.3 comes from observing that
the allocation rule y that is obtained from optimizing subject to ŷ must
be equal to ŷ at all quantiles where the revenue curve is strictly concave;
the equivalence classes in the theorem statement then correspond to
types with equal marginal revenue (which have non-zero measure only
on intervals where the revenue curve is linear).

Theorem 5.3 says that while there is not an inherent ordering on
type space that is respected by all mechanisms, there is one that is
respected by all optimal mechanisms. The following corollary is imme-
diate; from it the marginal revenue mechanism for orderable agents is
easy to generalize.

Corollary 5.4 (Alaei et al. [5]). The q̂ ex ante optimal single-gent
mechanism (Definition 3.2), for any revenue-linear agent and at any q̂
for which the revenue curve R(·) is strictly concave, serves exactly the
types corresponding to quantiles q ∈ [0, q̂].
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Definition 5.3. Themarginal revenue mechanism for orderable agents
works as follows:

(a) Map the agents’ types t to quantiles q via the ordering
guaranteed to exist by the orderability assumption.2

(b) Calculate marginal revenues for the profile of quantiles.
(c) For each agent i, calculate the supremum quantile q̂i she

could possess and still be in the cumulative marginal rev-
enue maximizing feasible set (S to maximize

∑
i∈SR

′
i(qi)).

(d) For each agent i, run the q̂i optimal single-agent mechanism.

Theorem 5.5 (Alaei et al. [5]). The marginal revenue mechanism
for revenue-linear agents is (a) dominant strategy incentive compatible,
(b) feasible, (c) revenue-optimal, and (d) deterministically selects the
set of winners.

Proof. Dominant strategy follows because for any q̂i for agent i, the
q̂i optimal mechanism is dominant strategy incentive compatible. It is
feasible as the set of agents served by the optimal single-agent mech-
anisms is exactly the set that maximizes cumulative marginal rev-
enue (by Corollary 5.4). It is revenue optimal because it maximizes
marginal revenue pointwise, each agent’s critical quantile in the interim
stage is drawn from an distribution that corresponds to that agent’s
interim allocation rule. The expected revenue from this agent, there-
fore, is the expected marginal revenue. By the definition of the mecha-
nism, it is marginal revenue optimal; by revenue linearity, it is revenue
optimal.

Finally, we instantiate and interpret Theorem 5.5 for an interesting
multi-dimensional example. Suppose we are selling a car by auction to

2For types in equivalence classes defined by Definition 5.2 that have measurable size (with
respect to the distribution), we can uniformly pick a quantile from within the measure.
This choice ensures that quantiles are uniform (which is a standing assumption); though,
this random choice is never relevant to the mechanism as all quantiles in the interval cor-
responding to this equivalence class are mapped to the same marginal revenue in step (b).
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a set of n agents, as the car is sold it can be painted one of m colors.
Each agent’s type is m-dimensional with the jth coordinate denoting
her value for the jth color. This is a service constrained environment.
Furthermore, when agent values are uniform on the m-dimensional
hypercube Theorem 5.2 implies that the problem is equivalent to the
single-dimensional projection of each agent’s favorite color. The rev-
enue linearity of this single-dimensional projection implies the revenue
linearity of the original unit-demand problem.

Corollary 5.6 (Haghpanah [56]). The single-agent problem for a
unit-demand agent of m items with values uniformly distributed on
the m-dimensional hypercube is revenue linear.

The implied marginal revenue mechanism is to auction the car with
free color choice via the second-price auction with reserve set as the
monopoly price for the distribution of the maximum of m uniform
random variables.

While it is often assumed that the optimality of the marginal
revenue mechanism is special to single-dimensional, linear agents (as
in Section 3), we have shown here that the special condition is revenue
linearity not single dimensionality.

5.3 Multi-agent Optimization without Revenue Linearity

We now characterize optimal multi-agent mechanisms for service con-
strained environments (Definition 5.1) in terms of the solution to single-
agent problems without the simplifying revenue-linearity property. It
is useful to contrast the complexity of the optimal mechanism here
with that of the optimal mechanism with revenue linearity discussed
previously in Section 5.2.

5.3.1 Interim Feasibility

Consider any multi-agent mechanism M. When the agent types t are
drawn from the product distribution F , each agent i has an induced
interim mechanism Mi. This interim mechanism maps the agent’s
type ti to a distribution over outcomes (including the service received
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and non-service-constrained attributes such as payments). Any single-
agent mechanism Mi induces an allocation rule yi as described in the
Section 5.1; since this is an interim mechanism we refer to this alloca-
tion rule as the interim allocation rule. Repeating this construction for
each of the n agents we obtain a profile of interim allocation rules y that
is feasible in the sense that there exists an ex post feasible mechanism
(e.g., M) that induces it.3

Definition 5.4. A profile of allocation rules y is interim feasible if it
is induced by some ex post feasible mechanism M and type distribu-
tion F .

It is useful to consider some examples of interim allocation profiles
that are feasible and infeasible. Consider selling a single item to one of
two agents each with one of two interim allocation rules:

y†(q) = 1/2, y‡(q) =

{
1 if q ∈ [0,1/2],

0 otherwise.

Notice that both allocation rules have an ex ante probability of 1/2 of
allocating (as agent quantiles are always drawn from the uniform distri-
bution). Consider the profile of allocation rules y = (y†,y†), i.e., where
both agents have interim allocation rule y†. This profile is interim fea-
sible as it is the outcome of the fair-coin-flip mechanism. Similarly the
profile y = (y‡,y†) is interim feasible, it is induced by the mechanism
that serves agent 1 if she has a high type (i.e., q1 ∈ [0,1/2]) and agent 2
otherwise. The profile y = (y‡,y‡) is not interim feasible. If both agents
have high types, which happens with probability 1/4, the interim allo-
cation rules require that both agents be served, but doing so would not
be ex post feasible.

Our goal is to maximize expected revenue over (Bayesian incentive
compatible and interim individually rational) mechanisms subject to
ex post feasibility. This is equivalent to optimizing expected revenue

3 In the literature, e.g., Border [14], such a profile of interim allocation rules is often referred
to as the reduced form of the mechanism.
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over profiles of allocation constraints subject to interim feasibility. I.e.,

max
ŷ

∑
i
Rev[ŷi] (MAP)

s.t. “ŷ is interim feasible.” (MAP.IF)

To get some intuition for this program, notice that if the agents
are i.i.d. then the optimal mechanism design problem is symmetric and
there is always a symmetric solution to a symmetric convex optimiza-
tion problem. For a single-item environment the lowest-quantile-wins
mechanism induces the allocation constraint (for each of the n agents)
of ŷ(q) = (1 − q)n−1. This is the strongest (Definition 3.3) interim fea-
sible symmetric allocation constraint. From this allocation constraint
and the single-agent mechanism that solves Rev[ŷ], the optimal mech-
anism can be constructed (see Figure 3.3). This observation has explic-
itly or implicitly enabled most of the derivations of optimal auctions for
agents with non-linear preferences, e.g., see Matthews [73], Border [14],
and Laffont and Robert [68].

Optimization of this mathematical program in asymmetric envi-
ronments (e.g., when the agents’ distributions are not identical) relies
on better understanding the constraint posed by interim feasibility.
Consider first interim feasibility in single-item environments. Take any
profile of ex ante constraints q̂ = (q̂1, . . . , q̂n) and consider the ex ante
probability by which each agent i with quantile at most q̂i is served,
i.e., Y1(q̂1), . . . ,Yn(q̂n). Of course the probability that some agent i with
quantile bounded by q̂i is realized is 1 −

∏
i(1 − q̂i).

Theorem 5.7 (Border [14, 15]). For single-item environments, a
profile of allocation rules y (with cumulative allocation profile Y ) is
interim feasible if and only if,

∑
i
Yi(q̂i) ≤ 1 −

∏
i
(1 − q̂i), ∀q̂ ∈ [0,1]n.

To understand the interim feasibility condition of Theorem 5.7 note
that the left-hand side is the expected number agents with quantiles in
their respective ranges that are served and the right-hand side is the
probability that an agent with quantile in her requisite range is realized
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at all. The necessity of this condition is obvious as we cannot serve
agents with quantiles in the given ranges more than there is such an
agent. The sufficiency follows, for example, from a max-flow-min-cut-
style argument. Alaei et al. [4] extend this characterization to matroid
environments where the right-hand side becomes the expected rank,
with short-hand notation rank(q̂) representing ES[rank(S)] where i ∈ S
independently with probability q̂i (cf. Subsection 4.2.2).

Theorem 5.8(Alaei et al. [4]). For matroid environments, a profile
of allocation rules y is interim feasible if and only if,

∑
i
Yi(q̂i) ≤ rank(q̂), ∀q̂ ∈ [0,1]n.

For feasibility constraints beyond matroids, we will not get a suc-
cinct representation for the interim feasibility constraint. However, we
will nonetheless be able to describe optimization subject to interim
feasibility quite naturally.

5.3.2 Optimization and Ex Post Implementation

In the discussion above we expressed interim feasibility in quantile
space. The advantage of formulating the interface between the single-
agent problem and the multi-agent problem in quantile space is that it
is single-dimensional and therefore can be represented succinctly even
when the type spaces of the agents are very large. The solution to the
single-agent problem needs then to specify both the (stochastic) map-
ping from types to outcomes and the (stochastic) mapping from types
to quantiles. The optimized mechanism then, for a reported type pro-
file, maps types to quantiles, determines the set of winners from the
quantile profile, and then samples service outcomes for the winners and
non-service outcomes for the losers from the outcome mapping.

For understanding interim feasibility a number of aspects of the
original mechanism design problem are not relevant. First, the distinc-
tion between quantiles and types is not relevant; both are just names
by which we distinguish between the possible values of each coordinate
of the input (while our discussion below is given in type space, it could
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be equally well given in quantile space). Second, the independence of
agent types will not be important. An input type profile is t, it is drawn
from distribution F , and we write the marginal probability of agent i
having type t as fi(t) = Prt∼F [t = ti].

The important quantity for interim feasibility is the ex ante prob-
ability that specific types of specific agents are served. To make these
quantities more explicit in our notation we employ the following short-
hand. Up to this point, we have viewed an ex post allocation rule x(t) as
a function mapping an n-dimensional type profile to an n-dimensional
vector indicating service to agents. It will be useful to view it as a
flattened vector indicating service to each of the possible types of each
agent, i.e., as vector of dimension equal to the sum of the sizes of the
agent type spaces where coordinate it indexes xit(t) to indicate whether
agent i with type t is served. Of course if ti .= t in type profile t then
xit(t) = 0 as a mechanism cannot serve a type that “does not show
up”. Similarly, we consider a profile of interim allocation rules x as a
flattened vector with xit as the (ex ante) probability that i with type t
is served by the mechanism. The short-hand notations for flattened ex
post and interim allocation vectors, respectively, are,

xit(t) =

{
xi(t) if t = ti

0 otherwise,
xit = xi(t)/fi(t).

With such a redundant notation, the interim allocation vector is just
the expectation of the ex post allocation vector.

x = Et∼F [x(t)] . (5.1)

We are now prepared to make a number of simple observations.
First, as we allow randomized mechanisms, both the spaces of ex post
feasible allocations x(t) and interim feasible allocations x are convex.
Moreover, as the ex post constraints are linear and the type space
is finite, both the ex post and interim feasibility are given by a poly-
tope. As previously observed, our single-agent optimal mechanisms may
also be randomized, therefore, the single-agent revenue (given by the
revenue operator Rev[·]) is concave. Therefore, the optimization over
interim feasible allocation rules of (MAP) is a convex optimization
problem. See Section A.3 for a review of convex optimization.
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Suppose instead our objective was linear and given by weights w
indexed in our flattened vector space by it; then optimization of these
weights in expectation, i.e.,

∑
itxitwit, subject to interim feasibility,

is achieved by optimizing them pointwise for each profile of types t.
Moreover, for any such weights (which we view as a direction in the
flattened vector space) we can, via (5.1), estimate the corresponding
interim feasible allocation vector xw by sampling. To simplify the dis-
cussion we assume an ideal model where we can exactly calculate xw

from w.
A vertex of a convex polytope can be specified by a direction w that

is orthogonal to a separating hyperplane at this vertex; this vertex is
given by optimizing, as above, in the given direction. Any interior point
in a convex polytope can be represented as a convex combination of ver-
tices of the polytope; therefore, we can implement any interim feasible
allocation rule by sampling a direction from an appropriate distribu-
tion, and then for the type profile realized, optimizing the weights given
by the direction subject to ex post feasibility. Cai et al. [23] point out
that this stochastic direction can be viewed as a randomized virtual
value in the spirit of Myerson [74]. The following theorem applies to
any, even non-downward-closed, ex post feasibility constraint.

Theorem 5.9 (Cai et al. [23], Alaei [3]). For any joint distribu-
tion on type profiles and service constrained environment, any interim
feasible allocation profile can be ex post implemented as a stochastic
virtual surplus maximization (i.e., serving the set of agents with the
highest cumulative virtual value) with virtual value functions drawn
from an appropriate joint distribution.

In the special case that the set system is a matroid, the ex post
feasibility constraint is a polymatroid (and so is the induced interim fea-
sibility constraint, cf. Theorem 5.8). Greedy algorithms solve weighted
optimization subject to polymatroid constraints (Theorem A.3.1).
Therefore, we get a refinement on Theorem 5.9 as follows (the
single-item case is by Border [15]; the generalization to matroids is
by Alaei et al. [4]).
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Theorem 5.10 (Border [15], Alaei et al. [4]). For any joint
distribution on type profiles and any service constrained matroid envi-
ronment, any interim feasible allocation profile can be ex post imple-
mented by the greedy algorithm on a stochastic ordering of agent types
with the ordering drawn from the the appropriate joint distribution
(where types in a designated lowest class ⊥ are always rejected).

We now turn to the question of finding the appropriate mixture
over directions for Theorem 5.9. In general, a convex program such as
(MAP) can be optimized by the ellipsoid method if there is a separation
oracle, i.e., an algorithm that determines whether a given query point
is in the feasible polytope or not, and if it is not, gives a separating
hyperplane, a plane that separates the given point from the feasible
polytope. Cai et al. [23] give a method for finding a separating hyper-
plane for interim feasibility; we describe a similar approach from Saeed
Alaei’s Ph.D. thesis [3]. If the query point is feasible the method proves
its feasibility by giving a small (i.e., polynomial in the dimension) set
of vertices of the polytope that contain the point in their convex hull.
To implement this feasible point, it suffices to solve for it as a linear
combination of these vertices. Moreover, these vertices are specified by
the direction by which linear optimization yields the vertex. Therefore,
the interim feasible point can be implemented by drawing one of these
directions according to the convex combination and then optimizing ex
post for that direction.

Consider the following method for finding a separating hyperplane
for a query point x and the interim feasible polytope. Consider any
w in the unit ball (i.e., of length at most one). Given a query point
x the direction w gives a separating hyperplane under the following
condition (see Figure 5.1(a)). Let xw be the interim feasible point for
maximizing in the direction of w. Consider the projection of x and
xw onto w (i.e., the objective value of both points with respect to the
weights). If the objective value for x exceeds that of xw then x cannot
be interim feasible: for objective w it exceeds in objective value the
optimal interim feasible point xw. Indeed, a separating hyperplane is
the one orthogonal to weights that passes through xw.
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Fig. 5.1 Depicted are a query point x, the interim feasible polytope, a direction w, and the
vertex xw of the interim feasible polytope that is optimal in direction w. The projections
of x and xw onto w (the gray line) are depicted in gray. On the left, the projection of x
exceeds that of xw in the direction of w; therefore, the plane through xw orthogonal to
w (depicted by a dashed line) separates x from from the interim feasible polytope. On the
right, the projection of x does not exceeds that of xw in the direction of w; therefore, w
does not give a separating hyperplane for the interim feasible polytope. The plane (grey
dashed line) orthogonal to x − xw (grey dotted line) separates the direction w (and all
directions in the shaded area) from the space of directions that give separating hyperplanes
for interim feasibility.

To find such a separating hyperplane for x, we must find such a
direction w. The subset of the unit ball (i.e., directions) that gives sepa-
rating hyperplanes is convex (see Figure 5.1(b)); therefore, an approach
to find a separating hyperplane is to use the ellipsoid method recur-
sively. To do so, for any direction that does not give a separating
hyperplane to the interim feasibility problem, we must give a sepa-
rating hyperplane between it and the convex space of directions that
does give separating hyperplanes for the interim feasibility problem.

Suppose that we have a direction w that does not give a separat-
ing hyperplane to interim feasibility, see Figure 5.1(b); specifically, the
objective value (with respect to w) of the interim feasible solution xw

that optimizes for w exceeds that of x. We get a separating hyper-
plane for w by asking for what other objectives w† does xw prove
to be non-separating, i.e., where w† · xw exceeds w† · x. The space of
weights ruled out by xw, i.e., the grey shaded area in Figure 5.1(b),
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is given by the hyperplane that is orthogonal to the direction from x
to xw.

The ellipsoid method, in polynomial time in the dimension and
desired precision, will either find a separating hyperplane or the set
of directions considered by the method correspond to vertices of the
interim feasible polytope that contain the query point x in their con-
vex hull. As described above, decomposing x as a convex combination of
these vertices gives an ex post mechanism for implementing x: sample
vertices (a.k.a., directions) according to the convex combination and
optimize the ex post allocation according to the sampled direction.

Theorem 5.11 (Cai et al. [23]). For any joint distribution on type
profiles and any feasibility constraint on allocations, maximization of
a concave function of interim allocation constraints subject to interim
feasibility reduces in polynomial time to weighted maximization subject
to ex post feasibility.

To prove Theorem 5.11 we must replace ideal sampling of xw with
real sampling which is inexact. This inexactness results in error that
is polynomial small. Generally the error must be made exponentially
small to employ the ellipsoid method (Theorem A.5); Cai et al. [23]
address this difficulty.

5.3.3 Single-item Environments, Revisited

For a single-item environment, Theorem 5.10 states that any interim
feasible mechanism can be implemented by the greedy algorithm on a
stochastic ordering on the agents’ types. Below we give an alternative
characterization from Alaei et al. [4] that can be optimized over via a
quadratic (in the total number of agent types) linear program.

Consider the following simple token passing procedure. A dummy
agent starts with the token. Considering the agents in any fixed order,
the next agent steals the token from the current token holder with a
fixed probability that is a function of both agents’ types and identities.
Finally, after the last (nth) agent has had a chance to steal the token,
the current holder of the token is given the item. Obviously, any
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fixed transition probabilities encode an interim feasible allocation pro-
file; non-obviously, any interim feasible allocation profile can be thus
encoded. The probabilities in the token passing procedure are given by
a quadratic (in the total number of types) variables; and the token pass-
ing process can be expressed as a linear program in these variables. We
conclude with the following theorem and corollary, the proofs of which
follow from a technical max-flow-min-cut-style argument for a general-
ized formulation of network flow that corresponds to the token passing
procedure.

Theorem 5.12 (Alaei et al. [4]). For any independent distribution
on type profiles and any single-item environment, any interim feasi-
ble allocation profile can be ex post implemented by a token passing
procedure.

Corollary 5.13. For single-item environments, interim feasibility can
be (a) checked, (b) optimized over, and (c) implemented via the solution
to a quadratic-sized program with linear constraints.

Notice that for our example problems of unit-demand preferences or
single-dimensional budgeted preferences the single-agent problems can
also be expressed with a quadratic-sized (in the size of each agent’s type
space) linear program; these single-agent programs can be easily com-
bined with interim feasibility program for the token passing procedure
to give a single linear program with a quadratic number of variables (in
the total number of types). Such a program can be easily and effectively
solved.

5.4 Multi-agent Optimization with Multi-dimensional
Externalities

We now consider the case where agents have multi-dimensional pref-
erences and the way an agent is served imposes multi-dimensional
externality on the other agents via the feasibility constraint. We will
work up to providing a solution to the paradigmatic example of
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multi-dimensional matching environments. In the multi-dimensional
matching environment, there are n unit-demand agents and m unit-
supply items. The environment exhibits a multi-dimensional externality
because when an item j is assigned to agent i then it cannot be assigned
to another agent i† .= i but other items j† .= j can. The approach in this
section requires an agent’s utility to linearly separate across distinct
services in which she is interested.

5.4.1 Multi-item Auctions for Agents with Additive
Preferences

We first consider a relaxation of the problem where the agents’ pref-
erences are additive, not unit demand. Specifically, multiple items can
be assigned to each agent and the agent’s value for a bundle of items is
the sum of her values for each of the items in the bundle. In particular
the unconstrained feasibility is relaxed from (SAP.UD) to

xj(t) ≤ 1, ∀t ∈ T, j ∈ {1, . . . ,m}. (SAP.A)

Cai et al. [22] make the following two observations which enable the
problem to be easily solved using the methodology already discussed.
First, as each agent’s utility is linear then we can express the multi-
dimensional optimization problem in terms of the profile of allocation
rules corresponding to the items. For single-item allocation constraints
ŷ1, . . . , ŷm (in the quantile space of each coordinate) define the single-
agent revenue operator Rev[ŷ1, . . . , ŷm] as optimizing the single-agent
program (SAP) with the interim constraint,

∑
t∈S

xj(t)f(t) ≤ Ŷj(f(S)), ∀S ⊆ T, j ∈ {1, . . . ,m}. (SAP.IF.A)

Second, the multi-agent problem requires resolving interim feasibility
for each of the items but this resolution can be performed indepen-
dently for each item. In particular, a profile of n × m interim alloca-
tion constraints are interim feasible if and only if for each item j the n
corresponding interim allocation constraints are interim feasible. This
single-item interim feasibility is characterized by Theorem 5.7, can be
optimized over by a quadratic sized linear program by Corollary 5.13,
and implemented by simple token-passing procedure by Theorem 5.12.
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Combining m of these programs with the n quadratic sized linear pro-
grams for optimizing the single-agent problems; there is one cubic-sized
program for solving the multi-item optimal mechanism design problem
for agents with additive preferences.

Theorem 5.14 (combining Cai et al. [22] and Alaei et al. [4]).
For multi-item environments with m items and n agents with additive
preferences, the optimal auction can be solved for via a linear program
of size m · (

∑
i |Ti|)2.

5.4.2 Multi-item Auctions for Agents with Unit-Demand
Preferences

We now return to our original multi-item unit-demand unit-supply
matching environment, i.e., relative to the previous subsection, we add
back the unit-demand constraint (SAP.UD) to each single-agent prob-
lem, repeated here for convenience,

∑
j
xj(t) ≤ 1, ∀t ∈ T. (SAP.UD)

In the context of the previous section, we are no longer free to consider
the interim feasibility of each item separately.

The problem is therefore one of determining whether a set of n × m
interim allocation rules, one for each agent-item pair, are interim feasi-
ble given the ex post feasibility constraint that requires the assignment
of items to agents to be a matching. In fact, the results of Section 5.3
have already solved this problem. Theorem 5.9 implies that the ex
post mechanism is given by optimizing a stochastic virtual surplus;
Theorem 5.11 implies that the optimization necessary to find the appro-
priate distribution over virtual values is polynomial time tractable (by
reduction to the weighted bipartite matching problem). We can apply
these theorems as they are to the multi-dimensional matching problem
by pretending that we have nm representative agents corresponding
to each edge in the matching. Recall that interim feasibility does not
require independence of agent types; however, the incentive constraints
do. The values that an agent has for distinct items may be correlated;
however, the values that distinct agents have must be independent.
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Corollary 5.15 (Cai et al. [23]). In unit-demand unit-supply
matching environments for agents with independent types, the optimal
mechanism is a stochastic virtual surplus maximizer and the virtual
value functions can be found in polynomial time.

We summarize by describing the general environments where the
approach presented herein can be applied. Optimizing concave (e.g.,
from the revenue operator Rev[·]) functions over interim feasible allo-
cation constraints is tractable whenever optimizing a linear function
over ex post feasible allocations is tractable. Independence of the agent
types is not required for feasibility concerns. For the interim approach
to mechanism design to be valid for optimizing over Bayes-Nash equi-
librium, however, the types of the agents must be independent. This is
because optimizing revenue for a type drawn from a distribution subject
to an interim allocation constraint requires that the interim constraint
not be correlated with the type. The preferences of the agents can be
multi-dimensional and non-linear, however, they must linearly separate
across distinct services with respect to the feasibility constraint. Here
are two positive examples and one negative example: (separable) an
agent who only desires a single service (with respect to the feasibility
constraint) as in Section 5.3; (separable) an agent who desires several
services, has additive values across these services, and a budget rep-
resenting her total ability to pay; and (non-separable) an agent with
additive wealth across services but a concave utility function that maps
wealth to her overall utility.



6
Approximation for Multi-dimensional and

Non-linear Preferences

As we saw in the preceding section, optimal mechanisms for multi-
dimensional and non-linear preferences are generally quite complex.
In this section we look at simple mechanisms that are approximately
optimal. Our goal will be to show that mechanisms that were good
in revenue-linear settings, e.g., like the marginal revenue mechanism
(Section 3.3 and Section 5.2) or posted pricings (Section 4.2) continue
to be good in non-revenue-linear settings.

Prior-independent approximation is also possible for agents with
multi-dimensional and non-linear preferences (cf. Section 4.3). Deva-
nur et al. [39] and Roughgarden et al. [84] give prior-independent
approximations for the multi-item matching problem of Section 5.4.
Fu et al. [47] discuss prior-independent approximation for risk-averse
agents (a specific form of non-linear preference), and Devanur et al. [37]
discuss prior-independent approximation for agents with budgets.
These results will not be further discussed in this survey.

6.1 Single-agent Approximation

Our first order of business will be to address the complexity of the
single-agent problem. As described in Section 5.1, many single-agent

226
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problems can be solved by a linear program that is quadratic in the
size of the type space. For a number of multi-dimensional problems,
however, the size of the type space is exponential in the dimension of
the type space. A paradigmatic example is the unit-demand preference
over a set of items distributed according to a product distribution.

In the special case of a unit-demand agent with independently
distributed values for distinct items, it is not at all clear whether
anything interesting can be observed from the linear program for
solving the unconstrained unit-demand single-agent problem, i.e.,
(SAP) with (SAP.UD). Therefore, the first issue we encounter in an
attempt to find an approximation for this single-agent problem is that
we really do not understand the optimal mechanism very well. The
usual approach to such a situation is to identify an upper bound that
is analytically tractable.

As discussed in Section 3.2 the taxation principle suggests that any
mechanism is given by a menu over, possibly randomized, outcomes.
For a unit-demand agent we refer to these menus as lottery pricings
or, in the special case where the outcomes are all deterministic, as item
pricings. We desire, then, an upper bound on the revenue of the optimal
lottery pricing.

Consider the following thought experiment. We have a seller fac-
ing a single unit-demand agent to buy one of m items. Consider the
representative environment where this unit-demand agent is replaced
withm single-dimensional representatives with the unit-demand prefer-
ence reinterpreted as a feasibility constraint (SAP.UD). Would a seller
prefer to be in the original environment or in the representative envi-
ronment; i.e., in which environment can the seller obtain a higher rev-
enue? Intuition suggests that the seller should prefer the representative
environment as competition between representatives should produce
a higher revenue. The following theorem shows that this intuition is
mostly correct.

Theorem 6.1 (Chawla et al. [29]). For a unit-demand agent with
independent values, the revenue of the optimal auction for the represen-
tative environment is at least the revenue for the optimal item pricing
in the original unit-demand environment.
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Proof. It is sufficient to show that for any item pricing (t̂1, . . . , t̂m) for
the original environment there is an auction for the representative envi-
ronment that obtains at least the item pricing’s revenue. Notice that
the allocation rule of the item pricing is to serve the agent the item
j! that maximizes tj! − t̂j! if non-negative, otherwise, nothing. Hold-
ing other values tj for j .= j! fixed, this allocation rule is monotone
in each value tj . Therefore, Theorem 2.2 implies that this allocation
rule corresponds to a dominant strategy mechanism in the representa-
tive environment. Importantly, in this mechanism, the representative
who wins is the one who corresponds to the item that the original
unit-demand agent selects. The revenue in the original environment is
simply t̂j!; the revenue in the representative environment is the mini-
mum bid that representative j! must make to win. This minimum bid
is at least t̂j! . Therefore, the auction revenue exceeds the item-pricing
revenue.

While revenue of the optimal lottery pricing may exceed the rev-
enue of the optimal item pricing, it is nonetheless interesting to consider
whether it is easy to approximate the optimal item pricing (e.g., via
an item pricing that is easy to find). Using the optimal representa-
tive revenue as an upper bound on the optimal item pricing revenue,
we can easily attain such a bound. In fact, the revenue of an item
pricing is lower bounded by the revenue we would obtain if the agent
buys the cheapest priced item instead of her utility maximizing item,
i.e., when her values for several items are above their corresponding
prices, if instead of choosing to maximize tj − t̂j she chose to mini-
mize t̂j . We discussed the factor by which oblivious posted pricings
(i.e., tie-breaking by minimum price) approximate optimal auctions
in Subsection 4.2.1; the following is a corollary of Theorem 4.4 and
Theorem 6.1.

Corollary 6.2 (Chawla et al. [30]). For a unit-demand agent with
independent values, a uniform virtual item pricing is a two approxima-
tion to the optimal item-pricing revenue (and the optimal representa-
tive revenue).
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To address the more general question of approximating the optimal
lottery pricing, we will show that twice the optimal representative rev-
enue upper bounds the optimal lottery-pricing revenue. Before doing
so, consider the following brief discussion of why our intuition about
the increased competition of the single-dimensional environment is not
entirely correct. The mechanism designer when facing an agent with a
multi-dimensional type that is independent in each dimension can take
advantage of concentration bounds related to the law of large numbers.
For instance, consider the lottery where the agent is awarded an item
uniformly at random, i.e., the probability of obtaining any item is 1/m.
The value that the agent has for such a lottery is an 1/m fraction of
the sum of her values for the individual items. By the independence of
her values, the sum of her values is a concentrated random variable;
for instance, if she is offered a price that is equal to its expected value
less a standard deviation or two, then she will buy with high proba-
bility and pay nearly her full value. An auctioneer facing this agent
can potentially link independent agent decisions (i.e., actions that the
agent takes for each item) and it is in the auctioneer’s interest to do so.
See Armstrong [6] for a discussion of grand-bundle pricing for additive
preferences and Jackson and Sonnenschein [65] for a general discussion
of linking mechanisms. The following theorem upper bounds the benefit
from linking for independent unit-demand preferences.

Theorem 6.3 (Chawla et al. [32]). For a unit-demand agent with
independent values, the revenue of the optimal auction for the represen-
tative environment is at least half the revenue for the optimal lottery
pricing in the original unit-demand environment.

Proof. A lottery pricing is a set of lotteries with prices where the agent,
for each type she may have, selects her utility-maximizing lottery. It
is convenient to index these lotteries by the agent type for which it is
preferred. I.e., the lottery that type t would prefer is (x1(t), . . . ,xm(t))
at price p(t) as defined for the unconstrained single-agent program
(SAP) of Subsection 5.1.1. Recall that

∑
j xj(t) ≤ 1 as required by

(SAP.UD).
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To prove the theorem we will give two auctions for the rep-
resentative environment and show that the sum of these auctions’
revenues upper bounds the optimal unit-demand revenue. Of course,
optimal representative revenue upper bounds each of these auctions
revenue.

The lottery mimicking auction considers the profile of values t =
(t1, . . . , tm) of the representatives and the lottery (x1(t), . . . ,xm(t)) that
would have been selected by the unit-demand agent with type t. It
serves the highest-valued representative j! = argmaxj tj with probabil-
ity xj!(t) and charges her p(t) −

∑
j &=j! tjxj(t) + µ where µ is the utility

of the unit-demand player with type t† which is equal to t except with
the highest coordinate value lowered to be equal to the second-highest
coordinate value. Notice that the utility of the winning representative
j! in this auction is exactly the same as the unit-demand agent with
an additive normalization term µ that is a function only of the val-
ues of the other representatives. The utility of the unit-demand agent
is monotone in her value for each item. The utility of representative
j! is then equal to the change in utility of the unit-demand agent as
she changes her value for the j! item from the second-highest value in
{t1, . . . , tm} to tj!. This utility is non-negative because j! was the high-
est valued representative. We conclude that this auction is incentive
compatible and has revenue at least p(t) −

∑
j &=j! tjxj(t) on valuation

profile t where j! is the highest valued representative. For a given profile
of representatives call the second term in the winning representative’s
payment the deficit of the lottery mimicking auction.

The motivation for the next auction is that we want to obtain
back the deficit lost by the lottery mimicking auction. This is easy, as∑

j &=j! xj(t) ≤ 1 and tj for j .= j! is at most the second highest value.
Therefore, in this instance, the second-price auction obtains a higher
revenue than the deficit of the lottery mimicking auction. Taking the
expectation over all valuation profiles, the expected deficit is at most
the expected revenue of the second-price auction.

We have given two incentive compatible auctions for the represen-
tative environment with combined expected revenue exceeding the rev-
enue of the lottery pricing. Therefore, twice the optimal representative
revenue is at least the optimal unit-demand revenue.
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Corollary 6.4 (Chawla et al. [32]). For a unit-demand agent with
independent values, a uniform virtual item pricing is a four approxi-
mation to the optimal lottery pricing.

There is a natural computational question of whether the optimal
mechanism can be computed in time polynomial in the number of items.
For independent distributions, Cai and Daskalakis [21] give a partial
answer to this question by showing that the optimal item pricing can be
approximated arbitrarily closely by a computationally efficient dynamic
program.1 The question remains, however, as to whether the best lot-
tery pricing can be approximated arbitrarily closely.

6.2 Multi-agent Approximation in Service Constrained
Environments

We now consider approximation of the optimal mechanism for multi-
dimensional and non-linear agent preferences in service constrained
environments (Definition 5.1). Recall from Section 5.2 that when the
single-agent problems are revenue linear, that there is a relatively sim-
ple mechanism that is optimal, namely the marginal revenue mech-
anism (Definition 5.3). Our goals here are to generalize this simple
mechanism to non-revenue-linear agents and show that it remains a
good approximation to the optimal mechanism.

6.2.1 Approximation via the Marginal Revenue Mechanism

We outline below two general methods for showing that the marginal
revenue mechanism is a good approximation to the optimal mechanism.
The first is by using properties of the feasibility constraint imposed
by the service-constrained environment and the second is by showing
that the single-agent problem is approximately linear.

The feasibility-based approach is to show that the optimal ex ante
feasible mechanism (which is a marginal revenue mechanism by

1 Interestingly, Briest [17] show that if we restrict to item prices but the distribution is
correlated, then non-trivial computationally efficient approximation algorithms do not
exist under reasonable complexity theoretic assumptions.
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definition) does not violate interim feasibility too much and that there
is a natural way to address its violations of feasibility and construct
from it a mechanism that is ex post feasible. In fact, we already saw this
approach in subsection 4.2.2. If the optimal ex ante feasible mechanism
serves the agents with probabilities q̂, its revenue is

∑
iRi(q̂i). The

sequential posted pricing approach resolves ex post feasibility with the
first-come-first-served principle. If an agent arrives and would be served
by the mechanism but it is infeasible to do so given the agents previ-
ously committed to, then this agent is not served. If we consider the
agents sorted by “bang per buck”, i.e., Ri(q̂i)/q̂i, then for single-item
environments Corollary 4.7 shows that there is a mechanism based on
the ex ante optimal mechanisms for each agent that is an e

e−1 approx-
imation (and the same bound extends to matroid environments). The
marginal revenue mechanism, of course, is the optimal single-agent
mechanism based on the ex ante optimal mechanisms of each agent;
the following corollary is immediate.

Corollary 6.5 (Alaei et al. [5]). For matroid service-constrained
environments and agents with multi-dimensional non-linear preferences
and independent types, the marginal revenue mechanism is an e

e−1
approximation to the optimal mechanism.

Alaei et al. [5] generalize the result of this corollary to show that
in downward-closed service-constrained environments on n agents that
the marginal revenue mechanism is an O(logn) approximation.

We now turn to showing the marginal revenue mechanism is close to
optimal when the optimal revenue (given by Rev[·]) is close to linear.

Proposition 6.6 (Alaei et al. [5]). For downward-closed service-
constrained environments and agents with independent types and
multi-dimensional non-linear preferences that satisfy MargRev[ŷ] ≥
1
βRev[ŷ] for all ŷ, the marginal revenue mechanism is a β approxima-
tion to the optimal mechanism.

Proof. Consider the profile of interim allocation rules y of the optimal
mechanism. By the assumption of the proposition, the marginal revenue
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for this profile is within a β fraction of its (optimal) revenue. The
marginal revenue mechanism, by definition, optimizes marginal revenue
and therefore can only do better.

We now instantiate the above proposition for agents with unit-
demand values drawn from a product distribution. Consider any of the
agents in the mechanism. It suffices to find a linear upper bound on the
optimal single-agent revenue (as a function of the interim constraint ŷ)
and show that for any ex ante constraint q̂, that optimal single-agent
mechanism approximates this upper bound.

For the first part, consider an allocation constraint ŷ and con-
sider the representative environment (Section 6.1) where the multi-
dimensional agent is replaced with single-dimensional representatives.
The optimal revenue for the representative environment is easy to
describe. Consider the distribution of the maximum virtual value and
serve the agent with the maximum virtual value with the probability
specified by ŷ(·) for the quantile corresponding to this virtual value. By
Theorem 3.8 this mechanism is optimal and by Corollary 3.7 its rev-
enue equals its virtual surplus and therefore it is linear. It is relatively
straightforward to generalize Theorem 6.1, which shows that twice the
representative revenue upper bounds the optimal unit-demand revenue
for unconstrained problems, to single-agent environments with interim
constraints.

Theorem 6.7(Alaei et al. [5]). For a unit-demand agent with inde-
pendent values and any allocation constraint ŷ, the revenue of the
optimal auction for the representative environment is at least half the
revenue for the optimal lottery pricing in the original unit-demand
environment; moreover, its revenue is linear in ŷ.

For the second part, i.e., showing that for every ex ante constraint
q̂, that the q̂ optimal mechanism approximates the upper bound for the
ex ante constraint (recall, the ex ante constraint q̂ corresponds to the
allocation constraint ŷq̂(·) that is a reverse step function from 1 to 0
at q̂). In fact, just as we obtained a four approximation to the uncon-
strained upper bound via the prophet inequality (Theorem 4.3), there
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is a straightforward adaptation of the prophet inequality to the case
where both the prophet and the gambler have an ex ante constraint q̂.
In this generalization the q̂ = 1 case (i.e., the original prophet inequal-
ity) gives the worst approximation bound of two. As a consequence,
via the same argument as Corollary 6.2, with an ex ante allocation
constraint a uniform virtual price gives a good approximation to the
optimal representative revenue.

Theorem 6.8(Alaei et al. [5]). For a unit-demand agent with inde-
pendent values and ex ante allocation constraint q̂, a uniform virtual
item pricing is a two approximation to the optimal representative rev-
enue.

We conclude that a unit-demand agent with independent values is
approximately linear and therefore the marginal revenue mechanism
for a collection of such agents is approximately optimal. Notice that
for matroid environments, the e

e−1 bound via the feasibility constraint
is better than the bound we get via the unit-demand single-agent
problem; however, for downward-closed environments where the known
bound implied by feasibility is logarithmic in the number of agents [5],
this approximate linearity gives an improvement.

Corollary 6.9(Alaei et al. [5]). For unit-demand agents with inde-
pendent values in a downward-closed service-constrained environment,
the marginal revenue mechanism is a four approximation to the optimal
mechanism.

The result implied by the statement of Corollary 6.9 is a bit
problematic when the agents’ type spaces are high dimensional
(cf. Section 6.1); for instance, the computational tractability of even the
unconstrained single-agent problem is unknown. We can in fact, use the
marginal revenue framework with approximations to the ex ante con-
strained mechanism. Theorem 6.8 shows that setting a uniform virtual
price for which an item is bought with probability q̂ is a four approx-
imation to the q̂ optimal mechanism. Denote by P̃ (q̂) the revenue of
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this approximation mechanism as a function of q̂. Denote by R̃(q̂) the
smallest concave function that upper bounds P̃ (q̂). Refer to R̃(·) as
the pseudo-revenue curve. Notice that uniform virtual pricings induce
an ordering on types (cf. Definition 5.2) and therefore the marginal
pseudo-revenue mechanism following Definition 5.3 is well defined. This
mechanism, by the same argument as Corollary 6.9, is a four approxi-
mation to the optimal mechanism and it is computationally simple.

For the special case of i.i.d. agents and a single-item service-
constrained environment the outcome of the marginal pseudo-revenue
mechanism is easy to describe. The agent with the overall highest vir-
tual value (for any item) wins and buys her utility maximizing (i.e.,
value minus price) item under the uniform virtual prices correspond-
ing to the overall highest virtual value of the other agents or a virtual
reserve price, whichever is higher.

6.2.2 Implementation of the Marginal Revenue Mechanism

We describe at a high level two approaches for implementing the
marginal revenue mechanism without revenue linearity. In particular,
the main obstacle that we must overcome is the lack of an implicit
ordering on types.

Theorem 6.10 (Alaei et al. [5]). For any service constrained envi-
ronment and agents with independent types, the marginal revenue
mechanism is implementable (by a polynomial time reduction to
weighted optimization and the ex ante optimal single-agent problems).

We saw in Section 5.2 that revenue linearity (via orderability)
implies that the marginal revenue mechanism is easy to implement.
Above, it is evident that the marginal pseudo-revenue mechanism is
easy to implement (this is because the ex ante pseudo mechanisms cor-
respond to full lotteries, i.e., the probability that a type is served is
either one or zero; cf. Corollary 5.4). The challenge then of implement-
ing the marginal revenue mechanism is in dealing with partial lotteries,
i.e., when a type is probabilistically allocated.
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When the ex ante optimal mechanisms (i.e., the mechanisms that
define the revenue curve) for an agent satisfy a natural monotonicity
property, specifically, for any type of the agent, the agent’s probability
of service in a q̂ optimal mechanism is monotone non-decreasing in q̂,
there is a simple method for implementing the marginal revenue mech-
anism. At high level we treat this aforementioned monotone function
as a distribution function and draw the agent’s quantile from it. The
remainder is similar to the original marginal revenue mechanism for
orderable agents (Definition 5.3); the agents served are the ones that
maximize cumulative marginal revenue. This approach gives a domi-
nant strategy mechanism. As an example, this monotonicity property
is satisfied for single-dimensional budgeted agents (by Theorem 5.1; see
Alaei et al. [5] for further details).

Alaei et al. [5] also give brute-force approach for defining the
marginal revenue mechanism in general. Notice that for a given profile
of revenue curves R and a profile of quantiles q with each quantile qi
in the profile drawn uniformly at random, the marginal revenue mech-
anism induces an profile of interim allocation constraints ŷ which, by
definition, is feasible. Moreover, considering a single agent, the interim
mechanism that attains the cumulative marginal revenue for allocation
constraint ŷ is given simply by the definition of cumulative marginal
revenue as the appropriate convex combination of revenues of the ex
ante optimal mechanisms. The desired interim mechanism is the same
convex combination over ex ante optimal mechanisms. This interim
mechanism induces a mapping of types to quantiles (by ordering types
by decreasing service probability of the mechanism). We cannot just
use this ordering; however, the allocation rule y of the marginal revenue
mechanism for ŷ satisfies y ( ŷ (recall Definition 3.3, Section 3.2) but
may not be equal to ŷ. Instead we need to calculate the stationary trans-
formation σ that satisfies y(q) = Eσ[ŷ(σ(q))] for all q and use these to
calculate marginal revenues.2 The general marginal revenue mechanism

2This is a continuous version of majorization where such a transformation is given by a
doubly-stochastic matrix. Such a doubly stochastic matrix can be calculated via techniques
of Hardy et al. [57]; however, for our purposes it is sufficient to be able to sample from σ.
Alaei et al. [5] give a method for sampling from σ efficiently.



6.3 Multi-agent Approximation with Multi-dimensional Externalities 237

then serves the feasible set of agents S to maximize
∑

iR
′
i(σi(qi)). This

mechanism is Bayesian incentive compatible.

6.3 Multi-agent Approximation with Multi-dimensional
Externalities

In this section we will generalize the approach of Section 6.1 to give
a simple approximation mechanism for the n agent m item matching
environment with independent values. It is straightforward to general-
ize Theorem 6.1 to show that the optimal revenue in the representative
environment, i.e., with each of the n unit-demand agents replaced by m
single-dimensional representatives, is an upper bound on the optimal
deterministic dominant-strategy incentive-compatible auction revenue.
The key observation that enables this generalization is that a determin-
istic dominant-strategy incentive-compatible auction, via the taxation
principle, looks to each agent, for the reports of the other agents fixed,
like an item pricing.

Theorem 6.11 (Chawla et al. [30]). For unit-demand agents with
independent values, the revenue of the optimal auction for the represen-
tative environment upper bounds the revenue for the optimal determin-
istic dominant-strategy incentive-compatible auction for the original
unit-demand environment.

We will now show that in the single-dimensional representative envi-
ronment, that there is an oblivious posted pricing (cf. Subsection 4.2.1)
that is a good approximation to the optimal mechanism. The same
result then holds for original unit-demand environment. In the envi-
ronment with nm representatives, the oblivious result implies that if
these representatives arrive in any order, and are offered the posted
prices as take-it-or-leave-it while-supplies-last, that the approximation
bound is obtained. In comparison, in the original unit-demand environ-
ment, the n agents can arrive in any order and when offered prices over
the items remaining, each chooses to maximize value minus price. This
induces an ordering over agent-item pairs that is a valid ordering for
the representative environment, and, consequently, the representative
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environment revenue for the worst-case order can be no better. The
proof of the following theorem is deferred to the end of this section.

Theorem 6.12 (adapted from Chawla et al. [30]). For single-
dimensional bipartite matching environments (where agents are edges
and feasible outcomes are matchings), for any independent distribution
of values, there is an oblivious posted pricing that is a nine approxima-
tion to the optimal revenue.

Corollary 6.13 (adapted from Chawla et al. [30]). For unit-
demand unit-supply matching environments with independently dis-
tributed values, there is an oblivious posted pricing that is a
nine approximation to the optimal deterministic dominant-strategy
incentive-compatible auction.

Of course, we would prefer our auction to approximate the optimal
Bayesian-incentive-compatible potentially-randomized auction. Chawla
et al. [32] give an analog of Theorem 6.3 that shows that the optimal
(randomized) multi-dimensional matching revenue is at most five times
that of the single dimensional representative environment.

Theorem 6.14 (adapted from Chawla et al. [32]). For unit-
demand unit-supply matching environments with independently
distributed values, there is a oblivious posted pricing that is a 45
approximation to the optimal auction.

The construction above can be viewed as an instance of a general
methodology that reduces unit-demand pricing problems to an analo-
gous single-dimensional pricing problem. The final step, i.e., the instan-
tiation of the reduction, is the proof of a theorem like Theorem 6.12
that shows that in the single-dimensional representative environment
oblivious posted pricing is a good approximation to the optimal auc-
tion. The explicit reduction can be found in Chawla et al. [30].
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The high-level sketch of the proof of Theorem 6.12 is the following.
We start with the ex ante probabilities of service of the optimal rep-
resentative mechanism; we decrease these probabilities by a constant
factor and argue that this decrease implies that, given the independence
in the representatives’ values, for any representative there is a constant
probability that she can be served if she arrives last. By the convexity
of revenue curves, the decrease in allocation probability by a constant
decreases expected revenue by at most the same constant. Therefore,
if these points on the revenue curve correspond to price postings then
posting these prices gives a constant approximation.

Of course, the revenue curve of an agent may not be equal to the
price-posting revenue curve. Therefore, we may not be able to imple-
ment the desired point on a given revenue curve via a deterministic
price posting. The lemma below generalizes a result of Devanur and
Hartline [38] with β = 1, and shows that we can always find a posted
price that approximates the desired point on the revenue curve.

Lemma 6.15. For any single-dimensional agent, any ex ante probabil-
ity q̂, and any factor β > 1, there is a posted price v̂† (corresponding to
q̂† ≤ q̂/β) for which the price-posting revenue at q̂† is a β + 1 approxi-
mation to the original revenue at q̂, i.e., P (q̂†) ≥ R(q̂)/(β + 1).

Proof. We would like to offer a posted price according to q̂/β. For
regular distributions (Definition 3.7) where price-posting and optimal
revenue are equal, this price gives a β approximation as P (q̂/β) =
R(q̂/β) ≥ R(q̂)/β (by convexity of R(·)). The challenge then is irreg-
ular distributions.

Consider q̂‡, the highest quantile below q̂ for which the price-posting
revenue and optimal revenue are equal, i.e., P (q̂‡) = R(q̂‡), and let v̂‡ be
its corresponding price. If q̂/β ≤ q̂‡ then again the price corresponding
to q̂/β is good; the price posted by q̂/β is at least v̂‡ so P (q̂/β) ≥
v̂‡q̂/β ≥ R(q̂)/β. The challenge then is the case depicted in Figure 6.1
where q̂‡ < q̂/β.

The q̂† in the statement of the lemma is either q̂‡ or q̂/β whichever
has larger price-posting revenue. Partition the optimal revenue of q̂
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Fig. 6.1 A geometric depiction of the quantities in Lemma 6.15. The revenue curve R (thin,
black, solid line) is the convex hull of the price-posting revenue curve P (thick, grey, dashed
line). The quantiles q̂ and q̂/β are within an ironed interval with lower bound q̂‡. The dashed
lines that connect to points on the price-posting revenue curve have slope equal to the price
posted, i.e., P (q̂) = v̂q̂ by definition. Importantly for the proof, the price-posting revenue of
q̂/β is at least a β fraction of the price-posting revenue for q̂, i.e., P (q̂/β) ≥ P (q̂)/β, and the
price-posting revenue of q̂† is at least the difference in the optimal revenue and price-posting
revenue of q̂, i.e., P (q̂‡) ≥ R(q̂) − P (q̂).

into two pieces, that of the price-posting revenue P (q̂) and the remain-
der R(q̂) − P (q̂). The price-posting revenue from q̂/β is at least a β
fraction of P (q̂) = v̂q̂ (as its corresponding price is only higher than v̂
and its probability of service is exactly a β factor lower). The slope
of the revenue curve at q̂, i.e., the marginal revenue R′(q̂), is always
at most v̂ = V (q̂). By geometry, then, the price-posting revenue of q̂‡

is at least the remainder R(q̂) − P (q̂). Therefore, the maximum of the
price-posting revenue at q̂‡ or q̂/β is at least a 1 + β fraction of the
total R(q̂).

We now give the proof of Theorem 6.12.

Proof. As this is entirely a single-dimensional approximation question,
we will adopt the notation and terminology of Section 4. However, for
convenience we will index the n · m representatives corresponding to
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edges in the bipartite matching by their ij coordinate. Representative
ij’s value is vij drawn independently from distribution Fij , her quantile
is qij, her revenue curve is Rij, etc.

As we did in Subsection 4.2.2 we use the upper bound on the optimal
mechanism given by ex ante feasibility; cf. (EAMAP). Let q̂ be the
revenue-optimal profile of probabilities that is ex ante feasible; i.e., q̂
optimizes

∑
ijRij(q̂ij) subject to

∑
i q̂ij ≤ 1 for all j and

∑
j q̂ij ≤ 1 for

all i. Invoking Lemma 6.15 with β = 3 we obtain a profile of quantiles
q̂† with at most one third the allocation probability, i.e., q̂†ij ≤ q̂ij/3,

and at least one fourth the revenue, i.e., P (q̂†ij) ≥ R(q̂ij)/4 for all ij.

By definition, q̂† satisfies
∑

ij Pij(q̂
†
ij) ≥

1
4

∑
ijRij(q̂ij) and

∑
i q̂ij ≤

1/3 for all j and
∑

j q̂ij ≤ 1/3 for all i. Moreover, if ij is feasible at the

time ij arrives then the corresponding posted pricing of v̂† attains rev-
enue Pij(q̂

†
ij). To get a lower bound on the revenue from ij, imagine ij

is the last representative to arrive. By the union bound, the probabil-
ity of the event that another representative i†j for i† .= i was previously
served is at most 1/3, likewise for the event that another representative
ij† for j† .= j was previously served. Independence of these two events
implies that the probability neither happens is (2/3)2 = 4/9. Therefore,
the revenue we can expect from representative ij under any ordering is
at least 4/9 · 1/4 · Rij(q̂ij). Summing over all representatives gives the
desired nine approximation.

In this section we focused on approximation by oblivious posted
pricings. Sequential posted pricings can also be used. Many related
approximation bounds based on multi-dimensional sequential posted
pricings are given by Chawla et al. [30]. These techniques are refined
by Alaei [2] who introduces a multi-dimensional prophet-inequality-like
(cf. Subsection 4.2.1) approach and multi-dimensional revenue curves
to give very small approximation bounds. For example, his sequential
posted pricing improves the matching approximation (with respect to
optimal deterministic mechanisms) to four.



7
Computation and Approximation Algorithms

In this section we address computational challenges in mechanism
design. To implement a mechanism we must both calculate its out-
come, i.e., who wins, and accompanying payments. For many prob-
lems of interest, i.e., for combinatorial auctions such as those given by
and-preferences, the underlying weighted optimization problem is NP-
hard. Unfortunately, however, generic approximation algorithms can-
not directly be used in constructing mechanisms because they may fail
the monotonicity requirement of Theorem 2.2.

There are a number of approaches to resolving the potential non-
monotonicity of generic approximation algorithms. A first approach is
to look at classes of approximation algorithms that satisfy monotonic-
ity, or for which there are generic procedures for converting them to
satisfy monotonicity. Along these lines Lehmann et al. [70] point out
that in single-dimensional environments, algorithms that are greedy by
any monotone function of agents values satisfy the (dominant-strategy
version of the) monotonicity condition of Theorem 2.2. Recall the set-
ting of single-minded combinatorial auctions (a.k.a., and-preferences,
Section 3.1) where there are n agents, m items, and each agent i has a
value vi for obtaining all of the items in demand set Si. Two agents with
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demand sets that intersect cannot simultaneously be served; the corre-
sponding optimization problem is weighted set packing. The algorithm
greedy-by- vi√

|Si|
is an O(

√
m) approximation which, up to constant

factors, is the best possible under standard computational tractabil-
ity assumptions; the corresponding mechanism is dominant strategy
incentive compatible and achieves the same approximation factor [70].

Lavi and Swamy [69] observe that algorithms for solving inte-
ger programs (IPs) based on rounding linear programs (LPs) can be
made appropriately monotone (even for linear multi-dimensional pref-
erences). The integrality gap between an integer program and its linear
program relaxation is the maximum ratio between their optimal solu-
tions. Intuitively, we can think of scaling the LP polytope to fit inside
the IP polytope and then finding a rounding that is feasible with respect
to the original IP and an unbiased estimator of the optimal solution to
the scaled linear program. Optimality of the scaled LP solution implies
the rounded integral solution is monotone as required for dominant
strategy incentive compatibility. For example, via this method Lavi and
Swamy [69] generalize the Lehmann et al. [70] O(

√
m) approximation

from single- to multi-dimensional agent preferences.
Finally, Dughmi and Roughgarden [43] show that any algorithm

that gives a polynomial time approximation scheme for a weighted
maximization problem, i.e., for any ε there is an algorithm that gives
a 1 + ε approximation, can be converted into a mechanism. The result
exploits an elegant connection between polynomial time approximation
schemes and smoothed complexity; the former being approximately
optimizing a specific input and the latter being exactly optimizing a
perturbed input. In particular, they give a linear perturbation scheme
for which optimization of the perturbed preferences of agents for exact
feasibility constraints is equivalent to optimization of exact preferences
on a perturbed feasibility constraint. As the latter satisfies the multi-
dimensional monotonicity requirement for dominant strategy incentive
compatibility, so does the mechanism of their construction.

In the rest of this section we give generic approaches for converting
any algorithm into a Bayesian incentive compatible mechanism (for
maximizing welfare). The first is a simple and economically-intuitive
approach for single-dimensional environments that is based on the
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ironing of non-monotone allocation rules. The second approach gen-
eralizes to quasi-linear multi-dimensional environments and is based
on optimally solving maximum weight matching. Both approaches can
be viewed as a Bayesian reduction: Given a good (in terms of expected
performance) Bayesian algorithm, a good Bayesian mechanism is con-
structed.

For both of these sections we assume that an agent’s expected value
for an outcome of the mechanism (with reports of other agents ran-
domly drawn from the distribution) and any fixed report of hers is
given precisely by an oracle. (The oracle can be replaced with sta-
tistical estimates from sampling, but then due to errors in sampled
estimates the induced mechanism will only be approximately incentive
compatible. The gains from misreporting in the resulting mechanism
can be bounded in terms of the accuracy of the sampling procedure.
There are constructions for removing the oracle and obtaining exact
incentive compatibility, which we defer to the papers where they were
first presented, see, Hartline and Lucier [60] and Hartline et al. [59].

7.1 Single-dimensional Monotonization via Ironing

Suppose we are given an algorithm A that obtains a good expected
surplus for a given distribution over values F , but the induced alloca-
tion rules of the algorithm y are not monotone. Meaning, there is some
agent i whose interim allocation rule yi is not monotone. Theorem 2.2
implies that there is no payment rule that can accompany such an
allocation rule that would incentivize the agent to truthfully report
her preference. Consequentially, the strategic incentives of the agents
prevent this algorithm from being implemented.

As in previous sections, understanding and resolving this mono-
tonicity issue is easiest in quantile space rather than value space. Since
the transformation between values and quantiles is given by the distri-
bution F (equivalently, by inverse demand curve V (·), Definition 3.1),
we without loss assume our algorithm takes its input in quantile space
and the agents specify their values also by quantile.

One approach to resolve the monotonicity issue is based on the
following observation. Suppose for this agent i with non-monotone
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allocation rule yi instead of running the algorithm on the agent’s actual
quantile, when the quantile qi falls within given interval [a,b], we redraw
a quantile q†i from U [a,b] and input the redrawn quantile into the
algorithm instead of qi.1 Notice that the induced allocation rule y†i
is, by construction, flat on [a,b] and equal to the expected value of
the allocation rule on [a,b], i.e., y†i (q) = Eq†∼U [a,b]

[
yi(q†)

]
= Y (b)−Y (a)

b−a
for q ∈ [a,b]. We refer to this process as ironing the allocation rule on
interval [a,b]; it is mathematically analogous to the ironing discussed
in Section 3.4. Consider the affect of ironing [a,b] on the cumulative
allocation rule Yi for ŷi. As Y

†
i (a) = Yi(a), Y

†
i (b) = Yi(b), and Y †

i (q) is
linear on q ∈ [a,b]; we get Y †

i from Yi by connecting the points a and b
on Yi with a line segment.

We make three important observations about this ironing method.
First, the new allocation rule y†i is weakly monotone on [a,b]. Second,
as the transformation preserves the uniform distribution of the quantile
input into the algorithm, the allocation rules of the other agents are
unaffected. Third, the transformation has the potential to improve the
surplus of the agent, e.g., if the allocation rule was initially monotone
in the opposite direction on the interval and was thereby serving lower
valued agents with higher probability than higher-valued agents then
flattening it and giving all agents in the interval the same service prob-
ability improves surplus. Together these observations suggest that it
could be possible to identify intervals in which the allocation rule can
be ironed so as to make the agent’s entire allocation rule monotone,
weakly improve the agent’s surplus, and not affect the allocation rule
of any other agents.

Not affecting the allocation rule of any other agents is important
as it decomposes the problem of making the allocation rules monotone
into separate problems for each agent. Furthermore, the algorithm is
only guaranteed to have good performance in expectation for the given
distribution; if our construction were to change the distribution input
into the algorithm then it may not perform well.

1Note: if we were implementing this construction in value space and we wanted to flatten
the agents allocation rule between on the interval [a,b] (in value space) we would draw a
new value v† ∼ F [a,b], the distribution F restricted to the interval [a,b].
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We now focus on the single-agent problem and give a construction
that closely mirrors that of Section 3. The main idea is to construct
allocation rule ȳ with cumulative allocation rule Ȳ that is constructed
from the smallest concave function that upper bounds Y . First, by the
above line-segment interpretation of ironing, this allocation rule can be
constructed. Second, it is easy to see that it increases surplus (strictly
so, given that y was non-monotone to begin with). As Ȳ is concave, ȳ
is monotone as desired.

Proposition 7.1(Hartline and Lucier [60]). The allocation rule ȳ
with cumulative allocation rule Ȳ equal to the smallest concave upper
bound on Y is monotone and has higher expected surplus than y.

Proof. We derive a sequence of inequalities starting from the expected
surplus of y expressed in terms of the inverse demand curve V (q) =
F−1(1 − q) (with derivative V ′(q)). The expected surplus is,

Eq[V (q) · y(q)] =
[
V (q) · Y (q)

]1
0
− Eq

[
V ′(q) · Y (q)

]
,

by integral definition of expectation and integration by parts. Assume
the first term on the right-hand side is zero.2 Observe,

Eq
[
−V ′(q) · Y (q)

]
≤ Eq

[
−V ′(q) · Ȳ (q)

]

= Eq[V (q) · ȳ(q)] ,

which follows because by definition Ȳ (q) ≥ Y (q) and because “−V ′(q)”
is non-negative (and then again integrating by parts).

We conclude that the following approach monotonizes the interim
allocation rules of any algorithm. For each agent i, identify the inter-
vals in which the cumulative allocation rule Yi is not equal to its small-
est concave upper bound Ȳi. For each agent i, if the agent’s quantile
falls within such a previously identified interval, redraw the quantile

2 It is zero is for value distributions supported continuously on interval [0,h] as V (0) = h
(importantly: it is finite), Ŷ (0) = 0, V (1) = 0, and Ŷ (1) ≤ 1 (importantly: it is finite).
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uniformly from the interval. Run the algorithm on the resulting profile
of quantiles and output its outcome. We refer to the algorithm that
results from this construction as the ironed algorithm.

Theorem 7.2 (Hartline and Lucier [60]). For any algorithm A
the corresponding ironed algorithm is monotone and obtains at least
its expected welfare.

A few observations are worthy of note. First, the ironed algorithm
only makes a single call to the original algorithm. Suppose the algo-
rithm is the result of an offline optimization and then used repeatedly
in an online setting. The ironed intervals can be similarly calculated in
the offline stage and then stored in a lookup table. There is essentially,
then, no added complexity of running the ironed algorithm in the online
stage. Second, this approach can be applied to any objective that sep-
arates linearly across the agents, e.g., revenue. The caveat being that
we should initially view the algorithm as taking as input the marginal
revenues of the agents, and then we replace the quantile to value map-
ping with the quantile to marginal revenue mapping given by R′

i(·)
for each agent i. Notice that, as needed by the proof, the concavity of
Ri(·) implies that “−R′′

i (·)” is non-negative. Third, this reduction, as
simple as it is, does not generically extend to non-separable objectives;
Chawla et al. [31] give a counter example for the objective of makespan
for related machines (i.e., minimizing the maximum completion time
of jobs scheduled on strategic machines where the run time of a job
j on machine i is given by the product of the job’s public length and
the machine’s private speed). Fourth, this reduction gives a monotone
interim allocation rule which is sufficient for Bayesian incentive com-
patibility as stated by Theorem 2.2; Chawla et al. [31] show that it
does not seem to be generalizable to give dominant strategy incentive
compatible mechanisms. Fifth and finally, the ironing approach does
not seem to have a natural direct generalization to environments with
multi-dimensional agent preferences; in the next section we give a sim-
ilar but general approach.
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7.2 Multi-dimensional Monotonization via Matching

Our approach to fixing the Bayesian non-incentive-compatibility of
algorithms for agents with quasi-linear, i.e., arbitrary over outcomes
but linear in payments, multi-dimensional preferences proceeds simi-
larly to the single-dimensional case. For each agent, we look for resam-
pling transformation σ from types to types that is (a) stationary with
respect to the distribution, (b) improves welfare, and (c) for which the
composition with the algorithm is Bayesian incentive compatible. As
in the single-dimensional case, the restriction to stationary transforma-
tions allows us to address the non-incentive-compatibility of each agent
independently.

As a warm up, consider an agent with type t drawn uniformly
from a finite type space T , i.e., the probability that the agent has
any type t ∈ T is 1/|T |. The interim outcome rule (with other agents’
types drawn from their respective distributions) of the algorithm maps
each type of this agent to a distribution over outcomes w(t). Non-
incentive-compatibility of the algorithm means there is no pricing rule
p(t) such that for all t, t† ∈ T , u(t,w(t)) − p(t) ≥ u(t,w(t†)) − p(t†).
Consider the weighted bipartite graph between types and outcomes
with weights between type t and outcome w(t†) given by the utility
function u(t,w(t†)).

Proposition 7.3 (e.g., Rochet [82] or Gul and Stacchetti [54]).
An interim outcome rule is incentive compatible if and only if it corre-
sponds to a maximum weight matching in the utility-weighted bipar-
tite graph between agent types and outcomes of the rule. Moreover,
the appropriate payments are the dual variables corresponding to each
outcome being matched to at most one type in the matching linear
program.

The transformation σ to make any non-incentive-compatible algo-
rithm incentive compatible is as follows. With respect to the afore-
mentioned bipartite graph, calculate the maximum weighted matching
and set σ(t) = t† if t is matched to w(t†). Note that (a) the transfor-
mation σ is stationary by the fact that it corresponds to a matching
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and that the distribution on types is uniform, (b) expected welfare
is improved as the new expected surplus is a |T | fraction of the maxi-
mum matching and the original expected surplus was the same fraction
of a non-maximum matching, and (c) the constructed allocation rule
w̄(t) = w(σ(t)) corresponds to a maximum matching and is therefore
incentive compatible.

To relax the assumption that the types are uniformly distributed
(and from a finite type space) we give a generalization of the construc-
tion that preserves two of its implicit properties. First, the outcomes on
one side of the matching are not a function of the agent’s actual type.
Second, if we pick one of these outcomes uniformly at random then the
type from which the outcome is obtained is distributed according to
the distribution on types.

The construction, which we refer to as the replica-surrogate-
matching transformation, is as follows. Define a set of m replica types
that contains the actual agent type and m − 1 independent draws
from the distribution F . Define a set of m surrogate types each drawn
independently from the distribution F . We will consider the bipartite
matching between replica types and surrogate outcomes, i.e., the dis-
tribution over outcomes given by the algorithm applied individually to
each of the surrogate types (with the types of the other agents drawn
from their own distributions as usual). The transformation then will
map the real type to the surrogate whose outcome it is matched to in
the maximum weighted matching on of the utility-weighted bipartite
graph between replica types and surrogate outcomes.

It is easy to see that the constructed algorithm induced by the
composition of the replica-surrogate-matching transformation with the
original algorithm satisfies two of our three requirements for such a
transformation. It is Bayesian incentive compatible and stationary. It
does not, however, necessarily preserve surplus. Unlike in the previ-
ous case where the outcome of the original algorithm was one of the
candidate matchings, because the surrogates are not equal to the repli-
cas, the outcome of the original algorithm is not a candidate outcome
for the construction. It should be intuitive, though, that in the limit as
the number of types m in the replica surrogate matching approaches
infinity, the potential loss in welfare approaches zero.



250 Computation and Approximation Algorithms

For finite m we can get a bound on the loss incurred by the replica
surrogate matching in terms of a quantity known as the transportation
cost (see, e.g., Talagrand [90]). The transportation cost for a space T ,
distribution F , cost metric c, and size m is the average edge cost in
the minimum cost matching (according to c) between two sets of size
m drawn independently from F .

Transportation cost bounds the performance loss by the replica sur-
rogate matching. One way to get a matching between replica types
and surrogate outcomes, is as follows. First, match replicas types
to surrogate types to minimize the cost of the matching, where the
cost of matching replica type r to surrogate type s is the maximum
difference in utilities of the two types for the same outcome, i.e.,
maxw |u(r,w) − u(s,w)|. Second match surrogate types to surrogate
outcomes to maximize the utility of the matching. The surplus of the
composition of these two matchings gives a lower bound on the surplus
of the optimal replica-surrogate matching. The expected cost of the
first matching is the transportation cost for the metric; the expected
surplus of the second matching is at least that of the algorithm (as the
matching of each surrogate to its own outcome is a candidate match-
ing). As the real type is equally likely to be any of the replicas, the
expected loss for the agent is equal to the transportation cost.

Theorem 7.4. The mechanism constructed by applying a replica-
surrogate-matching transformation to each agent independently and
then running the algorithm on the transformed types (with payments as
per Proposition 7.3) is Bayesian incentive compatible and has expected
surplus at least that of the algorithm minus the sum of transportation
costs of the agents.

Hartline et al. [59] give bounds on the transportation cost for several
settings of interest. In particular, for single-dimensional preferences on
and values on [0,1], the loss from an agent in the reduction can be
reduced to ε with a replica surrogate matching with size m that is
quadratic in 1/ε. Unsurprisingly, the best general bounds obtained for
multi-dimensional type spaces require a replica surrogate matching of
size exponential in the dimension.
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Mathematical Reference

We provide herein additional discussion of a few basic mathematical
objects that play a prominent role in Bayesian mechanism design.

A.1 Submodular Set Functions

Given a subset S of a ground setN consider a real valued set function g :
2N → R. Intuitively, submodularity corresponds to diminishing returns.
Adding an element i to a set increases the value of the set function less
than it would have for adding it to a subset.

Definition A.1. A set function g is submodular if for S† ⊂ S‡ and
i .∈ S‡,

g(S† ∪ {i}) − g(S†) ≥ g(S‡ ∪ {i}) − g(S‡).

A.2 Matroid Set Systems

Matroid set systems capture environments with inherent substitutabil-
ity. A matroid is a set system that is given by a ground set N and
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a collection of feasible, a.k.a., independent, sets, I ⊂ 2N . The defining
two properties of a matroid set system (N,I) are,

downward closure: Subsets of independent sets are independent.
I.e., if S ∈ I and S† ⊂ S then S† ∈ I.

augmentation: There is always an element in a big independent set
that can augment a small independent set such that the aug-
mented set is independent. I.e., if S†,S‡ ∈ I and

∣∣S†∣∣ <
∣∣S‡∣∣

then exists i ∈ S‡ \ S† such that S† ∪ {i} ∈ I.

The augmentation property implies, importantly, that all maximal
independent sets are of the same cardinality. The matroid rank function
is a set function defined as the largest cardinality of an independent
subset of the given set; the rank of the matroid is the rank of the ground
set; the matroid rank function is denoted by rank(S) for S ⊂ N . If the
elements of the ground set have weights, then we can similarly define
the matroid weighted-rank function as the maximum cumulative weight
of an independent subset. Importantly, the matroid rank and weighted-
rank functions are submodular (Definition A.1). Therefore, the matroid
structure imposes diminishing returns.

Theorem A.1. The matroid rank function is submodular; for any real
valued weights, the matroid weighted-rank function is submodular.

The consequence of the matroid structure most important to auc-
tion theory is given by the following algorithmic characterization.

Theorem A.2. An set system (N,I) is a matroid if and only if for
any weights the greedy-by-weight algorithm selects the independent set
with maximum cumulative weight.

There are a number of examples of matroid set systems that are
relevant to auction theory.

uniform: The independent sets are those with cardinality at most a
given number (e.g., k). The k-uniform matroid corresponds to
the feasibility constraint of a k-unit environment.
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transversal: The ground set is the vertices of one part of a bipar-
tite graph; independent sets correspond to subsets that can be
simultaneously matched to vertices in the other part. Transver-
sal matroids correspond to single-dimensional matching envi-
ronments (i.e., or-preferences over a set of items).

graphical: The ground set is the set of edges in a graph; independent
sets correspond to acyclic subgraphs. For graphical matroids
the (optimal) greedy-by-weight algorithm is known as Kruskal’s
algorithm [67].

A.3 Convex Optimization

Consider maximizing a concave real-valued function h defined on a
convex feasible subset X of the n-dimensional real-valued vector field
Rn. Convexity of the feasible set X is defined by: For any two vec-
tors x† and x‡ in X , the convex combination x = α · x† + (1 − α) · x‡

for any α ∈ [0,1] is in X . Concavity of h is defined by: The function
value on a convex combination of vectors is at least the convex com-
bination of the function value on each vector, i.e., for any two vec-
tors x† and x‡ in X and convex combination x = α · x† + (1 − α)x‡,
then h(x) ≥ α · h(x†) + (1 − α) · h(x‡). The mathematical program
for convex optimization is,

max
x

h(x) (COP)

s.t. x ∈ X .

A.3.1 Structure

For convex optimization, a local optimum is globally optimal, and if
the objective function is strictly concave then the global optimum is
unique.

If the feasibility constraint of X is given by a finite number of linear
constraints, then it is referred to as a polytope. A point in the polytope is
a vertex if it is uniquely optimal for some linear objective function, i.e.,
i.e., h given by weights w = (w1, . . . ,wn) with h(x) = w · x =

∑
iwixi.

Conversely, for any linear objective there is a vertex of the poly-
tope that is optimal. A polytope has a finite set of vertices and is
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uniquely specified as the convex hull of its vertices. For a general con-
cave objective function h, optima may be on the interior of X . These
interior points can be expressed as a convex combination vertices, more-
over, by Carathéodory [26], n + 1 vertices are sufficient.

Theorem A.3. (Carathéodory [26]) Vertices of an n-dimensional
polytope correspond to maximal solutions of linear objective; any point
in the polytope can be expressed as a convex combination of n + 1
vertices.

Sometimes the feasibility space X of a convex optimization exhibits
special structure. One such special structure is that of a polymatroid.
A polytope X is a polymatroid if there is a submodular function g (see
Section A.1) such that for all x ∈ X ,1

∑
i∈S

xi ≤ g(S) ∀S ⊂ {1, . . . ,n}, (A.1)

and x has non-negative coordinates, i.e., xi ≥ 0 for all i.
Polymatroids have two important properties with respect to lin-

ear objectives. First, optimization of any two linear objectives w and
w† (e.g., corresponding to objective functions of the form hw(x) =∑

iwixi) for which the weights are in the same order, give the same
optimal vertex (or vertices if there are multiple optima), i.e., xw = xw†

.
Moreover, the greedy algorithm is optimal. Start with the all-zeros vec-
tor (which is feasible), sort the coordinates by their weights, then in
this order increase each coordinate from zero as much as possible (until
feasibility prevents further increase).

Proposition A.4. Vertices of a polymatroid correspond to greedy
maximization according to an ordering of coordinates of the vector
space; any point in the polymatroid can be expressed as a convex com-
bination of vertices.

1Often the notation x(S) employed as a short-hand for
∑

i∈S xi and then the inequality is
written as x(S) ≤ g(S).
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A.3.2 Optimization

Consider the computational problem of optimizing a linear objective
w over a convex space X . Clearly, the way the space X is expressed
is important. For instance, if it is given by a polynomial number of
constraints (i.e., facets of the polytope) then it can be solved by linear
programming. Suppose instead it is expressed as the convex hull of a
polynomial number of points (i.e., the vertices of this polytope is a
subset of these points). The number of facets (i.e., linear constraints)
of the convex hull of k points is O(kn/2); therefore, a direct reduction to
linear programming is not tractable (see, e.g., Chazelle [33]). Suppose
instead that the polytope is the polymatroid expressed via the weighted
rank function of a graphical matroid as per (A.1) and this weighted rank
function is given by the graph (which has polynomial size in the number
of elements of the ground set, i.e., the edges of the graph). The number
of potential facets (i.e., linear constraints) explicitly given by (A.1)
is 2n; again, a direct reduction to linear programming is not tractable
(see, e.g., Grötschel et al. [52]). Of course, by Theorem A.2 optimization
subject to such a polymatroid constraint is computationally tractable.

The problem of convex optimization (and linear optimization)
reduce to a separation problem. The separation problem is, given a
query point x, either conclude that the point is feasible, i.e., x ∈ X ,
or find a separating hyperplane. A separating hyperplane for a query
point x and feasible space X is given by a direction w (orthogonal
to the plane) and a point xw such that the plane through xw in the
direction of w (weakly) has the query point x on the w side of the
hyperplane and the entire feasible space X (weakly) on the −w side.

A.3.3 Approximate Computation

Optimal solutions to convex optimization problems may have irrational
coordinates. Writing down such a coordinate exactly generally requires
infinite precision. To generically solve a convex optimization problem
we must therefore give up on exact optimality. The reduction formally
stated below shows that if we can solve the separation problem to a
given degree of accuracy then we can solve the optimization problem
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to the same degree of accuracy. The reduction requires the separation
oracle to be polynomial time in the logarithm of the degree of accuracy.

The weak convex optimization problem for concave objective h, con-
vex feasibility constraint X ⊂ Rn, and error tolerance ε is the following.
Find a point x ∈ Rn that is approximately feasible and approximately
optimal in time polynomial in n and log(1/ε). Formally, x is approxi-
mately feasible if there exists an x† ∈ X such that

∣∣x − x†∣∣ ≤ ε; and x
is approximately optimal if all x‡ ∈ X satisfy h(x) ≥ h(x‡) − ε.

The weak convex separation problem for convex feasibility constraint
X ⊂ Rn and error tolerance ε is the following. Given any query point
x ∈ Rn, if x is not approximately feasible find a unit-length direction
(a.k.a., a linear objective) w for which x approximately exceeds all fea-
sible points in time polynomial in n and log(1/ε). Formally, x approx-
imately exceeds all feasible points in direction w if all x‡ ∈ X satisfy
w · x >w · x‡ − ε.

Theorem A.5 (Schrijver [86]). For concave objective h, convex
feasibility constraint X ⊂ Rn, and error tolerance ε, the weak optimiza-
tion problem reduces in polynomial time in n and log(1/ε) to the weak
separation problem.
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[34] G. Christodoulou, A. Kovács, and M. Schapira, “Bayesian combinatorial auc-
tions,” Automata, Languages and Programming, pp. 820–832, 2008.

[35] E. H. Clarke, “Multipart Pricing of Public Goods,” Public Choice, vol. 11,
pp. 17–33, 1971.

[36] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information
Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[37] N. Devanur, B. Ha, and J. Hartline, “Prior-free auctions for budgeted agents,”
in Proceedings of the ACM Conference on Electronic Commerce, 2013.

[38] N. Devanur and J. Hartline, “Limited and online supply and the bayesian foun-
dations of prior-free mechanism design,” in Proceedings of the ACM Conference
on Electronic Commerce, pp. 41–50, 2009.

[39] N. Devanur, J. Hartline, A. Karlin, and T. Nguyen, “Prior-independent multi-
parameter mechanism design,” Internet and Network Economics, pp. 122–133,
2011.

[40] N. Devanur, J. Hartline, and Q. Yan, “Envy freedom and prior-free mechanism
design,” CoRR, abs/1212.3741, 2012.

[41] P. Dhangwatnotai, T. Roughgarden, and Q. Yan, “Revenue maximization with
a single sample,” in ECOM10, 2010.
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