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We consider prior-free auctions for revenue and welfare maximization when agents have a common budget.
The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility
constraint on the probabilities of service of the agents. These environments include position auctions where
slots with decreasing click-through rates are auctioned to advertisers. We generalize and characterize the
envy-free benchmark from Hartline and Yan [2011] to settings with budgets and characterize the optimal
envy-free outcomes for both welfare and revenue. We give prior-free mechanisms that approximate these
benchmarks. A building block in our mechanism is a clinching auction for position auction environments.
This auction is a generalization of the multi-unit clinching auction of Dobzinski et al. [2008] and a special
case of the polyhedral clinching auction of Goel et al. [2012]. For welfare maximization, we show that this
clinching auction is a good approximation to the envy-free optimal welfare for position auction environments.
For profit maximization, we generalize the random sampling profit extraction auction from Fiat et al. [2002]
for digital goods to give a 10.0-approximation to the envy-free optimal revenue in symmetric, downward-
closed environments. Even without budgets this revenue maximization question is of interest and we obtain
an improved approximation bound of 7.5 (from 30.4 by Ha and Hartline [2012]).
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1. INTRODUCTION

Economic mechanisms that are less dependent on the assumptions of the environment are
more likely to be relevant [Wilson 1987]. The area of prior-free mechanism design attempts
to give mechanisms that guarantee a good approximation to the designer’s objective with-
out dependence on distributional assumptions on the agents’ preferences. The main open
questions in prior-free mechanism design center around the departure from the ideal single-
dimensional and linear model of preferences, i.e., where an agent’s utility is given by her
value for service less the payment she is required to make. A paradigmatic example of a
non-linear agent utility is one that is linear up to a given budget that restricts the agent’s
maximum possible payment. In this paper we consider the designer’s objectives of revenue
and welfare (separately) when agents have budgets, and we give simple prior-free auctions
that approximate a natural prior-free benchmark (for each objective).

Mechanism design studies optimization on inputs that are the private information of
strategic agents who may misreport their information if it benefits them. Agents will not
misreport only if they have no incentive to, i.e., if their utilities are maximized by truthful
reporting. The key challenge in designing mechanisms for strategic agents, then, is that
incentive constraints bind across possible agent misreports. A mechanism must therefore
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trade-off performance on one input versus another. For general objectives, e.g., welfare with
budgeted agents, profit, or makespan (for unrelated machines), there is no single mecha-
nism that is simultaneously optimal on all inputs.1 There are two approaches for addressing
the non-point-wise-optimality of mechanisms. The Bayesian approach, which is standard in
economics, assumes that the agents’ preferences (inputs) are drawn from a known distribu-
tion and the performance of the mechanism across different inputs can be traded off so as
to optimize its expected performance with respect to this given distribution. The Bayesian
optimal mechanism, therefore, depends on the distribution. The prior-free approach, which
is currently being developed in computer science, instead looks for a single mechanism that
approximates an economically motivated prior-free benchmark in worst-case over all inputs.

The first step in developing prior-free mechanisms is to identify an appropriate prior-free
benchmark. Hartline and Yan [2011] recently observed that a simple and intuitive prior-free
benchmark can be defined based on a relaxation of the no-misreporting incentive constraint
to a no-envy constraint. The advantage of the no-envy constraint is that it binds point-wise
on each input instead of across all inputs like incentive constraints; therefore, there is always
a point-wise optimal envy-free outcome. Furthermore, as Hartline and Yan [2011] pointed
out, often this benchmark is an upper bound on the optimal performance on the Bayesian
optimal mechanism for any distribution; in these cases approximating it point-wise gives a
very strong performance guarantee. Our first contribution is a generalization of the revenue-
optimal envy-free benchmark without budgets to the objectives of revenue and welfare with
budgets.

A mechanism must optimize its objective subject to incentive constraints (discussed
above), feasibility constraints (i.e., constraints on how agents can be served together), and
budget constraints. It is most instructive to classify feasibility constraints in terms of the
sophistication required of constrained optimization of a weighted sum of the set of agents
served (or, for randomized environments, probabilities of service). An environment, like that
of digital good auctions, may be unconstrained. An ordinal environment, like those of posi-
tion auctions (as popularized by advertising on Internet search engines), is one where the
optimal algorithm is greedy on agents ordered by weight. In a general cardinal environment,
like those of single-minded combinatorial auctions, the weights of the agents are necessary
for optimization. An environment is symmetric if the feasibility constraint respects all per-
mutations of the agent identities. While feasibility constraints limit which agents are served,
budget constraints limit the prices that agents pay.

Recent results of Dobzinski et al. [2008] and Goel et al. [2012] have shown that a gener-
alization of the Ausubel [2004] clinching auction is the only Pareto optimal mechanism in
ordinal environments. At a high-level, the clinching auction is given by an ascending price at
which each agent is allowed to claim any of the supply that would be left over if that agent
were given the last choice. Pareto optimality is the condition that there is no other feasible
outcome where some participant (including the designer) can be made strictly better off
without making some participant strictly worse off. Pareto optimality is a condition not
an objective which means that it is not clear what an approximation to Pareto optimality
would mean. It is also not true that all reasonable auctions must satisfy Pareto optimality.
The Bayesian welfare-optimal auction for budgeted agents is not generally Pareto optimal
(see Sections 3 and 4); and moreover, there does not generally exist Pareto-optimal auctions
for budgeted agents in cardinal environments [Goel et al. 2012].

1For these objectives, the designer’s objective and the agents’ objectives are fundamentally at odds and
the incentive constraints of the agents do not permit the designer to obtain the same performance possible
when the inputs are public. These objectives contrast starkly to the objective of welfare maximization
without budgets where there is no conflict in the designer’s objective and the agents’ objectives and the
Vickrey-Clarke-Groves (VCG) mechanism is point-wise optimal [Vickrey 1961; Clarke 1971; Groves 1973].
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Our first goal, given the limits of Pareto optimality, is to identify a prior-free auction that
approximates the envy-free optimal welfare when agents have budgets. The outcome of the
clinching auction (for ordinal environments) is envy free; however, it is not the welfare-
optimal envy-free outcome. Moreover, given distribution over agent values, the clinching
auction is not the Bayesian optimal auction for welfare either. We give a simple closed form
expression for the clinching auction in symmetric ordinal environments with a common
budget and we show that it is a 2-approximation to the envy-free benchmark.2

Our second goal is to identify a prior-free auction that approximates the envy-free optimal
revenue when agents have budgets. For revenue maximization without budgets Hartline and
Yan [2011] and Ha and Hartline [2012] recently gave general approaches for approximating
the optimal envy-free revenue. The former extends a standard random sampling approach
(for digital good auctions) from Goldberg et al. [2001]; the latter extends an approach based
on “consensus estimates” and “profit extraction” from Goldberg and Hartline [2003]. Our
approach is based on an extension of the random sampling profit extraction auction from
Fiat et al. [2002].3 Not only is our mechanism the only one that is readily compatible with
budget constraints, but also the approximation factors we obtain, relative to the revenue-
optimal envy-free benchmark, are the best known. We show a 10.0-approximation to the
envy-free optimal revenue in symmetric cardinal environments. Moreover, without budgets,
our techniques give a 7.5-approximation which improves on the 30.4 approximation of Ha
and Hartline [2012].

Summary of Results. Our main conceptual contribution is the adaptation of the prior-free
mechanism design framework initiated by the literature on digital goods (i.e., unconstrained
environments), e.g., Goldberg et al. [2001] to the structurally rich environments of Hartline
and Yan [2011] (including symmetric ordinal environment and cardinal environments)4 when
agents’ preferences are non-linear as given by a common budget constraint. Our technical
results are as follows:

— We give a characterization of the envy-free benchmark for welfare and revenue when agents
have a common budget. This characterization is via an extension of the characterization of
Bayesian optimal auctions for agents with budgets of Laffont and Robert [1996] to general
distributions.5

— We give a closed-form characterization of the clinching auction of Goel et al. [2012] in
symmetric ordinal environments with a common budget.

— We prove that the clinching auction is a 2-approximation to the envy-free optimal welfare
in symmetric ordinal environments with a common budget.

— We extend the random sampling profit extraction auction from Fiat et al. [2002] to sym-
metric cardinal environments with a common budget. This generalization gives a 10.0-
approximation to the envy-free benchmark. This is the first prior-free approximation of
an economically well motivated benchmark for agents with budgets.

2While both Dobzinski et al. [2008] and Goel et al. [2012] allow agents to have distinct budgets, the envy-
free benchmark is only economically well motivated in symmetric environments therefore a common budget
is required. Our restriction to symmetric environments and in particular a common budget is reasonable as
designing prior-free auctions for asymmetric environments is a challenge in itself even without budgets; for
asymmetric environments only a few positive results are known, see, e.g., Balcan et al. [2008] and Leonardi
and Roughgarden [2012], both of which are for unconstrained environments (e.g., digital goods).
3Therefore all of the leading approaches for digital good auctions extend to more general environments.
4Hartline and Yan [2011] refer to symmetric ordinal environments equivalently as position environments

and matroid permutation environments and to symmetric cardinal environments as downward-closed per-

mutation environments.
5The Laffont and Robert [1996] characterization holds for monotone hazard rate distributions with increas-
ing density [Pai and Vohra 2008]; under such assumptions, many of the novel properties of optimal auctions
with budgets do not arise.
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— The clinching auction is not well defined in cardinal environments; the above auction
converts the symmetric cardinal environment to a symmetric ordinal environment where
the clinching auction can be run and its objective is close to optimal (for the original
cardinal environment).

These results are best contrasted with the literature on prior-free revenue maximization
without budgets (which is equivalent to a common budget of infinity). Our main result for
agents without budgets is:

— Our random sampling profit extraction auction for agents without budgets is a 7.5 to the
envy-free revenue benchmark; this improves on the best known auction and bound of Ha
and Hartline [2012] of 30.4.

Related Work. The theory of Bayesian optimal auctions for welfare or revenue when agents
have budgets (a form of non-linear utility) is more complex than that of revenue when agents
have linear utility. In the latter, e.g., the revenue-optimal mechanism is given by optimizing
virtual values which are given by a simple distribution-dependent function of agents’ values
[Myerson 1981]. In the former, under some restrictive distributional assumptions, a similar
Lagrangian virtual value approach gives the optimal mechanism (subject to careful choice
of the Lagrangian variable, see Laffont and Robert [1996]).

Hartline and Yan [2011] defined the envy-free benchmark as a relaxation of the Bayesian
optimal auction that can be optimized point-wise. Our characterization of the envy-free
benchmark for welfare and revenue for agents with budgets combines and extends the results
of Laffont and Robert [1996] and Hartline and Yan [2011].

There are three main techniques for designing revenue maximizing prior-free auctions for
digital goods (i.e., where there is no feasibility constraint). The random sampling optimal
price auction was defined by Goldberg et al. [2001]. The consensus estimate profit extraction
auction was defined by Goldberg and Hartline [2003]. The random sampling profit extraction
auction was defined by Fiat et al. [2002]. The first two approaches were generalized to
symmetric cardinal environments by Hartline and Yan [2011] and Ha and Hartline [2012],
respectively. We generalize the third approach to these environments. Our generalization
gives the best known approximation factor (to the envy-free benchmark) without budgets
(of 7.5) and the first approximation with budgets (of 10.0).

Our mechanisms are based on the clinching auction of Ausubel [2004] generalized to multi-
unit environments (a special case of ordinal environments) with budgets by Dobzinski et al.
[2008] and ordinal environments by Goel et al. [2012]. There are two dimensions on which
we can compare our results to these prior studies of the clinching auction, (a) whether
agents have a common budget or distinct budgets and (b) the feasibility constraint of the
designer. With respect to (a), our results are weaker as we require a common budget, with
respect to (b) our symmetric ordinal environment is between multi-unit environments and
the general ordinal environments where the latter allows for asymmetry. The advantage of
our restriction to environments that are symmetric in budget (a) and feasibility (b), is that
we are able to derive a closed-form formula for the outcome of the clinching auction. Finally,
Goel et al. [2012] show that the clinching auction does not generally extend to arbitrary
cardinal environments; however, we show that any symmetric cardinal environment contain
a symmetric ordinal environment for which the clinching auction performs well (with respect
to the objective on the original cardinal environment). Moreover, we can effectively find this
ordinal environment and run the clinching auction on it without compromising the agent
incentives.

Organization. We give formal definitions of the model in Section 2. In Section 3 we char-
acterize the envy-free benchmarks for agents with budgets. In Section 4 we characterize
the clinching auction in position environments and show that it is a 2-approximation to
the envy-free optimal welfare. In Section 5 we define the biased sampling profit extraction
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auction and prove that it is a 10.0-approximation to the envy-free optimal revenue when
the agents have a common budget. When the agents do not have a budget constraint, the
auction can be improved to a 7.5-approximation and this improvement is given in the full
version of the paper [Devanur et al. 2012].

2. PRELIMINARIES

Incentives. We study auction problems for n single-dimensional agents with a common
budget. Each agent i has a value vi for the service. A mechanism maps reported values
v = (v1, . . . , vn) to a probability that agent i wins, xi(v), and a payment pi(v).6 The
agents are financially constrained by a budget B but otherwise are risk neutral. Agent i’s
utility from the mechanism on reports v is vixi(v)−pi(v) if pi(v) ≤ B and negative infinity
otherwise.

A mechanism is budget respecting (BR) if no agent pays more than the budget on any
valuation profile, i.e., for all i and v, pi(v) ≤ B. A mechanism is individually rational
(IR) if a risk-neutral agent weakly prefers to participate in the mechanism than not.
∀i,v, vixi(v) − pi(v) ≥ 0. We say that a mechanism is incentive compatible (IC) if a risk-
neutral agent maximizes her utility by bidding her true value. I.e., ∀i,v, z, vixi(v)−pi(v) ≥
vixi(z,v−i)−pi(z,v−i). [Myerson 1981] characterized incentive compatible mechanisms for
single dimensional agents (without budgets) as follows.

Theorem 2.1 (Myerson 1981). A mechanism is incentive compatible if and only if the
allocation is monotonically non-decreasing in the reported values, i.e., for all i, xi(z,v−i) is
monotone non-decreasing in z and the expected payments satisfy pi(z,v−i) = vixi(z,v−i)−
∫ vi

0 xi(z,v−i)dz.

Feasibility. As described above, an auction produces a randomized outcome for each agent
with probabilities denoted by x = (x1, . . . , xn). We assume there is a feasibility constraint
that governs the set of such allocations that can be produced. We denote the space of feasible
allocations by X ⊂ [0, 1]n. Our only requirement on this space is that it is symmetric, convex,
and downward-closed.7 Moreover, all we need from our feasibility constraint is that there
is an algorithm that (approximately) optimizes a linear sum of weights of the agents served
subject to it (and that any agent served can be instead rejected); in these cases we instead
view X as the induced allocation of the algorithm.

Given this algorithmic view, we partition the classes of feasibility constraints by the kinds
of algorithms that work. If “greedy by weight” is optimal then we refer to the feasibility
constraint as ordinal as only the order of the weights matters and not the actual cardinal
weights. We refer to the more general case as cardinal. Importantly the ordinal, symmetric
case is identical to the position auction environment under common study. A position envi-
ronment is given by a decreasing sequence of position weights w1 ≥ · · · ≥ wn and each agent
can be matched to at most one position. The cardinal, symmetric case includes problems
considered in the literature such as the (symmetric restriction) of the polyhedral environ-
ments of Goel et al. [2012] and the downward-closed permutation environments of Hartline
and Yan [2011].

Envy-free Benchmarks. The goal of prior-free mechanism design is to give a mechanism
with a performance guarantee that holds point-wise, i.e., in worst case, on valuation profiles.
Such a prior-free guarantee requires comparison to a prior-free benchmark which is also
defined point-wise on valuation profiles. Prior-free benchmarks that do not take into account

6For clarity we will equate randomized mechanisms with deterministic mechanisms outputting fractional
assignments and deterministic payments (both equal to their expectations).
7Our envy-free benchmark only makes sense in symmetric environments, mechanism design spaces are
always convex if randomization is allowed, and downward closure says that if x ∈ X then x

−i ∈ X where
x
−i = (x1, . . . , xi−1, 0, xi+1, . . . , xn).
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the incentive constraints of the mechanism design problem are often inapproximable, but
consideration of incentive constraints is non-trivial because incentive constraints bind on
possible agent misreports and not point-wise on the valuation profile.

Hartline and Yan [2011] recently demonstrated that envy-freedom (EF) constraints are
a reasonable point-wise relaxation of incentive constraints. Formally, an outcome (x,p) is
envy free for valuation profile v if for all i and j, agent i does not prefer to swap allocation
and payment with agent j, i.e., vixi − pi ≥ vixj − pj . The envy-free benchmark (with
budgets) is defined by optimizing over all envy-free outcomes (that are budget respecting).
The following lemma characterizes envy-free outcomes for valuation profiles v that are,
without loss of generality, indexed by value, i.e., vi’s are monotonically non-increasing in i.

Lemma 2.2 (Hartline and Yan 2011). Allocation x has prices for which it is envy
free if and only if it is swap monotone, i.e., xi ≥ xi+1. The minimum and maximum
payments for which such an x is envy-free are are pmin

i =
∑n

j=i+1(xj−1 −xj)vj and pmax
i =

∑n

j=i(xj − xj+1)vj, respectively.

Notice that envy-free payments are monotone non-decreasing in agent values so an envy-
free outcome is budget feasible if and only if the highest valued agent (i.e., agent 1) has
payment p1 ≤ B.

The envy-free optimal benchmarks for welfare and revenue with budgets are defined by
optimizing over all envy-free outcomes with respect to the respective objective. (These
benchmarks are further characterized in Section 3.)

EFOW(v, B) = max
{

∑

i
vixi : (x,p) is EF, IR and BR

}

EFOR(v, B) = max
{

∑

i
pi : (x,p) is EF, IR and BR

}

A prior-free guarantee about a mechanism’s performance is defined as follows. A mech-
anism M is a β-approximation to an envy-free benchmark if its expected performance
M(v, B) is at least EFO(v, B)/β for all v and B. For technical reasons, we slightly mod-
ify the envy-free benchmark for revenue and instead approximate EFOR(v(2), B) where
v(2) = (v2, v2, v3, . . . , vn). This is necessary because, e.g., when v1 ≫ nv2, it is impossible
to approximate EFOR(v1, B). When the context is clear, we will remove the superscripts
and the budget and write EFO(v) for readability.

3. THE ENVY-FREE BENCHMARK

In this section we characterize welfare-optimal envy-free outcomes for agents with a com-
mon budget in symmetric, cardinal environments; at the end of the section we adapt the
characterization to the objective of revenue (Section 3.3). This characterization and con-
struction has three main ingredients, Lagrangian virtual values, ironed intervals, and partial
ironing. While Lagrangian virtual values and ironed intervals are standard in the literature
on optimal mechanism design (e.g., Myerson [1981] and Myerson and Satterthwaite [1983]),
partial ironing is new and necessary for agents with budgets.

Lagrangian virtual values for welfare and their associated ironed intervals can be cal-
culated as follows; their derivation and relevance to welfare maximization for agents with
budgets is described below in Section 3.1. (Recall: agents are indexed by non-increasing
value.)

Definition 3.1. For Lagrangian parameter λ, Lagrangian virtual values (for welfare),
ironed intervals, and ironed Lagrangian virtual values are calculated as follows:

(1) The Lagrangian virtual values are φλ
1 = v1 − λv2 and φλ

i = vi + λ(vi − vi+1) for i ≥ 2.

(2) The Lagrangian welfare curve is Rλ(j) =
∑j

i=1 φλ
i =

∑j

i=1 vi−λvj+1 (with Rλ(0) = 0).
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(3) The ironed Lagrangian welfare curve R̄λ is the smallest concave function that is point-
wise larger than the Lagrangian welfare curve Rλ.

(4) The ironed intervals are given by sequences {i, . . . , j} of consecutive agents where R̄λ(i−
1) = Rλ(i − 1), R̄λ(j) = Rλ(j), and R̄λ(k) > Rλ(k) for k ∈ {i, . . . , j − 1}.

(5) The ironed Lagrangian virtual values are φ̄i = R̄λ(i) − R̄λ(i − 1), i.e., the left-slope of
the ironed Lagrangian welfare curve.

The welfare-optimal outcome for agents with a common budget is a Lagrangian virtual
value optimizer; however, there may be several such outcomes. The following construction,
with the appropriate parameters, picks from among these outcomes the one that meets the
budget constraint with equality (which, as we will see below in Section 3.2, is optimal).

Definition 3.2. For Lagrangian parameter λ ∈ [0,∞) and partial ironing parameter
ρ ∈ [0, 1] the Lagrangian partially ironed outcome is as follows:

(1) Construct Lagrangian virtual values (for welfare) from v as (φλ
1 , . . . , φλ

n), ironed inter-
vals, and ironed Lagrangian virtual values (φ̄1, . . . , φ̄n) (Definition 3.1).

(2) With probability ρ, merge consecutive ironed intervals with equal ironed Lagrangian
virtual value (otherwise, with probability 1−ρ, these consecutive ironed intervals remain
separate).

(3) Iron values v to obtain v̄ by averaging over ironed intervals.
(4) Find the feasible outcome x that maximizes ironed Lagrangian virtual welfare

∑

i φ̄ixi

with tie-breaking by ironed welfare
∑

i v̄ixi.
8

Notice that above we are taking the convex combination of a minimal ironing and max-
imal ironing that are consistent with the ironed Lagrangian virtual values and the ironed
intervals. A pair of consecutive ironed intervals with the same Lagrangian ironed virtual
value by this construction will be partially ironed. This partial ironing is absent in exist-
ing characterizations of optimal mechanisms. Partial ironing is never necessary for revenue
maximization without budgets (for which the ironing technique was first developed) and
prior work on welfare or revenue maximization with budgets has restricted attention to
benevolent distributions where there is only a single ironed interval (if any) that includes
the highest-valued agent (and therefore there is no partial ironing).

The main theorem of this section shows the correctness of this construction; intuition is
given but the proof is deferred to the full version of the paper [Devanur et al. 2012].

Theorem 3.3. For all symmetric cardinal environments and any valuation profile v
and budget B, there exist parameters λ and ρ such that the Lagrangian partially ironed
outcome (Definition 3.2) is the welfare-optimal envy-free outcome.

3.1. Ironed Lagrangian Virtual Values

Recall that an allocation x = (x1, . . . , xn) is envy free if and only if it is swap-monotone and
its minimum payments are given by the formula pmin

i =
∑n

j=i+1 vj(xj−1−xj) for all agents i

(Lemma 2.2). Note that in order to maximize welfare subject to a budget constraint, picking
the minimum envy-free payments is clearly optimal.9 Further, as envy-free payments are
monotone, it is sufficient to impose the budget constraint only on the payment of the top
agent, i.e., p1. Therefore, the welfare-optimal envy-free allocation can be captured by the

8For ordinal environments where the optimal solution is given by the greedy algorithm, this last step sorts
the agents in order of ironed virtual value (which is the same order as values) and then randomly permutes
the order of agents in ironed intervals.
9Consider any envy-free welfare maximizing allocation subject to the budget. Suppose pi > pmin

i
. Changing

all agents’ payments pi to pmin
i

is envy-free, has the same welfare, and, since the payments are only lower,
satisfies the budget constraint.
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following linear program (LP).

max
∑n

i=1
vixi (1)

s.t. xi ≥ xi+1 ∀ i

p1 =
∑n

i=2
vi(xi−1 − xi) ≤ B.

x is feasible.

The relaxation of this LP obtained by Lagrangifying the budget constraint is as follows.

max
∑n

i=1
vixi − λ

(

∑n

i=2
vi(xi−1 − xi)

)

+ λB (2)

s.t. xi ≥ xi+1 ∀ i

x is feasible.

Lemma 3.4. An allocation is optimal for LP (1) if and only if, either

— for some choice of λ > 0, the allocation is optimal for the Lagrangian relaxation (2) with
λ, and it satisfies the budget constraint with equality,

∑n

i=2 vi(xi−1 − xi) = B, or
— the allocation is optimal for the Lagrangian relaxation (2) with λ = 0 and satisfies the

budget constraint,
∑n

i=2 vi(xi−1 − xi) ≤ B.

Proof. The statement of the theorem is equivalent to complementary slackness condi-
tions characterizing optimal solutions of an LP.

We now consider the optimization problem given by the Lagrangian relaxation (2) for a
fixed choice of λ. The objective function of the Lagrangian relaxation (2) can be rewritten
as

∑

i φλ
i xi where φλ

1 = v1 − λv2 and φλ
i = vi + λ(vi − vi+1) for i ≥ 2. The Lagrangian

relaxation is now simply the problem of finding the Lagrangian virtual welfare optimal
allocation, subject to feasibility, swap-monotonicity, and, if λ > 0 then p1 = B.

Optimizing the Lagrangian virtual welfare
∑

i φλ
i xi of non-monotone virtual values sub-

ject to swap monotonicity (of the allocation) can be simplified via the technique of ironing
[Myerson 1981]. The resulting ironed virtual values are monotone and, therefore, ironed
virtual welfare maximization without a swap-monotonicity constraint on the allocation will
always give an allocation that is swap monotone. Explicit in the ironing construction of
Definition 3.1 are ironed intervals (consecutive sequences of agents) on which ironing cor-
responds to averaging.

Lemma 3.5. An allocation x is optimal for the Lagrangian relaxation (2) if and only if
the allocation maximizes the ironed Lagrangian virtual welfare and the allocation is constant
over agents in the same ironed interval.

Lemma 3.5 has the same proof as the corresponding lemma of Hartline and Yan [2011] for
(non-Lagrangian) ironed virtual welfare maximization.

3.2. Partial Ironing

Ironed Lagrangian virtual welfare maximization must inherently address ties. Notice ties
may arise because agents within the same ironed interval have same ironed virtual value,
because agents in consecutive ironed intervals may have the same ironed virtual value, and
because several sets of agents may have the same cumulative ironed virtual value. The first
kind of tie must be broken uniformly at random, the latter two kinds of ties must be broken
so as to meet the budget constraint with equality. We now describe a tie-breaking procedure
for Lagrangian ironed virtual welfare maximization that (a) serves agents in the same ironed
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interval with the same probability (as per Lemma 3.5) and (b) meets the budget constraint
with equality (as per Lemma 3.4).

The tie-breaking rule we will give is based on agents’ values. Notice that the objective of
(2) is the difference between the social welfare and λp1 (the payment of the top agent scaled
by λ). Therefore, when there are ties in Lagrangian virtual welfare, it must be that the tied
allocation with the maximum (resp. minimum) welfare minimizes (resp. maximizes) the
payment of the top agent. This maximum payment must be over budget and the minimum
payment must be under budget. Therefore, the appropriate convex combination of these
two allocations has payment exactly equal to the budget. The outcome produced is welfare
optimal for budgeted agents.

The following approach optimizes Lagrangian ironed virtual welfare with tie-breaking to
maximize or minimize the welfare subject to (a) swap monotonicity and (b) agents within the
same ironed interval receiving the same probability of service. To maximize welfare, average
the values of agents within each ironed interval and tie-break to maximize this averaged
welfare. This ensures that the agents in the same ironed interval are treated the same, but
otherwise allows the mechanism to optimize welfare over sets of agents with tied Lagrangian
ironed virtual welfare. To minimize welfare we would like to optimize the negative of the
welfare over allocations with equal Lagrangian ironed virtual welfare. However, this could
result in failure of swap monotonicity as agents in successive ironed intervals with the
same Lagrangian ironed virtual value will be ranked in the opposite order as required for
swap monotonicity. Therefore, to minimize welfare, average the values of agents with equal
Lagrangian ironed virtual value (this includes the averaging of agents within the same ironed
interval, but additionally averages agents in successive ironed intervals that have the same
Lagrangian ironed virtual value), and tie-break to minimize this averaged welfare.

3.3. Revenue Maximization

The characterization of the revenue-optimal envy-free outcome for agents with a common
budget is the same as above except for (a) the specific formula for Lagrangian virtual values
and (b) the tie-breaking procedure. The tie-breaking procedure is a bit more complex than
for the welfare objective.

Virtual values are derived starting from the maximum envy-free payments pmax
i =

∑n

j=i vj(xj − xj+1) from Lemma 2.2. The objective revenue (without budgets) is given

by maximization of the virtual welfare for (non-Lagrangian) virtual values ivi − (i− 1)vi−1

[Hartline and Yan 2011]. Relaxing the budget constraint gives Lagrangian virtual values
φλ

1 = v1(1−λ) and φλ
i = (i−λ)vi − (i− 1−λ)vi−1 for i ≥ 2. The Lagrangian revenue curve

is Rλ(i) = (i − λ)vi with Rλ(0) = 0.
For tie breaking, notice that the analogous objective of the Lagrangian relaxation (2) is

revenue minus λp1. Therefore, among allocations with the same Lagrangian ironed virtual
welfare, the one with the highest revenue has the highest payment of the top agent and
the one with the lowest revenue has the lowest payment of the top agent. Revenue is, of
course, equal to the (non-Lagrangian) virtual welfare. Whereas for maximizing and minimiz-
ing welfare the monotonicity of values implies that we should either prefer to iron as little
or as much as possible, for maximizing revenue, the virtual values may not be monotone.
Therefore, ironing (i.e., averaging) can be good and bad for both maximizing and minimiz-
ing revenue. The following process averages the (non-Lagrangian) virtual values correctly.
Consider a set of consecutive Lagrangian ironed intervals with the same Lagrangian ironed
virtual value. Average the (non-Lagrangian) virtual values within each interval, calculate
the induced revenue curve (by summing prefixes of these averaged virtual values), consider
the two-dimensional convex hull of the point set that defined this revenue curve. For maxi-
mum revenue, iron as for the upper convex hull; for minimum revenue, iron as for the lower
convex hull. Optimizing Lagrangian ironed virtual welfare with tie-breaking by averaged
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virtual welfare (from the averaged virtual values calculated above) gives the outcomes with
the minimum and maximum payment of the top agent. Mixing between these appropriately
to meet the budget constraint with equality gives the revenue-optimal envy-free outcome.

4. WELFARE APPROXIMATION FOR AGENTS WITH A COMMON BUDGET

In this section we study the (polyhedral) clinching auction of Goel et al. [2012] in position en-
vironments with a common budget. The outcome of the clinching auction is fundamentally
simpler in structure than those of the optimal incentive-compatible auction and optimal
envy-free outcome. A fundamental construct in incentive-compatible and envy-free opti-
mization is ironing, that is, randomizing between agents whose values fall within a given
interval. In Section 3 we characterized welfare-optimal envy-free outcomes as having multi-
ple disjoint ironed intervals. Our first task of this section is to give a similar description of
the outcome of the clinching auction. In these terms, the clinching auction has (essentially)
one ironed interval and it always contains the top agent. This ironed interval is partially
ironed with the singleton interval containing the next highest-valued agent. We give a simple
closed-form expression for calculating exactly how this partial ironing is performed.

The clinching auction is not welfare-optimal in two respects. First, given a Bayesian prior
distribution, the clinching auction’s expected welfare is not generally optimal among all
incentive compatible mechanisms. Second, though the outcome of the clinching auction is
envy free, it is not the welfare-optimal envy-free outcome. Nonetheless, we show that the
clinching welfare is a two-approximation to the envy-free optimal welfare.

4.1. The clinching auction for position environments

Goel et al. [2012] generalize the clinching auction for budgeted agents to ordinal environ-
ments. In this section, we characterize the outcome of this process for symmetric ordinal
environments, a.k.a., position environments. At a high level, the clinching auction is de-
scribed by an ascending price-clock with agents clinching some of the supply at the price as
it increases. By the symmetry of the environment and the fact that values of agents above
an offered price do not affect the allocation, the budget and partial allocations are identical
for each agent that remains in the auction as the price increases. The clinching auction can
thus be formulated as follows:

Definition 4.1 (Clinching Auction). The clinching auction maintains an allocation and
price-clock that start from zero. The price-clock ascends continuously and the allocation
and budget are adjusted as follows.

(1) Agents whose values are less than the price-clock are removed and their allocation is
frozen.

(2) The demand of any remaining agent is the remaining budget divided by the price clock.
(3) Each remaining agent clinches (and adds to their current allocation) an amount that

corresponds to the largest fraction of their demand that can be satisfied when all other
remaining agents are first given as much of their demand as possible (subject to the
feasibility constraint).10

(4) The budget and allocation are updated to reflect the amount clinched in the previous
step.

The auction ends when everyone is removed or the remaining budget is zero.

The reason that the clinching auction is relatively simple to describe in position environ-
ments with a common budget is that the feasibility constraint imposed by clinching auctions
is one where allocation probability of top positions can be shifted to bottom positions (e.g.,

10This step is vague in general environments; however, in ordinal environments, i.e., where the greedy
algorithm is optimal, it is precise.
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by randomizing), but not vice versa. Therefore, an allocation x (in decreasing order) is
feasible for position weights (w1, . . . , wn) (in decreasing order) if the cumulative allocation
Xi =

∑

j≤i xj at each coordinate i is at most the cumulative position weight Wi =
∑

j≤i wj .

Proposition 4.2. The clinching auction is incentive compatible and Pareto optimal in
position environments with a common budget.

Pareto optimality means that there is no other reallocation of goods and money that
makes an agent strictly better off and no agents are worse off. Proposition 4.2, which is a
special case of a more general result of Goel et al. [2012] implies the following structure
on the outcome. This structural theorem generalizes one from Dobzinski et al. [2008] (for
single-item auctions). It shows that, essentially, the clinching auction is ironing only the top
agents.

Theorem 4.3. Order the agents and positions in decreasing order of their values and
let κ be the highest-valued agent who pays strictly less than the budget. Then,

(1 ) the auction terminates the moment the price-clock exceeds vκ,
(2 ) agents with higher values than κ each receive the same service probability (and pay the

budget),
(3 ) agent κ receives at least the service probability of her corresponding position,
(4 ) agents with lower values than κ each receive exactly the service probability of their

corresponding positions, and
(5 ) the outcome is envy free.

Proof. An agent drops out of the clinching auction when her value is exceeded; oth-
erwise, the auction terminates with the price clock below her value when the remaining
budget is zero. Let κ be the last agent to drop out when her value is exceeded. By the
definition of the clinching auction and symmetry, all higher-valued agents pay the budget
and receive the same probability of service. Again by the symmetry of the process there is
no envy.

Now consider the agents κ, . . . , n who are paying strictly less than the budget. Assume
that initially all excess service probability from the top κ−1 is given to agent κ. Feasibility
implies that service probability cannot be shifted up from low-valued agents to high-valued
agents and Pareto optimality implies that service probability cannot be shifted down. Con-
sider any probability shifted down from a higher valued agent to a lower valued agent, as
these agents are not paying their budget, a Pareto improvement would be for the higher
valued agent to buy this shifted service probability from the lower valued agent (at a per-
unit price equal to her value). Consequently, agents κ + 1, . . . , n get their corresponding
position weight and agent κ gets at least her corresponding position weight.

Finally, we show that the price clock stops immediately after it exceeds vκ. Assume that
the allocation probability of κ is strictly higher than her corresponding position weight (the
case of equality is addressed by Theorem 4.4) and suppose that the price clock continues
to rise. The actual values of the agents who have not retired are never taken into account
in the behavior of the clinching auction. Therefore we can lower vκ−1 to just below price
clock and at which point agent κ − 1 would retire (and not pay her full budget). However,
now we have both κ and κ − 1 not paying their full budget and κ is getting strictly more
service probability than her corresponding weight which contradicts the other results of this
theorem.

It is easy to see from Theorem 4.3 that the service probability of each of the top κ − 1
agents is a little less than the average weight of the top κ − 1 positions, and a little more
than the average weight of the top κ positions. The service probability of κ is between the
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Fig. 1. The outcome of the clinching auction is completely specified by this figure. For agents i < κ, the
allocation rule xi(z,v

−i) of the clinching auction is depicted; the payment of these agents is equal to the
area of shaded region which is equal to the budget B. Agents i ≥ κ share this allocation rule on z ≤ vi

which is the relevant portion of the allocation rule for calculating payments. In the envy-free outcome that
irons the top i agents (and ignores the budget constraint) the payment of the top agent, denoted Bi, is
depicted for i ∈ {κ − 1, κ}. It is clear from the picture these are monotone in i and Bκ < B ≤ Bκ−1.

weight of her corresponding position and the average weight of the top κ positions. In fact,
the exact service probabilities (and corresponding payments) can be precisely calculated.

The execution of the clinching auction can be described by two phases. In the first phase,
the position weights and values are binding; in the second phase, the budget is binding but
the position weights are not. Consider ironing the top i agents, the associated minimum
envy-free payments, and the minimum budget Bi for which the solution is budget respecting.
In such a solution, agents j ≤ i are served with probability w̄i = (w1 + . . . + wi)/i and the
minimum feasible budget is equal to their payment Bi = vi+1(w̄i −wi)+

∑n

j=i+1 vj(wj−1 −
wj). The minimum feasible budget Bi is decreasing in i (Figure 1), zero for i = n, and
(if the budget is binding) greater than the budget for i = 1. Let κ be an index such that
Bκ ≥ B > Bκ+1. In the first phase each of the bottom n − κ agents will clinch their
corresponding positions. In the second phase, the clinching auction will behave exactly like
the clinching auction for multi-unit environments: the budget starts to bind at a price clock
at most vκ and then the instant the price-clock exceeds vκ the remaining supply is evenly
clinched by the highest κ−1 agents. Figure 1 depicts the resulting outcome and Theorem 4.4
formalizes the observed structure; its proof is given in the full paper [Devanur et al. 2012].

Theorem 4.4. For any position environment given by position weights (w1, . . . , wn)
and budget B satisfying Bκ < B ≤ Bκ−1 for some κ, the polyhedral clinching auction would
allocate with:

(1 ) wi to every i ≥ κ + 1, and
(2 ) κw̄κ split among the top κ agents evenly except for agent κ obtaining δ less,

where δ is a simple function of vκ+1; vκ; the remaining budget and the un-clinched supply
after agent κ + 1 drops out.

4.2. Welfare approximation for ordinal environments

We now show that the clinching auction which (essentially) irons only the top positions,
is a two-approximation to the envy-free optimal welfare which may come from ironing an
arbitrary number of consecutive positions; moreover, this bound is tight.

Theorem 4.5. For any position environment with common budgets, the welfare obtained
by the clinching auction is a 2-approximation to the envy-free optimal welfare. Furthermore,
this ratio is tight even for the single-item environment.
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(a) The upper bound (4) is depicted pictorially. In
the clinching auction, the payment of the highest
valued agent (cross-hatched) is equal to the budget
and at most the rectangle (striped) whose area is
vκw̄κ−1.

x1

xκ

vκ vκ−1 · · · v1

b
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b

(b) The lower bound (5) is depicted pictorially. The
payment of the highest valued agent (striped) is
equal to the budget and at least the rectangle (cross-
hatched) whose area is vκ(x1 − xκ).

Fig. 2. Proofs by picture of the upper and lower bounds on the budget B.

Proof. Let κ be the highest-valued agent who does not pay the budget in the clinching
auction. Recall from Theorem 4.3 that, relative to the outcome of the clinching auction, if
we iron the top κ agents (to get average service probability w̄κ =

∑

i≤κ wi/κ) then agent
κ gets slightly more service probability at the expense of lowering the service probability
of the top κ − 1 agents; overall there is a net decrease in welfare. Denote the social welfare
obtained by the clinching auction on v as Clinching(v). We have,

Clinching(v) ≥
κ

∑

i=1

viw̄κ +
n

∑

i=κ+1

viwi. (3)

Let x be the optimal envy-free allocation. We know two things about x. First, it is feasible,
which means, in particular, that

∑

i≤κ xi ≤ κw̄κ, i.e., the cumulative allocation is at most

the cumulative supply. Second, the payment of the highest-valued agent, i.e., p1, (which
is given by the “area above the allocation rule” as specified by the minimum envy-free
payment identity of Lemma 2.2) is at most the budget. We use these two bounds to show
that x1 ≤ 2w̄κ.

The clinching auction ends when the price-clock just exceeds vκ, consequently the per-unit
cost of service is bounded by vκ. The probability of service clinched by the top κ− 1 agents
is slightly lower than w̄κ−1 = 1

κ−1

∑

i<κ wi. Therefore an upper bound on the maximum

payment (and therefore the budget) is:

vκw̄κ−1 ≥ B. (4)

In the envy-free optimal outcome the payment of the top agent (and therefore the budget)
is at least:

B =
n

∑

i=2

(xi−1 − xi)vi ≥ vκ(x1 − xκ). (5)

The bounds (4) and (5) combine to give a bound on the probability of service x1 of the top
agent (and thus any agent) in the envy-free outcome.

x1 ≤ xκ + w̄κ−1. (6)
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The feasibility constraint of the position environment restricts the envy-free outcome so
that

κw̄κ ≥
∑

i≤κ
xi ≥ x1 + (κ − 1)xκ.

Solving for x1 we get a second upper bound.

x1 ≤ κw̄κ − (κ − 1)xκ. (7)

Add (κ − 1) times (6) to (7) to get:

κx1 ≤ κw̄κ + (κ − 1)w̄κ−1. (8)

We conclude that x1 ≤ 2w̄κ as desired.
For the optimal envy-free welfare problem, if the budget constraint is replaced by the

weaker constraint of xi ≤ 2w̄κ, the welfare can only get better. Furthermore, the optimal
allocation for this relaxed problem would shift as little service probability down from top
slots to lower slots as possible so as to meet the allocation constraint that xi ≤ 2w̄κ. As
the average weight of the top κ positions is w̄κ the probability of service for agent κ (which
is the least of the top agents) can only be at most the average. Therefore, no additional
weight is shifted down to lower agents j > κ so,

EFO(v) ≤
κ

∑

i=1

2viw̄κ +
n

∑

i=κ+1

viwi ≤ 2 Clinching(v),

where the last inequality follows from (3).
To show that the 2-approximation is tight, consider the following single-item scenario

with a common budget of B = 1. There are N + 1 agents; the highest valuation is N3, the
middle N − 1 valuations are N , and the last valuation is N − ǫ where ǫ is a small positive
number.

The welfare-optimal envy-free allocation would serve the bottom N agents with equal
probability xL and the top agent with probability xH > xL. By optimizing the welfare
N3xH + N2xL with the budget constraint N(xH − xL) ≤ 1, and the supply constraint
xH +NxL ≤ 1, we have xH = 2

N+1 while xL = N−1
N(N+1) . Thus the optimal envy-free welfare

for this case is 2N2 − N .
The clinching auction would not let anybody clinch as long as the price clock is below N

since there are N + 1 agents who demand at least 1
N

while we only have 1 item. However,
as soon as the price-clock reaches N , the bottom agent drops out, and we have N agents
left who demand 1

N
each. Thus, each of the top N agents would receive exactly 1

N
and pay

the budget. Thus the welfare for clinching in this case is N2 + N − 1.
In the limit as N approaches ∞, the ratio between the two welfares approaches 2.

5. REVENUE APPROXIMATION FOR AGENTS WITH A COMMON BUDGET

The main approaches to prior-free auctions for digital goods generalize to symmetric car-
dinal environments (without budgets). Hartline and Yan [2011] generalized the random
sampling auction, and Ha and Hartline [2012] generalized the consensus estimate profit
extraction auction. In this section, we generalize the random sampling profit extraction
auction from Fiat et al. [2002] for digital good environments to symmetric cardinal envi-
ronments with a common budget. The random sampling profit extraction auction splits the
agents into a market and a sample, estimates the optimal profit from the sample, and then
attempts to extract that profit from the market.

A profit extractor is a mechanism that is given some extra information and, if that
information is correct, is able to extract a corresponding profit. For symmetric cardinal
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environments, Ha and Hartline [2012] gave a profit extractor that is parameterized by an
estimated valuation profile and is able to extract profit of at least the envy-free optimal
revenue for the estimated valuation profile when that estimate is a coordinate-wise lower
bound on the true valuation profile. Our profit extractor below is a simplification of Ha and
Hartline [2012] generalized to the case where agents have budgets.

Definition 5.1. The clinching profit extractor, PEṽ, is parameterized by non-increasing
valuation profile ṽ. It calculates the optimal envy-free outcome x̃ for ṽ and then runs the
clinching auction for position weights x̃ on the true valuation profile v.

Assume that v and ṽ are in non-increasing order. Define v as one-ahead after index η
for ṽ if η is the lowest index for which all i > η satisfy vi+1 ≥ ṽi. When η = 0 define v as
one-ahead dominating ṽ, denoted v−1 ≥ ṽ. The following lemma shows that the clinching
profit extractor on v is able to obtain the contribution to the optimal envy-free revenue for
ṽ from agents {η + 1, . . . , n}.

Lemma 5.2. If v one-ahead dominates ṽ then the clinching profit extractor revenue is
at least the estimated envy-free optimal revenue, i.e., PEṽ(v) ≥ EFO(ṽ); moreover, if v
is one-ahead after index η for ṽ then the contribution to the profit extractor revenue from
agent i > η is at least the contribution to the estimated envy-free optimal revenue from i,
i.e., PEṽ

i (v) ≥ EFOi(ṽ).

Proof. We will prove the second part of the lemma which implies the first. Consider an
i > η. The maximum i could pay in any outcome is the budget, so if i pays her budget in
the clinching auction then the bound holds. Suppose instead that i pays strictly less than
her budget in the clinching auction. Consider the following sequence of inequalities with
explanation below (where x is the allocation of the clinching auction and x̃ is the envy-free
optimal outcome for ṽ).

PEṽ

i (v) ≥
n

∑

j=i+1

(xj−1 − xj)vj ≥
n

∑

j=i+1

(x̃j−1 − x̃j)vj

≥
n

∑

j=i+1

(x̃j−1 − x̃j)ṽj−1 = EFOi(ṽ).

The first inequality follows from envy freedom of the clinching auction and the formula for
minimum envy-free payments (Lemma 2.2). For j > i, Theorem 4.3 implies that xj = x̃j

because all but the highest-valued agent who does not pay her budget are allocated with
exactly their corresponding position weight; the theorem also implies that xi ≥ x̃i as agent i
also does not pay her budget (but she might be the highest such agent). The second equality
then follows as the service probabilities are unaffected by the swap from xj to x̃j except
for xi which only appears positively and is at least x̃i. The third inequality comes from the
fact that i is greater than η so one-ahead dominance holds at i and higher indices. The final
equality follows from the formula for maximum envy-free payments (Lemma 2.2).

We now define a simple biased sampling procedure and show that it ensures one ahead
dominance with significant probability.

Definition 5.3 (Biased Sampling). Parameterized by a probability p, the biased sampling
process assigns each agent into the sample S independently with probability p, otherwise
the market M .

Let vM and vS be the sorted valuation vectors of M and S respectively, and assume
that vM and vS are padded with 0’s to be equal in length for comparison convenience. The
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biased sampling process has the following probabilistic properties (proof given at the end
of the section).

Lemma 5.4. For the biased sampling process with p < 0.5 and η being a random variable
for the index after which vM is one-ahead for vS ,

(1 ) Pr
[

vM 6≥ vS
]

≤ p

1−p
,

(2 ) Pr
[

vM 6≥ vS | 1 ∈ M
]

≤
(

p

1−p

)2
, and

(3 )
∑n

i=1 iPr
[

η = i | 1 ∈ M
]

≤ p
(1−2p)2 .

Furthermore, all inequalities are tight in the limit as n approaches ∞.

Lemma 5.5. The optimal envy-free revenue of a random sample S whose elements are
selected i.i.d. with probability p satisfies E

[

EFO(vS)
]

≥ p EFO(v).

Proof. Consider the envy-free optimal outcome for v. Clearly if we restrict attention
only to the agents in S there is still no envy. Therefore, EFO(vS) ≥ EFOS(v) where
EFOS(v) is a short-hand notation for the contribution from the agents in S to the envy-
free optimal revenue on v. Of course, E

[

EFOS(v)
]

= p EFO(v).

Definition 5.6 (BSPEp). The biased sampling profit extraction auction parameterized
by p < 0.5 for a common budget B works as follows.

(1) Partition the set of agents into vM and vS using biased sampling parameterized by p.
(2) Run the clinching profit extractor parameterized by vS on vM and budget B.

Incentive compatibility of BSPEp comes straight from that of the profit extractor. We
have the following revenue guarantee.

Lemma 5.7. For all p < 0.5 the revenue of BSPEp satisfies,

BSPEp(v) ≥ (1 − p)p EFO(v−1) − p(1−p)
(1−2p)2 EFO(v2).

Proof. Condition on the case that the highest-valued agent, i.e., 1, is in M and let
η is the index after which vM is one-ahead for vS . From Lemma 5.2, the profit extrac-

tor’s revenue conditioned on η = i is E
[

PEv
S

(vM ) | η = i
]

≥ E
[

EFO(vS) | η =

i
]

−
∑i

j=1 E
[

EFOj(v
S) | η = i

]

. This inequality holds since we would extract the payment
from all agents that are lower than i; or equivalently, we would extract the full payment
(the first term of the right-hand side) minus those from the i highest agents (the second
term). Using the observation that EFOj(v

S) ≤ EFO(v2) for all j (because agent 1 is in M),
we have:

E
[

PEv
S

(vM ) | η = i
]

≥ E
[

EFO(vS) | η = i
]

− i EFO(v2).

Summing these revenue guarantees over all η, we have:

BSPEp(v) =
∑∞

i=1
E

[

PEv
S

(vM ) | η = i
]

Pr
[

η = i
]

≥
∑∞

i=1
E

[

EFO(vS) | η = i
]

Pr
[

η = i
]

− EFO(v2)
∑∞

i=1
iPr

[

η = i
]

= E
[

EFO(vS)
]

− EFO(v2)
p

(1−2p)2 ≥ p EFO(v−1) − EFO(v2)
p

(1−2p)2 .

The last inequality comes from Lemma 5.5 on v−1. Finally, we remove the conditioning on
1 ∈ M by multiplying the above quantity by the probability 1 − p.

Definition 5.8 (Pseudo-Vickery). The pseudo-Vickrey auction finds the feasible outcome
x that optimizes x1 with xj = 0 for j 6= 1 and runs the clinching auction with position
weights x.
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[Hartline and Yan 2011] observe that EFO is sub-additive (without budgets); it continues

to be sub-additive with budgets. Thus, EFO(v−1)+EFO(v2) ≥ EFO(2)(v).11 Furthermore,
since pseudo-Vickrey obtains at least EFO(v2), we have the following result.

Theorem 5.9. The convex combination of the pseudo-Vickrey auction (with probabil-

ity q

1+q
) and BSPEp (with probability 1

1+q
), where q = (1 − p)p + p(1−p)

(1−2p)2 , approximates

EFO(2)(v) within a factor of 1 + 1
(1−p)p + 1

(1−2p)2 . This ratio is minimized at 10.0 when

p = 0.211.

Proof of Lemma 5.4. Consider the following infinite random walk on a straight line:
starting from position 0, with probability p, move backward one step; otherwise, move
forward one step. The position of this random walk describes precisely the difference between
the number of agents in M and S, where positive value means M has more agents than
S. We will show the results as equalities by a “probability of ruin” analysis of an infinite
random walk; inequalities follow for random walks that terminate after a finite number n
of steps.

(1) The event vM 6≥ vS happens when there exists a time that M has fewer agents than
S. Let r be the probability of ruin, i.e., the random walk eventually takes one step
backward from the initial position, we have r = p + (1 − p)r2. The first component is
the probability of taking one step backward in the first step, and the second component
is the probability of the first step being a forward step, then eventually take two steps
backward. Solving this equation for r ∈ (0, 1) gives r = p/(1 − p).

(2) When we condition on 1 ∈ M , our initial position is 1, not 0, and the probability of
ruin is r2.

(3) We will first derive Pr
[

η = i | 1 ∈ M
]

for i ≥ 1. Since i is the lowest index after which

vM is one-ahead for vS , we must have (a) an equal partition amongst the top 2i agents,
(b) v2i+1 is in M , and (c) from this point on, the number of agents assigned to M is
never fewer than that from S. Thus, by conditioned on the highest value agent already
in M , we have:

Pr
[

η = i | 1 ∈ M
]

=
(

2i−1
i

)

pi(1 − p)i−1(1 − p)
(

1 − p

1−p

)

=
(

2i

i

)[

p(1 − p)
]i 1−2p

2(1−p) . (9)

The Taylor’s series expansion of 1√
1−4z

for any 0 < z < 1/4 gives us
∑∞

i=0

(

2i

i

)

zi =
1√

1−4z
. By differentiating both sides with respect to z, then multiplying them with z,

we have
∑∞

i=1 i
(

2i
i

)

zi = 2z

(1−4z)
√

1−4z
. For z = p(1−p), we have

√
1 − 4z = 1−2p. Hence,

this equality translates to
∞
∑

i=1

i
(

2i
i

)[

p(1 − p)
]i

= 2p(1−p)
(1−2p)3 . (10)

Putting these all together,
∞
∑

i=1

iPr
[

η = i | 1 ∈ M
]

=

∞
∑

i=1

i
(

2i
i

)[

p(1 − p)
]i 1−2p

2(1−p) from (9)

= 2p(1−p)
(1−2p)3

1−2p

2(1−p) = p

(1−2p)2 . from (10)

11EFO(2)(v) = EFO(v(2)) where v(2) = (v2, v2, v3, . . . , vn).
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