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Abstract—The intuition that profit is optimized by maximiz-
ing marginal revenue is a guiding principle in microeconomics.
In the classical auction theory for agents with quasi-linear
utility and single-dimensional preferences, Bulow and Roberts
[1] show that the optimal auction of Myerson [2] is in fact
optimizing marginal revenue. In particular Myerson’s virtual
values are exactly the derivative of an appropriate revenue
curve.

This paper considers mechanism design in environments
where the agents have multi-dimensional and non-linear pref-
erences. Understanding good auctions for these environments
is considered to be the main challenge in Bayesian opti-
mal mechanism design. In these environments maximizing
marginal revenue may not be optimal, and furthermore,
there is sometimes no direct way to implement the marginal
revenue maximization mechanism. Our contributions are three
fold: we characterize the settings for which marginal revenue
maximization is optimal (by identifying an important condition
that we call revenue linearity), we give simple procedures for
implementing marginal revenue maximization in general, and
we show that marginal revenue maximization is approximately
optimal. Our approximation factor smoothly degrades in a
term that quantifies how far the environment is from an
ideal one (i.e., where marginal revenue maximization is op-
timal). Because the marginal revenue mechanism is optimal
for well-studied single-dimensional agents, our generalization
immediately extends many approximation results for single-
dimensional agents to more general preferences.

Finally, one of the biggest open questions in Bayesian
algorithmic mechanism design is in developing methodologies
that are not brute-force in size of the agent type space
(usually exponential in the dimension for multi-dimensional
agents). Our methods identify a subproblem that, e.g., for unit-
demand agents with values drawn from product distributions,
enables approximation mechanisms that are polynomial in the
dimension.

Keywords-Bayesian mechanism design, Approximation,
Marginal revenue

I. INTRODUCTION

Marginal revenue plays a fundamental role in microe-
conomic theory. For example, a monopolist providing a
commodity to two markets each with its own concave
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revenue (as a function of the supply provided to that market)
optimizes her profit by dividing her total supply to equate
the marginal revenues across the two markets. Moreover,
this central economic principle governs classical auction
theory. Myerson [2] characterizes profit maximizing single-
item auction as formulaically optimizing the virtual value
of the winner; Bulow and Roberts [1] reinterpret Myerson’s
virtual value as the marginal revenue of a certain concave
revenue curve.

Because it is simple and intuitive, the Myerson-Bulow-
Roberts approach provides the basis for much of Bayesian
auction theory. Unfortunately though, this theory has
been limited to settings where agents have linear single-
dimensional preferences, i.e., where an agent’s utility is
given by her value for service less her payment. Conse-
quently, Bayesian auction theory is often similarly limited.
With more general forms of agent preferences, especially
multi-dimensionality, e.g., for multi-item auctions, or non-
linearity, e.g., risk aversion or budgets, auction theory is
complex, less versatile, and often not well understood.

Our main result is to show that hidden under the com-
plexity of optimal mechanism design problems for agents
with multi-dimensional and non-linear (henceforth: general)
preferences is marginal revenue maximization. The approach
of marginal revenue maximization is to express a multi-agent
mechanism design problem as a composition simple single-
agent mechanism design problems, i.e., from the construc-
tion of the appropriate notion of revenue curves. This new
approach for general preferences uncovers a condition we
refer to as revenue linearity that is satisfied by all linear
single-dimensional preferences and governs the performance
of the marginal revenue mechanism. When the single-agent
problems are revenue linear, marginal revenue maximiza-
tion is optimal and the Myerson-Bulow-Roberts mechanism
generalizes exactly. When the single-agent problems are
approximately revenue linear, marginal revenue maximiza-
tion is approximately optimal (though the composition of
the single-agent mechanisms to implement marginal revenue
maximization requires new techniques). Finally, because our
marginal revenue approach is structurally similar to the clas-
sical approach, many results for agents with linear single-
dimensional preferences approximately and automatically



extend to general preferences.
A central result to classical auction theory comes from

reinterpreting the Myerson-Bulow-Roberts mechanism (i.e.,
for maximizing marginal revenue) in the special case of
symmetric agents. As an example of the benefits of our
approach, compare this classical reinterpretation with a
similar reinterpretation of our results. In the classical setting
there is a single item for sale and agents with i.i.d. values
for it; in our setting there is a single item for sale which
the seller can configure on one of several ways and agents
have i.i.d. values for each configuration, e.g., a car that
can be painted red or blue (importantly, the seller sets the
configuration and the buyer cannot change it).1

Selling a car: Classical auction theory says that (a)
the optimal way to sell an object (henceforth: a car) to a
single agent with value drawn from a uniform distribution
on [0, 1] is to post a take-it-or-leave-it price of 1/2, (b) the
optimal way to sell a car to one of multiple agents with
uniformly distributed values is to run a second-price auction
with reserve price 1/2, and (c) more generally the optimal
way to sell the car to multiple agents with i.i.d. values is to
run the second price auction with the same reserve price that
would be offered as a take-it-or-leave-it price to one agent
(assuming the distribution satisfies some mild assumptions).

Selling a red-or-blue car: Consider selling a car that,
on sale, can be painted one of two colors, red or blue.2 Our
theory says that (a) the optimal way to sell a red-or-blue
car to a single agent with values for the different colors
each drawn independently and uniformly from [0, 1] is to
post a take-it-or-leave-it price of

√
1/3 for either color, (b)

the optimal way to sell a red-or-blue car to one of multiple
agents each with i.i.d. uniform values for each color is to run
the second-price auction with reserve

√
1/3 and allow the

winning agent to choose her favorite color on sale, and (c)
more generally to sell a red-or-blue car to one of multiple
agents each with values drawn i.i.d. (from a distribution that
satisfies the same mild assumptions as above) for each color,
the second price auction with the reserve price equal to the
same price that would be offered to a single agent is (at
worst) a 4-approximation to the optimal auction.

It should be noted that reducing the multi-dimensional
preference to a single-dimensional preference by always
selling the winning agent her favorite color is, though natural
and practical, not generally optimal beyond U [0, 1]. Even
for a single agent with values for both colors distribution

1The red-or-blue car example is slightly unnatural as a forward auction
(i.e., the auctioneer is selling); however, the analogous reverse auction
(i.e., the auctioneer is buying) is an important problem in procurement.
For instance the government may wish to hire a contractor to build a
bridge. Contractors can build different kinds of bridges. From bids of the
contractors over the different bridges the auctioneer selects a kind of bridge
to procure, which contractor to procure it from, and how much is to be paid.
Our results for reverse auctions are analogous to those for forward auctions;
interested readers can find the details in the full version of the paper.

2This result generalizes to more colors but with a different reserve price.

uniformly on [5, 6], an analysis of Thanassoulis [3] shows
that the optimal pricing does not sell the agent her favorite
item subject to a reserve (in fact, it is not even deterministic).

Approach: We focus on service constrained environ-
ments where in any outcome the mechanism produces, each
agent is either considered served or unserved. The designer
has a feasibility constraint that governs which subset of
agents can be simultaneously served, but other aspects of
the outcome, e.g., payments, are unconstrained. This model
allows additional unconstrained attributes of the service
(e.g., the color of the car in the previous example). We
assume that the space of mechanisms is closed under convex
combination which allows for randomized mechanisms.

The agents in the mechanism have independently but
not necessarily identically distributed preferences (a.k.a.,
types). We do not place any assumption on the agent
preferences other than they are expected utility maximizers.
This includes the most challenging preference models in
Bayesian mechanism design such as multi-dimensionality,
public or private budgets, and risk-aversion (e.g., as given
by a concave utility function).

Revenue curves result from the following single-agent
mechanism design problem. Consider a single agent with
preferences drawn from a known distribution. Via the tax-
ation principle (e.g., Wilson [4]) the outcomes of a mech-
anism, for all possible preference reports the agent might
make, can be viewed as a menu where the agent selects
her favorite outcome by making the appropriate report. This
menu may contain outcomes that are randomized and for this
reason we refer to it as a lottery pricing. Ex ante, i.e., in
expectation over the distribution of the agent’s preference, a
lottery pricing induces a probability with which the agent
receives an outcome that corresponds to service, and an
expected payment, i.e., revenue.

As every lottery pricing induces an ex ante service proba-
bility and expected revenue, we can ask the optimization
question of identifying the lottery pricing with a given
ex ante service probability that has the highest expected
revenue. Considering this optimal revenue as a function
of the ex ante service probability gives rise to the agent’s
revenue curve. Important in the construction of revenue
curves are the lottery pricings, i.e., single-agent mechanisms,
that give the optimal revenue for each ex ante service
probability. As the space of lottery pricings is closed under
convex combination, the revenue curves are always concave.
The marginal revenue curve is the derivative of the revenue
curve with respect to ex ante service probability.

As discussed in the opening paragraph, the standard
economic intuition suggests that a monopolist splitting the
sale of a commodity between two markets should do so to
equate marginal revenue. There is an intuitive algorithmic
reinterpretation of this fact. If we order the consumers of
each market by willingness to pay and attribute to each
consumer the change in revenue from adding that consumer



(i.e., the marginal revenue), then the total revenue of an
allocation is the sum of the marginal revenues of each
consumer served. A simple algorithm for optimizing this
cumulated marginal revenue is to repeatedly allocate a unit
to the market that has the highest marginal revenue at its
current allocation (until the good is totally allocated or
marginal revenues are non-positive). Clearly this process
results in a final allocation that roughly equates where the
markets’ marginal revenues at the quantities allocated as in
the microeconomic interpretation. This allocation is optimal.

The main contribution of this paper is a methodology
for constructing multi-agent mechanisms from the simple
single-agent lottery pricings that define the revenue curve.
The main task of such a construction is to specify a method
for combining the single-agent mechanisms into a multi-
agent mechanism that is both feasible with respect to the
service constraint and obtains good revenue. We refer to
the family of mechanisms that take the following form as
marginal revenue mechanisms.

1) Map each agent type (which may lie in an arbitrary
type space) to a quantile in [0, 1].

2) Calculate the marginal revenue of each agent as the
derivative of her revenue curve at her quantile.

3) Select for service the set of agents that maximize
cumulative marginal revenue subject to feasibility.

4) Calculate for each agent the appropriate non-service
aspects of the outcome, e.g., payments.

Thus far in the discussion only Steps 2 and 3 should be
clear. The remaining steps are non-trivial in general and a
main issue that we will be resolving.

Results: This paper generalizes the marginal-revenue
approach for agents with single-dimensional linear prefer-
ences which is due to Bulow and Roberts [1] to general pref-
erences. Our main algorithmic contribution is to generalize
Steps 1 and 4 thereby reducing service constrained multi-
agent mechanism design problems to a collection of (single
agent) ex ante constrained lottery pricing problems. There
are a number of challenges in this endeavor. First, revenue
equivalence does not hold for general preferences (which
is used in the proof of optimality for single-dimensional
preferences). Second, there is not a natural ordering on
preferences for general preferences (making it difficult to
map preferences to quantiles, i.e., Step 1). Third, the set of
agents served by the marginal revenue mechanism may be
randomized. None of these issues are present for single-
dimensional linear preferences. Finally, the reduction fo-
cuses attention on this ex ante lottery pricing problem as
a fundamental building block of good mechanisms. For
general preferences these lottery pricing problems have not
previously been considered in the literature.

Orthogonal to the question of implementing the marginal
revenue mechanism for general preferences are questions
of quantifying its performance. Via the Myerson-Bulow-
Roberts analysis it is known that for single-dimensional

linear preferences, the marginal revenue mechanism is op-
timal. As a first step in understanding the performance of
the mechanism more generally we give a new derivation of
the optimality for single-dimensional agents that exposes a
previously unobserved property of single-dimensional pref-
erences which we refer to as revenue linearity. Generally,
i.e., beyond single-dimensional preferences, the optimality
of the marginal revenue mechanism is implied by revenue
linearity. Moreover, if general single-agent lottery pricing
problems are α-approximately revenue linear (e.g., bounded
from below by a linear function and from above by α times
the function), then marginal revenue maximization is an α-
approximation to the optimal mechanism.

Revisiting our red-or-blue car examples above, (a) is a
description of the optimal unconstrained lottery pricing, (b)
is a consequence of the revenue-linearity of types that are
uniformly distributed on a multi-dimensional hypercube, and
(c) is a consequence of 4-approximate revenue linearity for
agents with types drawn from any product distribution.

It is important to contrast the simplicity of the marginal
revenue approach with recent algorithmic results in Bayesian
mechanism design for general agent preferences. Recently,
Alaei et al. [5] and Cai et al. [6, 7, 8] gave polynomial
time mechanisms for large important classes of Bayesian
mechanism deign problems; the former considered general
preferences in service constrained settings (as does this
paper) and the latter considered multi-dimensional additive
preferences. The two main conclusions of these works are
that (a) optimal mechanisms continue to have weighted
maximization at their core, and (b) the appropriate weights
(i.e., virtual values) are stochastic and can be solved for as
a convex optimization problem, e.g., via ellipsoid method,
that takes into account the feasibility constraint and the
distribution over types of all agents. (This latter result is
simply because the space of mechanisms is convex, any
point on the interior of a convex set can be implemented by
a convex combination of vertices, and vertices correspond
to linear, a.k.a., weighted, optimization.)

Our results are distinct from these algorithmic results in
several respects. First, the weights in our derivation have a
natural economic interpretation as marginal revenue. Second,
the weights in our derivation can be found easily from
solutions to the single-agent lottery pricing problems and are
not derived from the solution to an additional optimization
problem. Third, in most cases, the weights in our derivation
depend only on the single-agent problem and not on the
feasibility constraint or presence of other agents. Therefore,
our approach affords significant structural simplification
and interpretation that enables the consequences previously
enumerated. Finally, one of the biggest open questions in the
above algorithmic work is in developing approaches that are
not brute-force in each agent’s type space. For example, our
approach gives mechanisms that have runtime polynomial
in the dimension of the type space (i.e., logarithmic in the



size of the type space) for multi-dimensional unit-demand
agents with values from product distributions.

Organization: In Section II we review the Myerson-
Bulow-Roberts single-dimensional linear agent model, their
approach to Bayesian optimal mechanism design, and give a
new proof that the marginal revenue mechanism is revenue
optimal. The proof follows from an argument that for single-
dimensional linear agents a class of single-agent lottery pric-
ing problems satisfies a natural revenue-linearity property.
In Section III we formalize our service constrained model
for general preferences and generalize the marginal revenue
derivation to general preferences that satisfy the previously
identified revenue linearity property. In Section IV we give
general methods for implementing the marginal revenue
mechanism (e.g. Steps 1 and 4) for general preferences
regardless of revenue linearity, and in Section V we show
that approximate linearity implies approximate optimality.

II. WARM-UP: SINGLE-DIMENSIONAL LINEAR
PREFERENCE

In this section we warm up by giving a new proof
that the marginal revenue mechanism is revenue optimal
for agents with single-dimensional linear preferences. We
will introduce many concepts (which were not present in
previous proofs) that make our generalization possible. The
basic approach is as follows. We formulate an important
class of lottery pricing problems the solution to which define
a revenue curve. We show that single-dimensional agents are
revenue linear in the sense that it is optimal to decompose
the allocation to any agent as a convex combination of
the solutions to these lottery pricing problems. Finally, we
observe that this implies that the optimal revenue can be
expressed in terms of the cumulative (over agents served)
marginal revenue (given by the derivative of the revenue
curve). The marginal revenue mechanism optimizes this
latter term point-wise and, therefore, also in expectation. In
the interest of brevity we will keep the discussion informal, a
formal treatment is given in Section III with proofs deferred
to the full version of the paper.

Model: A single-dimensional linear agent has a private
type v ∈ R+ drawn at random with cumulative distribution
function F and density function f . For outcome, let (x, p)
denote receiving a good or service with probability x and
making expected payment p. For such an outcome, an agent
with value v has a linear utility u = vx− p.

The geometry of single-dimensional auction theory is
more readily apparent when we index an agent’s strength
relative to the distribution (instead of values). Let V (q) =
F−1(1 − q) be the inverse demand curve, i.e., V (q̂) is the
posted price that would be accepted by the q̂ measure of
highest-valued agents (and rejected by all others). The quan-
tile of an agent is the measure of agents with higher values,
i.e., for value v the agent’s quantile is q = V −1(v). Impor-
tantly, for v drawn from the distribution F , q = V −1(v) is

uniform on [0, 1] (therefore, expectations of functions of q
are given by integrals with probability density one).

A multi-agent mechanism design problem is given by n
such single-dimensional agents each with their respective
inverse demand curves (which may be distinct) and a fea-
sibility constraint governing the subsets of agents that can
be simultaneously served. E.g., for a single-item auction,
the feasibility constraint says that at most one agent can be
served; more generally, the feasibility constraint could be
given by any set system. In the interim stage, i.e., when
an agent knows her own value but not the values of other
agents, the mechanism looks to the agent like a single-
agent mechanism. It will thus be sufficient for most of the
analysis of optimal multi-agent mechanisms to consider the
appropriate single-agent problems.

From the perspective of an agent in a single-agent mech-
anism and as a function of the agent’s report, the agent
is served with some probability and makes some expected
payment. We can view this function as a menu of service
probabilities and expected payments where the agent selects
her favorite outcome by submitting the corresponding report.
Notice that depending on the agent’s value for service, she
may choose different outcomes. We may as well index the
outcomes in the menu by the quantile of the agent that
selects the outcome, i.e., agent with quantile q chooses out-
come (x(q), p(q)). We assume that outcome (x, p) = (0, 0)
is in the menu. This relabeling and assumption imply in-
centive compatibility and individual rationality, respectively,
i.e., for all q, q′ ∈ [0, 1],

V (q)x(q)− p(q) ≥ V (q)x(q′)− p(q′), (IC)
V (q)x(q)− p(q) ≥ 0. (IR)

We call such a menu a lottery pricing. When the lottery
pricing is induced in the interim stage of a multi-agent mech-
anism, then the constraints above are Bayesian incentive
compatibility and interim individual rationality.

The Myerson [2] characterization of Bayesian incentive
compatible mechanisms applies to lottery pricings and im-
plies that the allocation rule x(·) is monotone non-increasing
and the payment rule is given precisely as a function of
x(·). An important consequence of the latter part of this
characterization is revenue equivalence. We will make use
of both monotonicity and revenue equivalence below, though
the specific form of the payment rule will not be important.

Constrained Lottery Pricings: Given such a lottery
pricing and a distribution over the agent’s value, an ex
ante expected payment Eq[p(q)] and ex ante probability
of service Eq[x(q)] are induced. The single-agent lottery
pricing problem that forms the basis for the marginal revenue
mechanism is the following. Given an ex ante constraint q̂
on the probability with which the agent is served, find the
lottery pricing that serves the agent with probability q̂ and
maximizes revenue.



Definition 1. The revenue curve R(q̂) is defined for all
q̂ ∈ [0, 1] as the optimal lottery pricing revenue for ex ante
constraint q̂.

In order to show that convex combinations of optimal
ex ante constrained lottery pricings are optimal in general,
we need to consider a more general lottery pricing prob-
lem. Notice that the ex ante constrained problem gives an
(equality) constraint on the total probability that the agent
is served over all quantiles she may have. To get more
fine-grained control over the lottery pricing we additionally
allow upper bounds to be specified on the total probability
of allocation for subsets of quantiles. Consider the following
lottery pricing problem: Given a monotone concave function
X̂(q), find the optimal lottery pricing where the ex ante
probability of allocating to any q̂ measure of quantiles is at
most X̂(q̂) for all q̂ ∈ [0, 1) and exactly equal to X̂(q̂) at
q̂ = 1.

To see why this constrained lottery pricing problem is
the right one to consider, notice the following. Because any
allocation rule is monotone, meaning stronger quantiles re-
ceive no lower probability of service than weaker quantiles,
the sets of measure q̂ for which the constraint of service
probability at most X(q̂) is binding correspond exactly to
the strongest q̂ measure of quantiles. For allocation rule x(·)
the probability of service to the strongest q̂ measure of agents
is exactly X(q̂) =

∫ q̂

0
x(q) dq. We refer to X(·) as the

cumulative allocation rule. Thus, the allocation constraint
is exactly, X(q̂) ≤ X̂(q̂) for all q̂ ∈ [0, 1] (with equality for
q̂ = 1). Of course we can view the cumulative allocation
rule X of x as a constraint and observe that x satisfies
the constraint with equality. Moreover, x is the allocation
rule that satisfies X as a constraint that has the highest
probability on stronger (i.e., lower) quantiles. Therefore, for
any constraint X̂ (with corresponding x̂(q) = d

dq X̂(q)) is
met by allocation rule x that relatively has allocation prob-
ability shifted from stronger quantiles to weaker quantiles.
Specifically, x̂ majorizes x.

Definition 2. Rev[x̂] is the optimal revenue of any lottery
pricing that satisfies the allocation constraint x̂ (via its
cumulative allocation rule X̂).

Recall our ex ante constrained lottery pricing where we
wish to serve the agent with ex ante probability q̂. A posted
price is parameterized by a single price and is a simple
example of a lottery pricing (i.e., one that is deterministic),
the two menu items are to be served and pay the price or
not to be served and pay nothing. The agent prefers service
when her value exceeds the price and, otherwise, she prefers
no service. For an agent with inverse demand curve V (·),
the posted price that serves with probability q̂ is V (q̂). It
gives expected revenue q̂ · V (q̂) (which is at most R(q̂)).
Its allocation rule x̂q̂ is the reverse step function that is
one on quantiles [0, q̂] and then zero on (q̂, 1]. This rule

has the most service probability on strong quantiles of all
allocation rules that satisfy the ex ante allocation constraint
q̂. Of course, the revenue it generates q̂ · V (q̂) may not be
a concave function of q̂ and it must be that the revenue
curve R(·) is concave. In can be shown, in fact, that R(·) is
exactly the concave hull of q̂ · V (q̂) and the optimal lottery
for any q̂ is given by a posted pricing or if R(·) is linear at
q̂ equal to the convex combination of two posted pricings
(corresponding to the boundary of the interval containing q̂
on which R(·) is linear). The allocation rule of this convex
combination is a convex combination of the appropriate two
reverse step functions and, in the sense described above, has
service probability shifted from stronger quantiles to weaker
quantiles. This specific form (which is not obvious) is not
important for our re-derivation of the optimal mechanism,
what is important (and obvious) is the following.

Proposition 1. For any ex ante constraint, the optimal
lottery has weaker a allocation rule higher revenue than
price posting.

Revenue Linearity: We are now ready to give the
new derivation of the marginal revenue mechanism and its
optimality. We start with the central definition.

Definition 3. The single agent lottery pricing problems are
revenue linear if Rev[·] is linear. I.e., the optimal revenue
for constraint x̂ = x̂A+x̂B is Rev[x̂] = Rev[x̂A]+Rev[x̂B ].

Now consider the following two lower bounds on the op-
timal revenue for any allocation constraint x̂. The constraint
x̂ is a monotone non-increasing function. As reverse step
functions provide a basis for such functions, we can view
x̂ as a convex combination of reverse step functions. This
convex combination can be sampled by drawing q̂ at random
from the distribution Gx̂ with density −x̂′(q) = d

dq x̂(q)

and then posting price V (q̂) (and allocation rule x̂q̂). The
allocation rule of the convex combination is exactly x̂, its
expected revenue lower bounds the optimal revenue subject
to the constraint x̂. A second approach is to use, instead
of the posted pricing V (q̂), the optimal lottery pricing for
ex ante constraint q̂. As the allocation rule for each of these
mechanisms is weaker than the corresponding posted pricing
allocation rule, the convex combination of the allocation
rules (denote it by x) is weaker than the allocation constraint
x̂. Therefore, it is feasible for x̂ and its revenue gives a lower
bound on the optimal revenue for x̂. Formally,

Rev[x̂] ≥ Eq̂∼Gq̂ [−x̂′(q̂)R(q̂)]

=
[
− x̂(q̂)R(q̂)

]1
0

+ Eq [R′(q)x̂(q)]

= Eq [R′(q)x̂(q)] .

The second equality follows from the definition of expecta-
tion and integration by parts, and the third equality follows
from R(1) = R(0) = 0 (minor assumption: if we always



serve or never serve the agent we obtain no revenue). This
construction motivates the following definition.

Definition 4. The marginal revenue for an allocation con-
straint x̂ is MR[x̂] = Eq[R′(q)x̂(q)].

The definition of revenue linearity and the definition of
the revenue curve (as the optimal revenue subject to the ex
ante constraint q̂) immediately imply the following theorem.

Theorem 2. If the single-agent lottery pricings are revenue
linear then the optimal revenue for an allocation constraint
is equal to its marginal revenue, i.e., for all x̂, Rev[x̂] =
MR[x̂].

To show that the marginal revenue is equal to the optimal
revenue, we must only prove revenue linearity. The proof of
this theorem is a simple consequence of revenue equivalence
and the fact that the optimal revenue for ex ante constraint
q̂ exceeds the posted pricing revenue from V (q̂) but has a
weaker allocation rule (Proposition 1). We defer it to the full
version of the paper.

Theorem 3. An agent with single-dimensional linear utility
is revenue linear.

Corollary 4. For single-dimensional agents the optimal
revenue for an allocation constraint is equal to its marginal
revenue, i.e., for all x̂, Rev[x̂] = MR[x̂].

Multi-agent Mechanisms: We now look at the problem
of optimizing expected revenue over agents in a multi-agent
mechanism. The following is the standard argument from
auction theory. For each agent, revenue is given by marginal
revenue (Corollary 4). Relax incentive constraints (namely:
monotonicity of the allocation rule) and optimize marginal
revenue pointwise. Meaning, when the agent quantiles are
q = (q1, . . . , qn) select the allocation x = (x1, . . . , xn) to
maximize the cumulative marginal revenue

∑
iR
′
i(qi) · xi

subject to feasibility of x (e.g., for a single-item auction,
serve the agent with the highest positive marginal revenue,
or none if the marginal revenues are all negative). Now
check that the incentive constraints hold: Notice that since
revenue curves are concave, marginal revenues are monotone
non-increasing, for any agent a stronger (lower) quantile
corresponds to a weakly higher marginal revenue, and so
the induced allocation rule is monotone. Furthermore, as
these allocations optimize marginal revenue pointwise for
all profiles of agent quantiles, they certainly also maximize
marginal revenue in expectation over the agent quantiles.

Comparing the above construction with the marginal
revenue mechanism framework described in the introduction,
the missing Steps 1 and 4 are simple. For Step 1, the
mapping from value to quantile is given by V −1i (·) =
1−Fi(·) for each agent i as described above. For Step 4, the
appropriate payments can be calculated pointwise as follows:
Agents that are not served pay nothing; an agent i that is

served pays the value Vi(q̂i) corresponding to her critical
quantile q̂i, i.e., the quantile after which she would no longer
be served (via the payment identity).

Theorem 5. For single-dimensional linear agents, the
marginal revenue mechanism is incentive compatible and
revenue optimal.

III. MULTI-DIMENSIONAL AND NONLINEAR
PREFERENCES

Bayesian mechanism design: An agent has a private
type t from type space T drawn from distribution F with
density function f . The agent may be assigned outcome w
from outcome space W . This outcome encodes what service
the agent receives and any payments she must make for the
service. In particular the payment specified by an outcome w
is denoted by Payment(w). The agent has a von Neumann–
Morgenstern utility function: for type t and deterministic
outcome w her utility is u(t, w), and when w is drawn from
a distribution her utility is Ew[u(t, w)].3 We will extend
the definition of the utility function to distributions over
outcomes ∆(W ) linearly. For a random outcome w from a
distribution, Payment(w) will denote the expected payment.

There are n agents indexed {1, . . . , n} and each agent i
may have her own distinct type space Ti, utility function ui,
etc. In this paper we only consider settings where different
agents’ types are drawn independently from their respective
distributions. A direct revelation mechanism takes as its
input a profile of types t = (t1, . . . , tn), and then outputs
for each agent i an outcome w̃i(t). The ex post outcome
rule of the mechanism is w̃i : T1 × · · · × Tn → ∆(Wi).
Agent i with type ti, as the other agents’ types are distributed
over T−i, faces an interim outcome rule w̃i(ti) distributed
as w̃i(ti, t−i) with tj ∼ Fj for each j 6= i. We say that a
mechanism is Bayesian incentive compatible if

ui(ti, w̃i(ti)) ≥ ui(ti, w̃i(t
′
i)), ∀i, ∀ti, t′i ∈ Ti. (BIC)

A mechanism is interim individually rational if

ui(ti, w̃i(ti)) ≥ 0, ∀i,∀ti ∈ Ti. (IIR)

The mechanism designer seeks to optimize an ob-
jective subject to BIC, IIR, and ex post feasibility.
We consider the objective of expected revenue, i.e.,
Et[
∑

i Payment(w̃i(ti))]; however, any objective that sep-
arates linearly across the agents can be considered. Below
we discuss the mechanism’s feasibility constraint.

Service constrained environments: In a service con-
strained environment a mechanism produces a (potentially)
randomized outcome which can be viewed as a joint distri-
bution over deterministic outcomes provided to each agent.
A deterministic outcome for an agent is distinguished as
a service or non-service outcome with Alloc(w) = 1 or

3This form of utility function allows for encoding of budgets and risk
aversion; we do not require quasi-linearity.



Alloc(w) = 0, respectively. There is a feasibility constraint
restricting the set of agents that may be simultaneously
served. A randomization over feasible subsets is feasible. For
a randomized outcome w an agent’s probability of service is
Alloc(w) ∈ [0, 1]. There is no feasibility constraint on how
an agent is served; with respect to the feasibility constraint
any outcome w ∈ W with Alloc(w) = 1 is the same.
For example, payments are part of the outcome but are not
constrained by the environment. An agent may have multi-
dimensional and non-linear preferences over distinct service
and non-service outcomes.

From least rich to most rich, standard service constrained
environments are single-unit environments where at most one
agent can be served, multi-unit environments where at most a
fixed number of agents can be served, matroid environments
where the set of agents served must be the independent set
of a given matroid, downward-closed environments where
the set of agents served can be specified by an arbitrary set
systems for which subsets of a feasible set are feasible, and
general environments where the feasible subsets of agents
can be given by an arbitrary set system that may not even
be downward closed.

Revenue Curves: The only aspect of the marginal
revenue approach that translates identically from single-
dimensional preferences to general preferences is the def-
inition of the q̂ ex ante optimal lottery pricing. This is the
lottery pricing (i.e., collection of outcomes where the agent
is permitted to choose her type-dependent favorite) denoted
w̃q̂(·) with the constraint that Et[Alloc(w̃q̂(t))] = q̂ that
optimizes revenue. For the optimal w̃q̂(·), the revenue curve
for the agent is then given by R(q̂) = Et[Payment(w̃q̂(t))]
as per Definition 1.

Allocation rules: Our first challenge, then, in general-
izing the marginal revenue approach to general preferences
is that we cannot make an upfront transformation from the
type space T of an agent to a [0, 1] quantile space ordered
by the strength of the agent. E.g., if the type is multi-
dimensional then it is unclear which is stronger, a higher
value in one dimension and lower in another or vice versa.
In fact, which is stronger often depends on the context, e.g.,
the competition from other agents.

Our approach is based on two observations. First, relative
to a mechanism and for a particular agent, the relevant
part of the mechanism is the (interim) outcome rule w̃(·).
For a given outcome rule w̃(·) an ordering on types by
strength can be defined. Simply, a type that is more likely
to be served is stronger than a type that is less likely
to be served. I.e., t is stronger than t′ relative to w̃(·)
if Alloc(w̃(t)) ≥ Alloc(w̃(t′)). Second, (by the above
mapping) any outcome rule w̃(·) induces an allocation rule
x(·) that maps quantile to service probability. This allocation
rule has a simple intuition in discrete type spaces: For each
type t ∈ T make a rectangle of width equal to the probability
of the type f(t) and height equal to the service probability

of the type Alloc(w̃(t)). Sort the types in decreasing order
of height; the resulting monotone non-increasing piecewise
constraint function from [0, 1] to [0, 1] is the allocation rule.
This is generalized for continuous distributions as follows.

Definition 5. For an agent with t ∈ T drawn from distribu-
tion F and outcome rule w̃(·), the allocation rule mapping
quantiles to service probabilities is given by x(q̂) = inf{y :
Prt∼F [Alloc(w̃(t)) ≥ y] ≤ q̂}.

Optimal Lottery Pricing: With the definition of allo-
cation rules for any lottery pricing in hand, allocation con-
strained lottery pricings generalize naturally. Even though
the order on types may change from one lottery pricing to
another, we can still ask for the lottery pricing with the
optimal revenue subject to a constraint on its allocation rule.
The optimal lottery pricing for allocation constraint x̂ with
cumulative allocation constraint X̂ is given by the outcome
rule w̃(·) that optimizes expected revenue subject to its
corresponding allocation rule x with cumulative allocation
rule X satisfying X(q̂) ≤ X̂(q̂) for q̂ ∈ [0, 1] with equality
at q̂ = 1. As per Definition 2 the optimal revenue for
allocation constraint x̂ is denoted Rev[x̂].

We will generally denote by x the optimal allocation rule
for constraint x̂. The ex ante constraint on total service prob-
ability by q̂ is given by the reverse step function at q̂ denoted
x̂q̂; the corresponding allocation rule of the q̂ optimal lottery
pricing is denoted xq̂ . Therefore, R(q̂) = Rev[x̂q̂].

Revenue Linearity and Marginal Revenue: Revenue
linearity and marginal revenue have the same definitions
(Definition 3 and Definition 4) as for single-dimensional
preferences. The marginal revenue of an allocation constraint
is MR[x̂] = Eq[R′(q)x̂(q)]. By its construction as the
revenue of the appropriate convex combination of ex ante
constrained mechanisms it is a lower bound on the optimal
revenue, i.e., Rev[x̂] ≥ MR[x̂]. Again by its construction,
revenue linearity would imply it is equal to the optimal
revenue.

Definition 6. The optimal marginal revenue for a service
constrained environment with general agent preferences is
the expected revenue (equal to expected cumulative marginal
revenue) of the single-dimensional analog with each agent
replaced by a single dimensional agent with the same
revenue curve.

The framework thus defined affords two very natural ques-
tions. First, as for general preferences optimal revenue may
be strictly larger than marginal revenue, does the optimal
marginal revenue approximate the optimal revenue? Second,
as the implementation of the marginal revenue mechanism
for single-dimensional preferences does not directly extend
to general preferences (e.g., Steps 1 and 4), can we imple-
ment the marginal revenue mechanisms? In the remainder
of this section we will focus on the revenue-linear special
case, where the optimal revenue is the optimal cumulative



marginal revenue, and we will answer the implementation
question. Non-revenue-linear environments are considered in
the next sections.

Implementation with Revenue Linearity: We show now
that the marginal revenue mechanism generalizes exactly for
general preferences that satisfy revenue linearity. Moreover,
in this case the marginal revenue mechanism inherits all of
the nice properties of the marginal revenue mechanism for
single-dimensional preferences. Namely, it deterministically
selects the set of agents to serve, it is dominant strategy
incentive compatible (truthful reporting is a best response
for any actions of the other agents), and the mapping from
types to quantiles to marginal revenues context free,4 it does
not depend on the feasibility constraint or other agents in the
mechanism, and deterministic. The mechanism, however, is
optimal among the larger class of randomized and Bayesian
incentive compatible mechanisms. As motivation for this
result, we will show subsequently that there are multi-
dimensional preferences that are revenue linear, e.g., when
multi-dimensional values are uniformly distributed on a
hypercube.

The main challenge of implementing the marginal revenue
mechanism is in specifying Step 1, i.e., the mapping from
types to quantiles, and Step 4, i.e., selecting the appropriate
outcomes for the set of agents that are served. If, however,
each agent’s types are orderable by the following defini-
tion, then both steps are essentially identical to the single-
dimensional case.

Definition 7. A single-agent problem is orderable if there is
an equivalence relation on the types, and there is an ordering
on the equivalence classes, such that for any allocation con-
straint x̂, the optimal outcome rule w̃ induces an allocation
rule that is greedy by this ordering with ties between types
in a same equivalence class broken uniformly at random.5

Orderability may look like a stringent and unlikely con-
dition to hold generally. We note that it holds for single-
dimensional agents and we show now, more generally, that
it is a consequence of revenue linearity.

Theorem 6. For any single-agent problem, revenue linearity
implies orderability. Moreover, for an ex ante constraint q̂
for which R(q̂) is locally linear, the optimal lottery pricing
is a full lottery.6

Given the properties above , the marginal revenue mech-

4Note that this contrasts with recent algorithmic work in multi-
dimensional optimal mechanism design where the optimal mechanism is
characterized by mapping types stochastically to “virtual values” and this
mapping is solved for from the feasibility constraint and the distributions
of all agents types. See Alaei et al. [5] and Cai et al. [6, 7].

5By greedy by the given ordering, we mean process each equivalence
class in order and serve the corresponding types with as much probability
as possible subject to the allocation constraint.

6A full lottery is one where each type is either served or not served with
probability one.

anism is easy to define in the revenue-linear settings.

Definition 8. The marginal revenue mechanism for order-
able agents works as follows.

1) Map reported types t = (t1, . . . , tn) of agents to
quantiles q = (q1, . . . , qn) via the implied ordering.7

2) Calculate the marginal revenue of each agent i as
R′i(qi).

3) For each agent i, calculate the maximum quantile q̂i
that she could possess and be in the marginal revenue
maximizing feasible set (breaking ties consistently).

4) Offer each agent i the q̂i ex ante optimal pricing.

Proposition 7. The marginal revenue mechanism determin-
istically selects a feasible set of agents to serve and is
dominant strategy incentive compatible.

Proposition 8. In service constrained environments with
revenue-linear agents, the marginal revenue mechanism
obtains the optimal marginal revenue (which equals the
optimal revenue).

As an example of multi-dimensional single-agent problem
that is revenue linear, we show in the full version of the paper
the following theorem. From this theorem, Proposition 8
enables the derivation of the optimal auction for the red-
or-blue car example described in Section I.

Theorem 9. A unit-demand agent with values for m variants
of a service distributed uniformly on [0, 1]m is revenue-
linear.

IV. IMPLEMENTATION

In the full version of the paper, we give a proof for the
following theorem, the key to which is a variation of the
technique of vector majorization of Hardy et al. [9].

Theorem 10. For service constrained environments the
interim allocation rules of the marginal revenue mechanism
can ex post implemented by a Bayesian incentive compatible
mechanism.

The mechanism given by Theorem 10 gives polynomial
time reduction to the single-agent ex ante pricing problems.
However, unlike the revenue linear case, it is only Bayesian
incentive compatible and the mapping from types to quan-
tiles to marginal revenues is not context free (i.e., it depends
on the feasibility constraint and the competition from other
agents).

In the following we give another construction for the
special case where the parameterized family of q̂ ex ante
optimal pricings satisfy a natural monotonicity property
(Definition 9, below). The advantage of this approach is that
it gives a mechanism that is dominant strategy incentive
compatible and, moreover, the mapping from an agent’s

7This ordering can be found by calculating the optimal single-agent
mechanism for allocation constraint x̂(q) = 1− q.



type to quantile is a randomized function determined by
her type space and distribution alone and is unaffected
by the environment (the other bidders and the feasibility
constraints), i.e., it is context free.

Definition 9. An agent has monotone ex ante optimal
pricings if, given her type, the probability she wins in the q̂
ex ante optimal pricing is monotone non-decreasing in q̂.

Suppose that the q̂ ex ante optimal pricing for an agent
each consists of a menu of full lotteries. I.e., for any type
of the agent she will choose a lottery that either serves
her with probability 1 or zero. In this case the monotone
ex ante optimal pricings assumption would require that the
sets of types served for each q̂ be nested. There is a simple
deterministic mapping from types to quantiles in this case:
set the quantile of a type to be the minimum q̂ such that the q̂
ex ante optimal pricing serves the type. Below, we generalize
this selection procedure to the case of partial lotteries (where
types may be probabilistically served).

Denote the allocation and outcome rules (as functions of
an agent’s type) of the q̂ ex ante optimal pricing by x̃q̂ and
w̃q̂ , respectively. Fix the type of the agent as t and consider
the function Gt(q̂) = x̃q̂(t) which, by the monotonicity
condition, can be interpreted as a cumulative distribution
function. Note that x̃q̂ has ex ante probability of service
Et[x̃

q̂(t)] = q̂. Hence if t is drawn from the type distribution
and then q is drawn from Gt then q is uniformly distributed
on [0, 1].

Lemma 11. If t ∼ F and q ∼ Gt then q is U [0, 1].

Definition 10. The marginal revenue mechanism for agents
with monotone step mechanisms works as follows.

1) Map reported types t = (t1, . . . , tn) of agents to
quantiles q = (q1, . . . , qn) by sampling qi from
the distribution with cumulative distribution function
Gti(q) = x̃q̂i (ti).

2) Calculate the marginal revenue of each agent i as
R′i(qi).

3) For each agent i, calculate the maximum quantile q∗i
that she could possess to be in the marginal revenue
maximizing feasible set (breaking ties consistently).

4) For each agent i, offer the q∗i ex ante optimal pricing
conditioned so that i is served if qi ≤ q∗i and not served
otherwise.

The last step of the marginal revenue mechanism warrants
an explanation. In the q̂∗i ex ante optimal pricing, the
outcome that i would obtain with type ti may be a partial
lottery, i.e., it may probabilistically serve i or not. The
probability that i is served is x̃q̂

∗
i

i (ti) = Prqi [qi ≤ q∗i ] by our
choice of qi. When we offer agent i the q∗i ex ante optimal
pricing we must draw an outcome from the distribution given
by w̃q̂∗i

i (ti). Some of these outcomes are service outcomes,
some of these are non-service outcomes. If qi ≤ q∗i then we

draw an outcome from the distribution w̃q̂∗i
i (ti) conditioned

on service; if qi > q∗i then we draw an outcome conditioned
on non-service. While it may not be feasible to serve all
agents who receive non-trivial partial lottery, this method
coordinates across the partial lotteries which agents to serve
to maintain the right distribution on agent outcomes and
ensure feasibility.

Theorem 12. The marginal revenue mechanism for agents
with monotone step mechanisms is ex post feasible, domi-
nant strategy incentive compatible, and implements marginal
revenue maximization.

In the full version of the paper we show that a single-
dimensional agent with a publicly known budget (and some
standard assumptions on the value distribution) satisfies the
monotonicity condition, and for this kind of preference and
a single-unit environment we given an interpretation of the
marginal revenue mechanism, above.

V. APPROXIMATION

In previous sections, we have shown that for any collec-
tion of agents the marginal revenue mechanism can be im-
plemented and for revenue-linear agents that it is optimal. In
this section, we show that the marginal revenue mechanism
gives a good approximation to the optimal revenue quite
generally.

A. Agent-based Approximation

Proposition 13. If for any agent i and allocation constraint
x̂i, the marginal revenue MR(x̂i) is at least an α fraction
of the optimal revenue Rev(xi), then the marginal revenue
mechanism in the multi-agent setting is an α-approximation
to the optimal mechanism.

For many single-agent problems of interest neither the
optimal revenue nor the marginal revenue are easy to char-
acterize; therefore, to instantiate Proposition 13 we look
for upper bounds on the optimal revenue, lower bounds on
the marginal revenue, and their ratio in worst case over
allocation constraints. This endeavor is simplified by the
following immediate consequence of linearity.

Proposition 14. Given an upper bound on the optimal
revenue and a lower bound on the marginal revenue that are
both linear in the allocation constraint, i.e., x̂ = x̂A + x̂B

implies that B(x̂) = B(x̂A) +B(x̂B), if the lower bound is
an α fraction of the upper bound for any ex ante constraint
q̂, then the marginal revenue is a α-approximation to the
optimal revenue for all allocation constraints.

If, in addition, our lower bound for ex ante constraint
q̂ comes from an approximation algorithm for the q̂ lottery
pricing problem, i.e., it is the revenue of a lottery pricing that
serves with probability q̂, then we can define the marginal
revenue mechanism from this approximation algorithm for
the lottery pricing problem. Such an approach might be



desirable if the approximations are better behaved than
the optimal ex ante lottery pricings, e.g., if they are easy
to compute, respect an ordering on types, or satisfy the
monotonicity condition of Definition 9 (all of which make
implementation of the marginal revenue mechanism easier).

Multi-dimensional Agents with Unit-demand Product
Distributions: Consider lottery pricing for an agent who
desires one of several items (i.e., unit-demand) with val-
ues for the items drawn from a product distribution. The
unconstrained version of this lottery pricing problem has
seen recent attention in the literature. Chawla et al. [10]
showed that the optimal lottery pricing is upper bounded
by twice the optimal auction revenue for the representative
environment. The representative environment is one where
the unit-demand agent is replaced by single-dimensional
representative agents bidding for a single item. As we saw in
Section II, this single-dimensional auction problem is solved
by optimizing marginal revenue and its expected revenue
is equal to its cumulative marginal revenue. Chawla et al.
[11] showed that, for the original unit-demand environment,
a simple item pricing based on equalizing the marginal
revenues of the price posted is a two approximation to the
optimal representative revenue. Thus, this item pricing is a
four approximation to the optimal lottery pricing. We extend
these results to general constraints as follows.

Theorem 15. For any unit-demand agent with values drawn
from a product distribution and any allocation constraint,
twice the optimal revenue for the representative environment
upper bounds the revenue of the optimal lottery for the unit-
demand agent.

Theorem 16. For any unit-demand agent with values drawn
from a product distribution and any downward-closed ex
ante allocation constraint,8 item pricing to equalize the
marginal revenues of the prices posted gives a two approxi-
mation to the optimal auction revenue for the representative
environment.

Linearity of the revenue in the representative environment
(by Theorem 3 and Theorem 5) then implies by Proposi-
tion 14 that maximizing marginal revenue using the item
pricings of Theorem 16 as approximate solutions to the ex
ante optimal pricing problem gives a four approximation to
the optimal revenue. Of course, marginal revenue maximiza-
tion with the optimal ex ante pricing can be no worse.

Corollary 17. In downward-closed service-constrained en-
vironments with unit-demand agents, the marginal revenue
mechanism is a four approximation to the optimal mech-
anism (and so is the marginal revenue mechanism defined
from the ex ante pricing approximations).

8A downward closed ex ante constraint q̂ allows the service probability
to be at most q̂.

B. Feasibility-based Approximation

Feasibility constraints imply approximation bounds for
the marginal revenue mechanism. Below, Theorem 18 gives
results for matroid settings follow from the correlation gap
approach of Yan [12], and results for downward-closed
settings which require novel reasoning about the marginal
revenue mechanism. Proofs of these results are in the full
version of the paper.

Theorem 18. In a matroid environment the optimal
marginal revenue is a e/(e−1)-approximation to the optimal
revenue; for k-unit environments it is a 1/(1− (2πk)−1/2)-
approximation. In downward-closed environments for n
quasi-linear agents, the optimal marginal revenue is a
4 log n-approximation to the optimal revenue.

REFERENCES

[1] J. Bulow and J. Roberts, “The simple economics of op-
timal auctions,” Journal of Political Economy, vol. 97,
no. 5, pp. 1060–1090, October 1989.

[2] R. Myerson, “Optimal auction design,” Mathematics
of Operations Research, vol. 6, no. 1, pp. pp. 58–73,
1981.

[3] J. Thanassoulis, “Haggling over substitutes,” J. Eco-
nomic Theory, vol. 117, no. 2, pp. 217–245, 2004.

[4] R. Wilson, Nonlinear Pricing. Oxford University
Press, 1997.

[5] S. Alaei, H. Fu, N. Haghpanah, J. Hartline, and
A. Malekian, “Bayesian optimal auctions via multi-
to single-agent reduction,” in ACM Conference on
Electronic Commerce, 2012.

[6] Y. Cai, C. Daskalakis, and M. Weinberg, “An algo-
rithmic characterization of multi-dimensional mech-
anisms,” in Symposium on Theory of Computation,
2012.

[7] ——, “Optimal multi-dimensional mechanism design:
Reducing revenue to welfare maximization,” in Foun-
dations of Computer Science, 2012.

[8] ——, “Reducing revenue to welfare maximization:
Approximation algorithms and other generalizations,”
in SODA, 2013.

[9] G. Hardy, J. Littlewood, and G. Pólya, “Some simple
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