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Abstract pricing problems studied in this paper.

We study the problem of pricing items for sale to consumers More formally, we assume that the seller haddiffer-
so as to maximize the seller’s revenue. We assume that§Bk items, and a set afconsumers may be interested in pur-
each consumer, we know the maximum amount he woglgasing some of these items. We assume that through market
be willing to pay for each bundle of items, and want tggsearch or interaction with the consumers, the seller know
find pricings of the items with corresponding allocatiorstth®ach customer'saluationfor each subset (also calléuin-
maximize seller profit and at the same time arey-free dle) of items, the largest amount that the customer is \_/\(|Il|ng
which is a natural fairness criterion requiring that conetsn {0 pay for that subset. If a customer buys a subsetyfiiis
are maximally happy with the outcome they receive givétb(_ is the difference between the valuation and the purcha_se
the pricing. We study this problem for two important class&%iC€; i-€., the amount of money he “saved” compared to his
of inputs: unit demand consumersho want to buy at most valuation. S .
one item from among a selection they are interested in, and The seller gets to assign individuaticesto the items,
single-minded consumerstho want to buy one particulara”d his goal is to maximize his own revenue, i.e., the sum of
subset, but only if they can afford it. prices of all sold items. Which items are sold is determined
We show that computing envy-free prices to maximizdy anallocationof bundles of items to customers (at most
the seller’s revenue is APX-hard in both of these cases, &g bundle is allocated to each customer, and such a bundle,
give a logarithmic approximation algorithm for them. Fdf @ny, must have nonnegative utility for that customeresin
several interesting special cases, we derive polynorinia-t Otherwise the customer will of course not buy the bundle).
algorithms. Furthermore, we investigate some connectioff§ require that this allocation benvy-fregi.e., given the
with the corresponding mechanism design problem, in whiBACing, no user would prefer to be assigned a different
the consumer’s preferences are private values: for this, cdd/ndle. The notions of envy-free pricing and allocations

we give alog-competitive truthful mechanism. model fair equilibrium pricing in a variety of economic
settings [24]. Envy-freeness is particularly relevanthe t
1 Introduction case when there is only a limited supply of some items;

. . ._for then, a user interested in buying a bundle at the posted
Imagine that we are a company or store in the business

of selling products to consumers. An important aspé%rtlce may be unable to do so, creating discontent among the

of maximizing the revenue obtained is the pricing of olHStomers.

products: a low price will attract more customers, while 81 Our Results. The pricing problem as defined above is
high price generates_more revenue per sold item. How, th_@@ny general. Even when given envy-free prices, computing
should we choose prices optimally? For example, supposifg corresponding allocation problem can be easily seen to
that customers want to buy bandwidth along subpaths oh@NP-hard. For this reason, we focus here on two important
network and are willing to pay up to some amount for thgtasses of consumer valuation profiles.
pandW|dth, how S.hO.UId one price the bgndmdth along the. Unit-demand biddets Each consumer would like to
links so as to maximize the revenue? This is the flavor of the ) : I

buy at most one item, and is considering a number of

different options with different valuations for each. For
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An interesting special case of these pricing problerayorithmic complexity of computing “equilibria”; in an
can be obtained by assuming that the items are availabl@jrtimal envy-free pricing, the seller does not have any
unlimited supply In this special case, there is no limitatiomcentive to change prices and the consumers do not have
on how many copies of each item are sold, and thus aayy incentive to dispute the allocation. Examples of other,
pricing is envy-free when the allocation is to give eacdomewhat different work in this category, can be found
consumer their most preferred bundle. When we wish ito[9, 10].
distinguish the unlimited supply case from the general case As previously discussed, this work is related to truthful
we will refer to the general case as timited supplycase. auction design, and especially the design of truthful aumnsti

As we will show, both of these versions are not onlyith worst-case performance guarantees, e.g., [12, 13,11,
NP-complete, but APX-hard, even under strong additiongl18].
restrictions. We therefore focus on two kinds of resulty: (1  Our interest here is in seller profit maximization. An-
approximation algorithms with logarithmic guaranteedia t other common goal for economically motivated algorithms
general case, and (2) polynomial or pseudo-polynomial tirard mechanisms is that eEonomic efficiencyobtaining an
algorithms for interesting special cases. outcome which maximizes the sum of the utilities of all par-

We give anO(logn) approximation algorithm for theticipants. For the single-minded bidder case, when the goal
limited supply unit demand problem, and &nlogn + is efficiency, both the pricing problem and the mechanism
logm) approximation for the unlimited supply singledesign problem have approximate solutions [19, 3]. For the
minded bidder problem. unit-demand case, the Vickrey-Clarke-Groves (VCG) mech-

Furthermore, we define and give a polynomial timenism [23, 8, 14] solves the problem in polynomial time (see
algorithm for the unlimited supplgricing over timevariant details in Section 4), and is both truthful and envy-free. We
of the unit demand problem. This problem models the casate that computing the VCG mechanism is NP-hard for gen-
where there is a single item for sale at various points in tirreal combinatorial auction problems including the special
and each consumer wants to acquire the item within sonsse of single-minded bidders. The goal of economic effi-
time interval (e.g., for bandwidth or airline tickets). ciency is quite different from maximizing the seller profit,

For the single-minded case, we define and investigateaimd there are simple examples where the VCG mechanism is

Section 5.2, thdollbooth problenon trees, and its specialvery far from maximizing the seller profit. For example, if
case, theHighway problemon a path. In these problemsno two consumers want the same item then the VCG mech-
consumers are interested in using a given path in the teggsm gives all items away for free!
(or on the path), and the seller can place toll booths on For unit-demand envy-free pricing, a final, somewhat
the edges and charge prices for their usage. The additianfdrmal connection is to the notion of stable matchings. By
combinatorial structure provided by this restriction aifous introducing prices, we construct matchings of consumers to
to give polynomial time algorithms for several cases of ¢hesems with the property that no consumer prefers the item
problems. someone else gets to the item they get.

The envy-free pricing problem also has a role as a lower
bound in the setting gfrofit maximizing combinatorial auc-2 Preliminaries
tions There, customers’ valuations are often not known, apgk assume that there areconsumers, and a set of m
what is more, customers will choose to misrepresent thgitinct items. Each itemj € J exists in ¢; copies (we
valuations if they feel that they can get a better ddch- expjicitly allow ¢; = o), and we denote thsupply vector
anism desigrstudies the design dfuthful (or incentive- py ¢ — (¢;, ..., ¢,,). Each consumer hasvaluationv; ()
compatiblg auctions which make it in the customers’ besgr each bundleS C J of items, which measures how
interest to disclose their true valuations. The perforrearfc mych receiving bundleS would be “worth” to consumer
such auctions is often measured in comparison to the profitye genote byl” the n x 27 matrix of valuations. For
of the seller optimal envy-free pricings [13, 12],. In Seati convenience, we assume thatf)) = 0 for all consumers.

4, we will investigate this connection further, and present  Gjven aprice vectorp = (pi,.. ., pn), theutility that
log h-competitive truthful limited-supply unit-demand comgonsumer derives from bundles is U;(S) = v;(S) — ps,
binatorial auction for the case where all consumer valuatiqyherepy = 3 5 Dj; it measures the consumer’s “joy” at
are in the rangél, 4]. We note that for any unlimited supplyhaving bought the bundlg at the given price. If consumer
combinatorial pricing problem (including the single-métdl ;s tility for the bundles is non-negative, we caff feasible
case), dog h-competitive truthful mechanism is trivial. for i. Useri’s demand setD; contains all bundles that
would make him maximally happy, i.e., all bundles that he
Related Work. Pricing is a well-studied area in economicsyould most like to buy. FormallyD; = {S | Ui(S) =
however, computational issues are not a major focus. Enyy;, U;(S’)}. Because not buying any bundle is always an
free pricing is part of a trend towards understanding t%tion with utility U;(0) = 0, we know that/;(S) > 0 for



all S e D;. 3 Pricing for Unit-Demand Consumers

~ Using this terminology, we can now define envy-freg this section, we consider envy-free pricing in the unit-
pricing and allocations, the central notion of this paper.  gemand setting.

DEFINITION 2.1. ) _ )
3.1 APX-hardness. Even in a very restricted special case

. of the unit-demand setting, finding optimal prices is APX-

1. f‘n 5_‘2?9?t'0n(hs,1’ -, 5n) of bundles to ansiiim?rs $hard, as stated by the following theorem. A similar result
easibleif each item; is in at moste; setss;. Notice o< ouen independently in [1],

that this may leave some items unallocated.
. - . THEOREM3.1. The unit demand envy-free pricing problem
2. Given a pricingp = (p1,...,pm), an allocation . ; . o -
) . o is APX-hard, even if each item exists in unlimited supplg, an

(S1,...,5,) isenvy-freef S; € D, for all 4, i.e., each . .
; . each consumer has equal valuations (of either 1 or 2) for all

consumer receives a bundle from his demand set. . . .
the items he has any interest in.

3. Apricingp is envy-fredf it admits a feasible, envy-free

allocation. Proof. We give a reduction from the vertex cover problem

on graphs of maximum degree at mdstfor an absolute

Notice that if the supply is unlimited for all items, therzonstantB, which is known to be APX-hard (even for
every price vector is envy-free, as we can select an arpitr@ — 3). Given a grapiG = (V, E) with n nodes (labeled
bundleS; from each demand sé?;, and obtain a feasible1,2, ... n) andm edges (wheren < Bn/2 = O(n)), our
allocation. pricing instance has items, one for each node ¢f, and
m + n consumers. (We assundgis connected w.l.0.g, so
m > n — 1.) For each edge = (i, j), there is a consumer
c. whose valuation for items, j equalsl and valuation for
all other items is). In addition, for each = 1,2,... n,
there is a custometf; whose valuation for item equals2,

When we talk aboupricing algorithmsfor comput- and valuation for all other items equals
ing prices and allocations, we will often use the notation We claim that the optima| pricing and Corresponding
Algo(V) to denote both the outplp, (51, ..., S,)) of the allocation of this instance achieves a total profitof-2n—k
algorithm and its revenuB = 3, ps,. wherek is the size of the smallest vertex cover@f First,

The most general case of the combinatorial envy-frges is a vertex cover of; with |S| = k, consider the pricing
pricing problem is difficult for two reasons, (1) the merghere items inS have costl, and those i/ \ S have cost
specification ofl” could be of sizeQ2(2™) rendering the 2. Since each edge has at least one endpoint incident on a
problem intractable, and (2) evenlifwas a reasonable sizenode in S, we get profitl from each customer,. Also,
the question of whether a given pricing is envy-free is Nfor ; ¢ 5, we get profit2 from d;, and fori € S we

hard to decide. Thus we are motivated to focus on majet profit1 from d,. Clearly, this yields a total profit of
tractable, yet important and rich subclasses of the problem 4 2n—k)+k=m+2n—k.

The general version can be considered as an OR of AND§: For the converse, first notice that each node/item
the each user wants to buy one of several bundles, and buyi@out loss of generality priced dtor 2. If there exists
a bundle means bu_ying all of its items. Two _natural speci@. edge: = (i, ) where bothi, j are priced®, then we are
cases can be obtained by conceptually making the “fan-iyaking zero profit from.. By reducing the price of sayto
of the AND/OR operators 1. Specifically, we then obtain: 1, we lose a profit oft from the customed;, but we make
e Unit-demand consumerdEach consumer is interested!P for it by making a profit of. from c... Therefore, we may
in buying exactly one item, so;(S) > 0 only when aSsume that set of nodes priced dbrms a vertex cover of
|S| = 1. Thus, the size of the valuation matrix reducég- This in turn implies that the profit is at most + 2n — k
from n x 2™ to n x m, and the entry;(j) denotes if k is the size of the smallest vertex cover.

consume’s valuation for itemj. (This correspondsto  Sinceém = ©(n) and the minimum vertex cover has size
making the AND fan-in equal to.) atleastn/B = (n), a constant factor gap in the size vertex

cover translates into a constant factor gap in the optimal

e Single-minded consumerdEach consumei is inter- profit for the pricing instance, which yields the desired APX
ested in only one specific bundle of iter§s. Thus, hardness result. Opt

the valuations/ can be summarized by a set of pairs

(vi, S;) meaning that consumeis interested in bundle 3.2 A logarithmic approximation algorithm. In our fur-

S;, and values it ab;. (This corresponds to making theher discussion of the unit demand case, it will be help-
OR fan-in equal td.) ful to think of allocations as matchings in bipartite graphs

DEFINITION 2.2. The envy-free pricing problergiven the
input (n,m,V,c), compute an envy-free pricing and a
corresponding envy-free allocati@f, . . ., S,,) maximizing
theseller profit) ", ps,.

S



Specifically, given a price vectgs, the demand graphs Unfortunately, even the Walrasian Equilibrium with the
a bipartite graph between consumeérand itemsj, dupli- highest prices can have revenue far from optimum. The
catedmin(c;,n) times, containing an edde, j) if and only problem is that selling as many items as possible, a key
if 7 € D;. An envy-free matching a matchingV/ such that requirement of a Walrasian Equilibrium, may lead to very
each consumerwith ) ¢ D, is matched. Then, the pricedow revenue.
p are envy-free if and only if the demand graph has an envy- Our algorithm will be following a common approach
free matching, and the output of a pricing algorithm is the profit maximization in economics. We will augment
pair (p, M). the computation of the Walrasian equilibrium witbserve

To simplify the presentation, we assume that therepsices A reserve price constrains the set of feasible pricings,
exactly one copy of each item, i.e;, = 1 for all itemsj. by requiring that iteny be priced at least at;. A classic
For the unit-demand case, this assumption is without lossesimple of the use of reserve prices in economics is in the
generality: if there are; copies of an item, we can replac@8ayesian optimal auction [21, 7], where the reserve prices
them in the input bynin(c;,n) distinct items, and give eachare based on the known prior distribution from which the
user the same valuation of all of those distinct items. Thensumers’ valuations are drawn.
envy-free condition then guarantees that all of thesendisti

copies of an item will have the same price DEFINITION 3.1. Given a valuation matri¥” and a reserve

price vectorr = (rq,. ..,y ), @aWalrasian Equilibrium with
321 Walrasan Equilibria. Our approximation algo- Féserve prices is an envy-free pr_ic_ing;» ar_wd allocationM
rithm builds on work in the economics literature concer§¥ch that (1p; > r; for all j, (2) if itemj is not sold, then
ing Walrasian Equilibria [17]. Given a valuation matiix a ?j = 75> and (3) ifitemj is in the demand set of biddeand
Walrasian Equilibrium(p, M) consists of an envy-free pric-/ IS notsold, then bidderis allocated an item.

ing p and a matching/ such that all unmatched items have Given an algorithmAlgo, to compute Walrasian Equi-

plrli:_;:e zEro. The_follo\\;vvinlg th_eorEm, ?Ee tq Gl:wl and_Stja;;lhql‘.Hria, we can use it to derive an algorithahlgo,., for com-
[15], characterizes Walrasian Equilibria in the unit- aputing Walrasian Equilibria with reserve prices.

pricing problem. We augment the valuation matrix to a new matrixy’”’

THEOREM3.2. [15] Let (p, M) be a Walrasian Equilib- PY creating, for each item, two dummy consumersvho
rium. Then) is a maximum weight matching on the val/@lueitemj atr;, and all otheritems at 0. Runnirggo(V’)

uation matrixV; furthermore, for any maximum matching"€n gives us a Walrasian Equilibriufp, M"). From M’
M, (p, M) is also a Walrasian equilibrium. we deduce a matching by removing all dummy consumers

and their edges; finally, while there is an unsold item the
For a valuation matri¥’, we letw(V") denote the weight demand set of a real consuni¢hat is not allocated an item,
of a maximum weight matchinyyIM (V). For an itemj, we allocate itermj to consumet. The resulting matching,
let V_, denote the valuation matrix with iteph removed, M, together with the prices, is the output of our algorithm
i.e., the matrix obtained by deleting columirirom V. The Algo, (V).
following algorithm finds the Walrasian Equilibrium witheth

highest prices. THEOREM3.4. If Algo is an algorithm computing Wal-

rasian Equilibria, thenAlgo, outputs a Walrasian Equilib-
rium with reserve prices.

Algorithm MaxWEQ: Maximum Walrasian Prices.

Input: Valuation matrixV. Proof. Consider(p, M'). For each iteny, at least one of
For eachiteny, letp; = w(V) — w(V_;). the two dummy customers is not allocated itgnsince that
Output: p andMM(V). customer is not envious, we must have> r;.

Since(p, M’) is envy-free, the outpup, M) must also
THEOREM3.3. [15] The algorithmMaxWEQ outputs, in be envy-free fol: the prices have not changed.
polynomial time, a Walrasian Equilibrium which maximizes Since (p, M’) is a Walrasian Equilibrium, the only
the item prices: ifp is any Walrasian equilibrium, thenunsold items in(p, M) are those that were allocated to
p; < p; for every itemy. dummy consumers. This can only happep;if< r;, hence

. pj =Tj.
Note that the result [15] is based on the propertleé Th]e last step of the algorithm only comes up for cus-

of monotonicity and “single-improvement” of the utilityiymers whose bundles in their demand set all have utility O,
functions, properties which, as they mention, are obvious|,4 ensures that condition (3) is satisfied. Opt
satisfied in unit demand utility functions. [20] was the first

to define the prices given in Theorem 3.3 but did not argue Our algorithm will compute Walrasian Equilibria for
that they were maximum. several appropriately chosen reserve prices, and output th



one yielding maximum revenue among them. The analysis On the other hand, the optimal envy-free seller profit is
will be based on the following lemma. at most the weight of the maximum weighted matching

LEMMA 3.1. Letw be a maximum weighted matching on thlée"
valuation matrixV. Given a valuer, let k,. be the number

of edges ofr with valuation at least-. If (p, M) is any
Walrasian Equilibrium with reserve pricas= (r,r,...,r), Opt
then the seller profit ofp, M) is at leastr - k,./2.

OPT< E r; < E £§2Plnn.
- - Wi
J J

Notice that we only used the fact that thg?), M)
Proof. Consider an edgg, j) of = with valuation at least. are Walrasian Equilibria with reserve prices, but did net re
From the definition of a Walrasian equilibrium with reserveuire the maximality of the Walrasian Equilibria found by
prices, we obtain that if iterj is not matched by\/, then MaxWEQ. Hence, we could have used any algorithigo,
p; = r; if in addition j € D, then customei must be for computing Walrasian Equilibria with reserve prices in-
matched byM, whereas ifj ¢ D, then the bundles in thestead.
demand set of all have positive valuation and so custommer ~ The analysis of the algorithm is tight: Consider an
must also be matched by . Thus, for every edgg), j) of #  instance withn consumers and two copies of eacmatems,
with valuation at least, we have that eitheror j is matched Where consumervalues all itemg > i at1/i, and all other
in M. items at0. Then, pricing itemj at 1/4, and allocating it
Summing over edges of with valuation at least, we to consumerj, is envy-free and has proft(Inn), while
get thatk,. < 2|M|, and soM sells items, all at price at leastour algorithm obtains profit 1. The algorithm’s profit is 1
r, to at leastk,. /2 consumers, yielding seller profit at leageecause no duplicate copies are sold; hence, all items must
r-k./2. 0pt be priced at the reserve price.

3.2.2 The Envy-free Approximation Algorithm. Using 3.3 Pricing Over Time. We now consider a special case
the algorithmMaxWEQ,, obtained by modifying the al- of unit-demand envy-free pricing, thpricing over time
gorithm for maximum Walrasian prices to include resery@oblem, where the different items represent one objett tha
prices, we can now give our approximation algorithm.  is available at different points in time (for instance, arirzé
ticket or network bandwidth). Here, each consurnealues

the item at a constant value of over a time intervals;, t;]

and at O at all other times. The envy-free condition means
that customei will buy the item at the lowest price below

1. Let 7 be a maximum weight matching df, and| vi thatis available during ths;, #;] interval. The unlimited

r > ry > ... > r, the valuations on the edges|ofUPPly case of pricing over time may be a good model for
- selling digital content. Blum et al. [6] previously considd

a similar pricing over time model; however, the problem they
2. For eachj, run the algorithmMaxWEQ), on input| considered was online and did not require the pricing to be
V, with reserve pricexr = (r;,75,...,r;). Let| envy-free.
(p), M) be the output.

Envy-FreePricing Approximation Algorithm
Input: Valuation matrixV/.

THEOREM3.6. The Unlimited-Supply Pricing Over Time

Output: The pair(pU"), M ")) with the maximum seller problem can be solved in polynomial time.
profit.

Proof. We give a dynamic programming algorithm. For
THEOREM3.5. The Envy-free Pricing Approximation Al-points in times < ¢, and a pricep, we definea,(s,t) to
gorithm outputs, in polynomial time, an envy-free pricinge the maximum profit that can be obtained from consumers
and matching which has seller profit at led3PT /(21nn), i with s < s; andt; < ¢, when the minimum price over the
whereOPT is the optimal envy-free seller profit. time interval(s,¢) is at leastp. We are then interested in
) computingag (0, co).

Proof. The output is envy-free by Theorem 3.4, and the Thg trivial base case occurs when no consumer would
running time is clearly polynomial. o . pay at leastp in the interval(s,t), and the profit is 0.

Let P denote the profit of our approximation algor'th"btherwise, givens and ¢, and usingn,, to denote the
For all j we have number of consumergamong those with < s; and¢; < ¢)

, , o who would be willing to buy the item at priggat timet’ (i.e.,
P > Profitp®, M) > 2” s; <t < t; andv; zgq), wgcan exprest) i (

by Lemma 3.1, and so; < 2P/j. ap(s,t) = MAX > 1 €(s,) (ag(s,t") +aq(t',t) +q-ny q).



Any particular choice ofy andt’ corresponds to selling In analyzing the performance of a mechanism, it is
the item at pricey at timet’, to all consumers willing to buy natural to compare it with an optimal omniscient seller via
it then. To ensure envy-freeness, this imposes a constrainbmpetitive analysifl3, 11, 5]. If the seller is allowed to
of pricing at least ay during the sub-intervals that thesesell identical items to different consumers at differentes,
consumers would also be willing to buy at. then no truthful mechanism can be competitive [13]. Thus,

The optimality of the dynamic program follows simphf13, 11, 5] consider the optimal omniscient seller that uses
by looking at the selling times and prices of the optimumsingle price for identical items. The natural generailirat
solution in non-decreasing order of price. The crucial obsef the single-price condition to the case where distinechie
vation is that we only need to consider a polynomial nurare for sale is that of envy-freeness.
ber of pricesg and timest’. For the latter, we notice that  Building on the ideas used in the approximation al-
items only need to be sold at timesor ¢;, i.e., endpoints of gorithm in Section 3.2, we present a new truthfog /-
consumers’ intervals. Any other selling time can be shiftedmpetitive mechanism mechanism for unit-demand combi-
slightly to the left or right without altering profit. Simily, natorial auctions when all valuations are in the intefvah)].
all selling prices are valuationsg: if the item were ever sold That is, the mechanism is guaranteed to achieve at least a
at a pricep not equal to a valuation, then all pricespofould 1/ log h fraction of the optimal envy-free pricing profit.
be raised slightly without losing customers or creatingyenv ~ Our mechanism builds on the Vickrey-Clarke-Groves
Hence, the dynamic programming table contains ¢ily®) (VCG) mechanism with reserve prices. The VCG mech-
entriesa,(s, t), each of which is computed in tim@(n?). anism, much like Walrasian Equilibria, outputs tléfi-
This completes the proof. Opt cient allocation given by the maximum weighted match-

) ing, M. However, the VCG mechanism aims at achieving
- We can extend this approach to a pseudo-polynomigfinfuiness, and therefore computes prices differenmfro
time algorithm for limited supply; at timet. Givens andt,  \1,xWEQ. If V_; denotes the matrix of valuations with the
letn,, , denote the number of customers With< ¢ < t; ;i rou (corresponding to the consumrdeleted, the pay-

and with valuation at’ strictly greater thary. Then the ent of consumer, and thus the price of the itejrallocated
dynamic program relies on the following recurrence retatioy, consumei by M, is computed as:

ay(s,t) = max  of
p( ) q>p,t' €(s,t)
(aq(sa t/) + aq(t/a t) + q- nt/,q)' If Nt q S Cy!
(aq(s, t') + aq(t/a t)+q-cy). if n;q <cep Snyp g
—00 if o< n;q

pi = vilj) —w(V) +w(Vo),

Whether the problem can also be solved in polynomial

time in the presence of limited supply is an open questiq@herew (1) again denotes the weight of a maximum match-

The best-known approximation algorithm is the general logg of the valuation matrix’.

arithmic approximation from the previous section; however  vCG is known to be truthful; interestingly, its prices

we do not know the limited supply problem to be NP-hardgre exactly the minimum Walrasian prices [20], and thus the
VCG prices are in fact envy-free. Since VCG computes a

4 Towards Truthful Competitive Mechanisms Walrasian Equilibrium, we can use the generic technique

As discussed in the introduction, an additional motivatigiresented in Section 3.2.1 to obtain the VCG mechanism

for the study of envy-free pricing is the fact that the profitith reserve pricesVCG,; the correctness of the mecha-

obtainable from such a pricing is a natural lower bound tesm follows from Theorem 3.4. The construction of adding

analyze truthful mechanisms for profit maximizing combingeserve prices to VCG is well known, and the resulting mech-

torial auctions. In a combinatorial auction, the settinthis anismVCG, is truthful [23, 8, 14].

same as before, except that the valuatioft$) are known We can use this fact to obtain a truthflibg h-

only to consumet, but not the seller. The seller solicitscompetitive auction, in a manner similar to the envy-free

implicitly or explicitly, the valuations from the consunserpricing approximation algorithm. However, to preserve

in the process of running an auction. The consumers, wihgthfulness, we cannot ruWCG,. for different choices of

know the auction mechanism, will choose to misrepreseaserve prices; instead, we will choose the reserve price ra

their valuations if they derive more utility from the resultdomly. The complete mechanism is then:

ing outcome. A popular approach to dealing with this kind

of strategizing is to desigmmuthful mechanisms, in which it

is in the consumers’ own best interest to disclose their true

valuations.



Unit Demand Combinatorial Auction Input: Valuation| 2. v; € {1,2}, and|S;| = 2, for all 4.

matrix V', wherel < vi(j) < hforalli, j. Proof. We first show that the problem is APX-hard when
1. Pick an integerk uniformly at random from v: = 1 forallrequests and|S;| < 2 for all i by a reduction
{1,...,[logh|}, and letr = 2. from the Max CuT problem for 3-regular graphs (which was
shown to be APX-hard in [2]). LeGG = (V,E) be the
2. Compute pricep and an allocationV/ by running instance of MixCuT (a 3-regular graph), witm = |V|
the algorithmVCG, on inputV” with reserve prices nodes andn = | E| edges.
r=(rr...7). The items consist of an elemenfor each node < V/,
as well as gositive dummyi,, and anegative dummy,, .
All consumer valuations are equal to 1, and requests fall

THEOREM4.1. The unit-demand combinatorial auction id"t0 three classesdge requesfsiode requestsanddummy
truthful and 4 log h competitive for any input in which all eduests The edge requests are simply one request for each

consumer valuations are in the intenval ). edgec = {u,v} € E. The node requests aderequests
each for the set$d,,, v} and{d,, v}, for each node. The

Proof. That the auction is truthful follows directly from thedummy requests ar@n requests for the seid, }, and5m
truthfulness ofVCG,. requests for the sdt,,, d, }.

Letry > ry > ... > r, be the prices of the items We show that there is a price vector with profit at least
sold in the maximum weighted matchidg. Clearly, the 10m + 4n + k if and only if there is a cut that cuts at ledst
optimum profit is bounded from above @j r;. Letn, be edges.
the number of items sold if/ at pricer or more (i.e.n,. is For the easy direction, assume that there is a cut cutting
the indexj such that; > r > r;44). If r = (r,r,...,r), atleast edges. Assign price 1, and to all nodes on one
then Lemma 3.1 implies that the revenué/i®G, is at least side of the cut, and price O t§, and to all other nodes. We
r - n./2, so the expected reveniizof the auction is at leastcan then verify that the profit is at leasim + 4n + k.

2"n,. For the converse direction, lgt be a price vector with
Zk:o Uog hJ 2logh*” . f d h h f . |
On the other hand, we can bound each piseas I D ange arguments, we can frst show
log h . . . ,
= EZ’E:% Lo [rj = 2], wherelr; > 2" s Lif 0 optimality implies that,, = 1, andpg, = 0. Using
rj = 2" and 0 otherwise. Summing over glwe obtain that this, we can next use exchange arguments to show that each
Py IS either O or 1, by first ruling out that any, is between

Output: the pair(p, M).

S <2 Ztlog Mok . py < (4logh)-R 0 and$, and then rounding all non-zero prices to 1.
= h=0 o ’ The price vector then defines a natural cut between
completing the proof. Opt nodes of price 0 and nodes of price 1. Because the total

o - _ ) revenue from dummy requests is exactlym, and from
Note that it is polynomial in, this auction has the node requestdn, the total profit from edge requests must

same appropmaﬂon rgmo as the non_—truthful approxmeggk; and it can be seen easily that an edge contributes profit
envy-free pricing algorithm given earlier. However, therfif and only if it is cut

are instances where the latter algorithm outperforms this Because the maximum cut cuts at least half of the edges

mechanism by a factor dbgn, e.g., when using a singleWe are only interested in the case whére> m/2, and
price is close to optimal. -

because the graph is 3-regular, we also have< m.

i , Then, a few straightforward calculations show thaﬁ%@g

5 Single-Minded Consumers approximation for the envy-free pricing problem wouid el
We now turn to the problem of envy-free pricing for singlean a-approximation to cubic Mx CuT, proving that the
minded consumers. Recall that the input in this casee@vy-free pricing problem is NP-hard to approximate within
given by the pairgwv;, S;): consumeri values the bundle 28te wherex is the approximation hardness constant in [2]
S; atw;, and all other bundles at 0. We will also refer tgnot given explicitly there).

Si as consumer's request andv; as hisbid. Even under The above reduction can be adapted very slightly to
strong additional restrictions, the pricing problem fargle- yield the same result when all set sizes are exactly 2, and
minded consumers is APX-hard, as shown below. all valuations are either 1 or 2. To avoid the single element

5 - . i requests{d,}, we add one more dummy elemesit and
THEOREMS.1. Envy-free pricing for single-minded con lace the requestéd,} with 5m requests for the set

sumers is APX-hard, even when all items are available ?@pd ith valuation 2 h 5 ts for th i
unlimited supply, and ,dp} with valuation 2 each, andim requests for the se

{d,d,} with valuation 1 each.
1. v; =1 and|S;| < 2forall i, or Now, a very similar argument can be used to show that



in an optimal solution, the prices agg = pg, = 1, and in money and inconvenience of using an alternate method of
pa, = 0; the remainder of the proof stays unchanged. Opttransportation. The seller is the owner of the highway sys-
tem, and would like to choose tolls for the segments so as to
5.1 A Logarithmic Approximation Algorithm for Items maximize profits. Notice that the APX-hardness reduction
in Unlimited Supply. The previous hardness result showis Theorem 5.1 can be thought of as generating length-1 or
that we are unlikely to find a PTAS for the single-mindel@ngth-2 paths in a star graph, so the tollbooth problem on
bidder case. However, it is fairly straightforward to get mees is still APX-hard.
logarithmic approximation for single-minded bidders ieth A special case that is polynomial-time solvable is the
case of unlimited supply. Our algorithm only considerspricase when all path requests share one common endpoint
ings in which all items are priced the same. The candidatewhich we consider as the root of the tree. This case
prices areg; = wv;/|S;|, for each customer. Among the is motivated by commuter traffic in the vicinity of a large
pricings assigning all items pricg, our algorithm simply city: most cars are either originating from or destined Far t
selects the one giving largest profit and outputs it. large city, and the paths used by most of the cars forms a
tree. We first assume that edges have infinite capacity, which
THEOREMS.2. This algorithm is dogn + log m approxi- corresponds to unlimited supply.
mation for envy-free pricing when bidders are single-muhde
and items are available in unlimited supply. THEOREM5.3. The unlimited supply tollbooth problem on
rooted trees can be solved in polynomial time.
Proof. We assume that the consumers are ordered such that
¢ > g2 > ... > gn. If allitems are priced ag;, then proof Sketch. We give a dynamic programming algorithm.
the seller profitisiz; = >, ;,[5;| - vi/|5i|. Rearranging For a nodev, let R,, denote the set of all requests originating
yieldsthaty; = |5i|Ri/3_, < <, |9;]- Because the algorithmi, the subtred;, rooted atw. We definea(w, b) to be the
chooses the pric& maximizing profit, we have that; < R optimum revenue obtainable from requestsip if the path

forall 7, and thus from w to the root costs exactly. We are then interested in
computinga(r, 0).

n n 15| R: For nodew, let wq,...,w, denote its children, and
o= Y 1715 n.(b) the number of requests originating.atvith valuation
i=1 i=1 Zléjgi| il b or higher. Then:

n  |Si]
1 /
< R. a(w,b) = b-nyu(b)+ ), maxy>pa(w;,b').
< RS v (w,b) ) +% (wi, )

The crucial observation is that we only need to consider
a polynomial nhumber of costs Indeed, all selling path
prices are valuations: if there is a feasible reqies®) <
S, v; is a trivial upper bound on the optimum, so th&. in the optimum pricing, then w.l.0.g., the total price of
theorem follows becausg), |S;| < nm. Opt the path fromw to the root ist/, for some(w’,b’') € R,,.
This claim is easily proved by induction, starting at thevkesa
The analysis of this algorithm is tight, as can be seenthe tree.
by the example in which customérwants to buy only Hence in the maximum ovér > b, we only have to
item ¢, with valuation1/i. In this case, the trivial upperconsidervaluet e R,,, s0 the dynamic programming table
bound is easily achievable, while our algorithm only hags sizeO(n?), anda(w, b) can be computed in polynomial
revenuel. On the other hand, any analysis using only thigne. ]
trivial upper bound on the optimal revenue cannot prove an
approximation guarantee better thaflogn), ascanbe seen ~ We can extend the previous approach to obtain a pseudo-
by the simple example of all users requesting item 1, wiglolynomial time dynamic programming algorithm for the
user:’s valuation beingl /s. case of edge capacities. We let a(w,c,b) denote the
maximum revenue that can be obtained if at magtquests
5.2 The Tollbooth Problem. While the envy-free pricing from R,, are feasible, and the path fromto the root has
problem, even for single-minded bidders, is hard to apprdwtal price exactlyb. Here, we writen} (b) for the number
imate, there are interesting and more tractable speciakcaef requests originating with node with valuation strictly
Here, we study théollbooth problem The items are now greater tharb. When, writinge; for the edge fromw to its
the edges of a grap&¥, which we may think of as high- child w;, the envy-freeness condition implies that we can
way segments, and customers’ requests are for paths indbmputea(w, ¢,b) as the maximum, ovefeo, c1, .. ., c)
graph. A customer’s valuation may be derived from the prisach thatd < ¢; < ¢, nf(b) < ¢ < ny(b), and

IN

=
5
i
=



> ¢ <c, of al at the first row and)’s everywhere else, and every row
is of the form0*1*0*. Expanding by the first column, we

(b-co+ ng}%a(wi,ci,b’)). conclude unimodularity by induction. Because the matrix

i>1 0 = is totally unimodular, we can apply a theorem of Hoffman

and Kruskal [16, 22], which states that for an integral right

_ Here, ¢y is the capacity alIotted_t_o requests O”gmatmﬁ?nd side vectol” — (v;), all vertex solutions of the LP are
with w, and the envy-freeness condition requires all reques

with valuation strictly exceeding to be served. While them?egral. In part|c1_JIar, as there_ N an_optlmal so_luhortilaa_

. . . : .~ a vertex, we obtain that there is an integer optimum, which
maximum is seemingly taken ovgf; c., k-tuples, it can in

. P C(?mpletes the proof. Opt
turn be computed by dynamic programming over values 0
CjVS.D s it We can use the integrality lemma to obtain a pseudo-
polynomial time dynamic programming algorithm for the

5.3 TheHighway Problem. Another “simple” case of the following special cases.

tollbooth problem is when the underlying graph is in fact :

path, and all requests are subpaths (not necessarily ghaﬁHEORE'\ﬂS'A'l' t.l' If there (|js aIII COTSt?.m upper _bct)urEil

a common endpoint). This case is clearly motivated by on afl valuationsv;, and afl valua '%nSQa;e ;’n egral,
then there is a polynomial-time)( BZ+2n5+3)) dy-

tolls to be charged on a single freeway. Even though a _ : . ) . .
path is about as simple a graph as we can hope for, the namic programming algorithm to find an optimal price
' vector.

problem is surprisingly complex: at this point, we do not
know if optimal prices can be computed in polynomial time, 2. |f all requests have path lengths bounded by some con-
or whether the problem is NP-hard on a path. However, stantk, and all valuations are integral, then there is
we can derive pseudo-polynomial dynamic programming a pseudo-polynomial dynamic programming algorithm
algorithms when some of the parameters are bounded. Here with running timeO(B*+1 . n) for computing an opti-
again we assume infinite edge capacity. The algorithms rely mal price vector.

on the following integrality lemma: . )
Proof Sketch. We sketch dynamic programs with an analy-

LEMMA 5.1. If all valuationswv; are integral, then there is sis for both restrictions. Details of the analysis will beegi
an optimal solution in which all priceg, are integral. in the full version.

1. Our dynamic programming algorithm maintains a table
ith entriesa; x, 1.),....(ks41,v5+1), Which denotes the max-
mum profit that can be obtained from requestsith right
endpointr; < 7, given that the rightmosB + 1 edges with
non-zero price to the left gfarek; < ko < ... <kpi1 <j
with associated pricesy,...,vys+1 > 0. A crucial obser-
vation here is that the above integrality lemma (Lemma 5.1)

Proof. Let p be any price vector, and the set of all
requests feasible undpr We show that there is an integr
assignmenp’ such that each request R is still feasible
underp’, and the total profit obtained fro is at least as
large as undep. Applying this to the optimal assignmept
then clearly proves the lemma.

Each request is a subpath, so if the edges are numbg& antees that we need only consigee {1,..., B}, and
1,...,m, with pricespy, ..., pm, then each requestuses alsoy 2!+, > B. This in turn implies that no request
some edges;,...,r;. Given the setR of requests that | b=1

must be feasible, the optimal assignment that makes allzaltflth li < k1 andr; > kpiq can be feasible, so we can

NN . L ~ safely ignore these requests.
R feasible is the solution to the following linear program: The initialization for the table is fairly clear. For

Maximize 3, p Z;Lz-l)j the update step, consider the pricing of the edge 1,
subjectto >, p; < v foreachie R starting from a table entry. = a; (x, 7,),....(ks41,7841)
p; ‘ > 0 foreachj If edgej + 1 is priced at O, then we add to the profit

obtained from paths ending at+ 1 to obtain a candidate
Notice that each row in the matrix for the LP is of théor a; 1, (k, ,).....(kps1,y8..)- Otherwise, when edge+ 1

form 0*1*0*. This is enough to prove that the matrix i$s given a positive pricey, we obtain a candidate for table
totally unimodular, i.e., that the determinant of each noaAtry a; 1 (x, v.),....(kp11.v541),(i+1,~) @0ain by adding to
singular square submatrix i&1. Indeed, consider anya the profit obtained from paths endingjat- 1.
submatrix. It still satisfies the property that each row ithef It is not difficult to see that we can conversely
form 0*1*0*. To compute the determinant, reorder the rowsconstruct all O(nB) candidate table entries that
by non-decreasing, then by non-decreasing, subtract the could result in candidates for a particular desired entry
first row from every row which starts with a 1. These step§.1,(k,,v.).....(ks+1,7541)» and then choose the maximum
do not change the determinant except for perhaps its sigmong all those candidates. Hence, the total running time
and we are now left with a matrix whose first column hawith O(BB+1n5B+2) table entries) i©) (BB +2nB+3),



2. The algorithm maintains a tabig -, ... ., where an entry [13] A. V. Goldberg, J. D. Hartline, and A. Wright. Competi
is the maximum amount of profit that can be obtained from
requests ending at positighor below, given that the edges

jvj_

1

P

1,...,5—k+1arepriced aty, . ..

. a’ykv'y/ to edgesjaj -
,j+2—k,j+1— k. Because no path has length

exceedingk, the values of(v;); and+’ are sufficient to

determine whether a request is feasible, and we can resfrie}

the choices ofy’ to {0, ..., B} because of the Integrality

Lemma5.1.

The computation of a new table entry takes tig3), [18]
and because the table sizeG$B*n), the running time is
O(B**1n).
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