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Abstract— This paper presents a hierarchical network game
of ISPs and users, and introduces three classes of network
games based on information structure: complete information,
partially incomplete information, and totally incomplete infor-
mation. Following the approach developed in [5], the existence
and uniqueness of the Nash equilibrium is established for the
users’ game under complete information (and thus also under
partially incomplete information). Furthermore, a sufficient
condition for the existence of a unique and stable pure strategy
Bayesian equilibrium is obtained for a special two user case
under totally incomplete information. The multiple user case
with quadratic utility functions is also investigated. Our anal-
ysis concludes that incomplete information is a disadvantage
for the ISP and the less aggressive users, but is advantageous
for the more aggressive users. Also, numerical results indicate
that whether the ISP benefits or not from partially incomplete
information (users sharing information) compared with totally
incomplete information is determined by the number of users.

Index Terms— Noncooperative game, Stackelberg game,
Nash equilibrium, complete information, partially incomplete
information, totally incomplete information, pure strategy
Bayesian equilibrium.

I. INTRODUCTION

The Internet can be regarded as a competitive market
where the Internet Service Providers (ISPs) offer and sell
service, and users are the buyers of this service [1], [2].
Thus, the pricing issue may be studied within a game
theoretic framework [3], [4]. For this, we can model the
problem as a hierarchical Stackelberg (leader-follower)
game, for which the ISPs announce prices as leaders and
the users respond with flows (usage) as followers. An ISP’s
maximizing goal is his profit, while a user tries to make
his net utility (utility minus payment) as large as possible.
Additionally, the competition among the ISPs/users can
be captured by the concept of Nash equilibrium. Related
discussions on the network game can be found in [5], [6],
[7].

In this paper, we study a network with a single ISP
and thus focus on the noncooperative game played by the
users as well as the Stackelberg game played by the ISP
with the users. This problem can be further classfied based
on the information structure [3]. One modeling assumption
would be to take the utility function of each user as
common knowledge for all users and the ISP. We call
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this the Complete Information game. However, in reality
complete information is not always the case. Especially for
the Internet, there is a large number of users so that the
ISP and other users may not have precise knowledge on
any specific user’s utility function. Consequently, the utility
function of each user can be modeled as stochastic; in other
words, each user’s type is not deterministic, for which only
the distribution is known to the players (of course, each
user has full information on his own type). If the users are
allowed to play the noncooperative game repeatedly, then
they can actually figure out each other’s real type and just
play as in the complete information game. This is called the
Partially Incomplete Information game. On the contrary, if
the users only play the game once and thus do not know
each other’s type, then it would be the Totally Incomplete
Information game.

The paper is organized as follows. First, some general
assumptions on users’ utility functions are made and the
optimization problems of users and ISPs are defined for
the three classes of information structure. The existence
of a unique Nash equilibrium is established for the users’
game under complete information. Then the single user
case, a special two user case, and the multiple user case
with quadratic utility functions are discussed in the next
three sections. In particular, for the two user case, a suffi-
cient condition for the existence of a unique stable pure
strategy Bayesian equilibrium is achieved for the users’
game. Numerical results are also provided in all the three
sections. The paper concludes with a discussion of possible
extensions.

II. PROBLEM FORMULATION

A. Notation

The setting in this paper assumes a single ISP and
multiple users. Let the user set be I := {i : 1 ≤ i ≤ I} and
User i has a flow xi. Denote the flow vector of all users by
~x := (x1, · · · , xI)

T , which is nonnegative and is in some
compact convex set Ω. User i’s utility function is the sum
of two parts: fi(xi), which is a strictly increasing, strictly
concave nonnegative function of his own flow, and g(~x), a
coupled nonincreasing concave function determined by the
flows of all users. g(~x) usually models the negative utility
due to delay or congestion in the network. Without loss of
generality, we assume that it is common to all the users up
to scaling. Finally, User i’s net utility is fi(xi)+g(~x)−pixi,
where pi is the price per unit flow charged by the ISP
to User i, which must be nonnegative. Denote the price
vector by ~p := (p1, · · · , pI)

T . Then, the ISP’s profit is
~pT ~x =

∑

i∈I pixi.



B. Optimization Problems

1) Complete Information: In this game, the ISP first
announces the price vector ~p and then the users play an I-
player noncooperative game adopting the Nash equilibrium
solution concept. User i’s optimization problem in this game
would be:

max
xi:xi≥0

fi(xi) + g(~x) − pixi, (1)

where xj , j ∈ I, j 6= i, are held fixed. Denote the
Nash equilibrium, if it exists and is unique, by ~x(~p) =
(x1(~p), · · · , xI(~p))T . Then the ISP plays a Stackelberg
game with the users and his optimization problem is:

max
~p:~p≥θ

~pT ~x(~p) = max
~p:~p≥θ

∑

i∈I

pixi(~p). (2)

Write the optimal price vector as ~p∗. Then the optimal
solution to the network game is (~p∗, ~x(~p∗)).

Following the approach in [5], one can show that (1) is
equivalent to:

max
xi:xi≥0

{F~p(~x) :=
∑

j∈I

fj(xj) + g(~x) −
∑

j∈J

pjxj}. (3)

Since fi(xi), for all i ∈ I, is strictly concave and g(~x) is
concave, (3) admits a unique optimal solution ~x(~p) in Ω,
which is also the unique Nash equilibrium for (1) given ~p.
In this way, we establish the existence and uniqueness of
the Nash equilibrium for the users’ game under complete
information (and thus also under partially incomplete infor-
mation) for each price vector ~p.

2) Partially Incomplete Information: Now the first part
of User i’s utility is denoted as fwi

i (xi), where wi is
a random variable representing his type, with wi’s being
independent of each other. Define ~w := (w1, · · · , wI)

T . The
second part, g(~x), is deterministic. Given a price vector ~p,
for each fixed ~w, User i’s optimization problem is the same
as that under complete information:

max
xi:xi≥0

fwi

i (xi) + g(~x) − pixi. (4)

Let ~x~w(~p) = (x~w
1 (~p), · · · , x~w

I (~p))T be the unique Nash
equilibrium. Then the ISP’s optimization problem becomes:

max
~p:~p≥θ

∑

i:i∈I

piE~w[x~w
i (~p)], (5)

for which we denote the optimal price vector by ~p∗.
3) Totally Incomplete Information: Since User i does not

know others’ types, his optimization problem is based on
the expectation with respect to w−i := {wj : j ∈ I, j 6= i}
as follows:

max
xi:xi≥0

fwi

i (xi) + Ew−i
[g(~x)] − pixi, (6)

for which we denote the pure strategy Bayesian (Nash)
equilibrium [3] by xwi

i (~p) for User i. Assuming that this
solution is unique, the ISP’s optimization problem is:

max
~p:~p≥θ

∑

i:i∈I

piEwi
[xwi

i (~p)], (7)

for which we again denote the optimal price vector by ~p∗.

III. SINGLE USER

We first study the case with a single user, for which there
is no distinction between partially incomplete information
and totally incomplete information.

A. Complete Information

For the single user case, the notation defined previously
can be simplified such that the user’s flow is denoted as
x and his utility function is f(x) + g(x). Besides, we
additionally assume that f(x) and g(x) are twice contin-
uously differentiable for the analysis in this section. Then,
from the strict concavity of f(x) + g(x), we know that
f ′′(x)+g′′(x) < 0, or equivalently, f ′(x)+g′(x) is strictly
decreasing. Without loss of generality, let Ω = [0, B], for
which f ′(x) + g′(x) is positive at x = 0 and equals to
0 at x = B. Obviously, the optimal flow must be in Ω.
For the ISP side, let p be the price charged per unit flow.
Correspondingly, the optimal solutions to (1) given p and
to (2) are written as x(p) and p∗, respectively.

Before stating the theorem that captures the optimal
solution, we first define the dominance of functions. A
function h1(x) is said to be (strictly) dominated by another
function h2(x) over Ω if h1(x)(<) ≤ h2(x) for all x ∈ Ω.

Theorem 1: Assume that f ′(x) + g′(x) is strictly dom-
inated by the hyperbola, h(x)x = constant c, which is
tangent to it, except at the tangent point. Then there exists
a unique optimal solution to the network game, (p∗, x(p∗)),
such that x(p∗) ∈ Ω solves f ′(x) + g′(x) = p∗ and
(p∗, x(p∗)) is the tangent point of f ′(x) + g′(x) with that
hyperbola h(x)x = p∗x(p∗).

Proof: Note that f(x) + g(x) is strictly concave over
the compact set Ω. Therefore, given p ≥ 0, there exists
x ∈ Ω such that f ′(x) + g′(x) = p, which is in fact the
unique optimal solution x(p) to the user’s problem for the
given price. If the price is too high, x(p) = 0. Now along
the curve f ′(x)+g′(x) = p, we know px = c at the tangent
point and px < c at any other point since f ′(x) + g′(x)
is strictly dominated by h(x) except at the tangent point.
Therefore, px reaches the maximum at this tangent point.
Obviously, this is the unique optimal solution.

B. Incomplete Information: Two-point Distribution

In this subsection, we provide some general analysis
for the case when the user’s utility is f 1(x) + g(x) w.p.
q1 ∈ (0, 1) and f2(x) + g(x) w.p. q2 = 1 − q1. The next
subsection deals with the continuous distribution case, but
in the context of a numerical example.

Now for each p, let x1(p) and x2(p) be the optimal
solutions to (4) for the two-point distribution case. Then
the objective function in (5) becomes p[q1x

1(p)+q2x
2(p)],

for which the optimal price is p∗. For comparison, let p1∗

and p2∗ be the optimal prices under complete information
when the user’s utility is f1(x) + g(x) and f2(x) + g(x),
respectively.

Lemma 1: Suppose that f1′(x)+g′(x) and f2′(x)+g′(x)
are strictly dominated by the hyperbolae tangent to them,



except at the respective tangent points. If f 2′(x) is strictly
dominated by f1′(x), then p2∗x2(p2∗) < p1∗x1(p1∗);
additionally, if f1′(x) + g′(x) and f2′(x) + g′(x) are
approximately linear and parallel to each other, then p2∗ <
p1∗ and x2(p2∗) < x1(p1∗).

Proof: The hyperbolae tangent to f 1′(x) + g′(x) and
f2′(x) + g′(x) are px = p1∗x1(p1∗) and px = p2∗x2(p2∗),
respectively. Thus, if f2′(x) is dominated by f1′(x), the
second hyperbola is also dominated by the first one, whence
p2∗x2(p2∗) < p1∗x1(p1∗). Furthermore, if f2′(x) + g′(x)
is approximately parallel to f1′(x)+g′(x), then the second
problem can be regarded as a version of the first one
obtained by appropriate scaling, whence we can deduce the
properties given in the algorithm.

Theorem 2: Under the assumptions in Lemma 1, the
unique optimal price p∗ is achieved at the tangent point
of [q1f

1′(x)+q2f
2′(x)]+g′(x) with the hyperbola tangent

to it, and this unique optimal solution satisfies:

p2∗ < p∗ < p1∗, (8)

x2(p2∗) > x2(p∗), x1(p1∗) < x1(p∗), (9)

p2∗x2(p2∗) < p∗[q1x
1(p∗) + q2x

2(p∗)] < p1∗x1(p1∗), (10)

p∗[q1x
1(p∗) + q2x

2(p∗)] < q1p
1∗x1(p1∗) + q2p

2∗x2(p2∗).

(11)

Proof: Given any p ≥ 0, we have p = f 1′(x1(p)) +
g′(x1(p)) =: h1′(x1(p)) and p = f2′(x2(p))+g′(x2(p)) =:
h2′(x2(p)). By assumption, h1′(x)

.
= h2′(x) + a, which is

approximately linear, for some a > 0. Thus,

p = q1h
1′(x1(p)) + q2h

2′(x2(p))
.
= q1[h

2′(x1(p)) + a] + q2h
2′(x2(p))

.
= h2′(q1x

1(p) + q2x
2(p)) + q1a.

= q1h
1′(q1x

1(p)+ q2x
2(p))+ q2h

2′(q1x
1(p)+ q2x

2(p)).

This proves the first half as a direct result of Theorem
1. Furthermore, since [q1f

1′(x) + q2f
2′(x)] + g′(x) runs

between and parallel to h1′(x) and h2′(x), (8) (and thus
(9)) and (10) follow immediately from Lemma 1.

On the other hand, for any p ≥ 0, we must have px1(p) ≤
p1∗x1(p1∗) and px2(p) ≤ p2∗x2(p2∗), with strict inequality
for at least one. Letting p = p∗, we obtain (11).

Note that the difference between the two sides of (11) is
the profit loss for the ISP due to incomplete information.
For the user side, we can see from (8) and (9) that a
type 1 user with dominating f1′(x) gets a lower price and
thus an increased flow and net utility under incomplete
information, while the results are reverse for a type 2 user
with dominated f2′(x). Therefore, incomplete information
to the ISP is beneficial to the more aggressive users but
harms the less aggressive ones.

C. Incomplete Information: Continuous Distribution
— A Numerical Example

We adopt quadratic utility functions for our example.
As stated in the problem formulation, fw(x) is a strictly

increasing, strictly concave nonnegative function and g(x)
is a nonincreasing concave function, both over a compact
convex set Ω. Here, let Ω = [0, c], fw ′(x) = w(1 − c−1x),
where w is uniformly distributed over [0, b], g′(x) =
−ac−1x, and a, b, and c are some positive constants.

For the complete information game for which w is
known to the ISP, it can be easily calculated from (1)
and (2) that the unique optimal solution is: p∗ = w/2,
x(p∗) = cw/[2(w + a)] and p∗x(p∗) = cw2/[4(w + a)].
Then the expected profit for the ISP is Ew[p∗x(p∗)] =
c
4b

[ b2

2 − ab + a2 log b+a
a

].
Under incomplete information, we can deduce from (4)

and (5) that the unique optimal price p∗ is the unique
solution in (0, b) which satisfies b − p∗ = (2p∗ +
a) log b+a

p∗+a
. Then for any w, the user’s optimal flow xw(p∗)

is c(w − p∗)/(w + a) if p∗ < w, and is 0 if p∗ ≥ w.
Finally, the expected flow is Ew[xw(p∗)] = c

b
[b − p∗ −

(p∗ +a) log b+a
p∗+a

]. The ISP’s profit for each w is p∗xw(p∗)
and the expected profit is p∗Ew[xw(p∗)].

Let a, b, and c all take the value of 1. The results
are shown in Fig. 1. The expected profit under complete
information is 0.0483. Under incomplete information, the
optimal price is p∗ = 0.3176, the expected flow is 0.1325
and as a result the expected profit is 0.0421. The ISP
has a loss of 12.8% due to incomplete information. Also,
the figure verifies our previous conclusion that incomplete
information makes the ISP charge a lower price from those
users with comparatively large values of w, which leads
to an increased flow and net utility for them, but does the
contrary for those users with comparatively small values of
w.
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Fig. 1. Optimal solutions for the uniform distribution case with a = b =
c = 1.

IV. TWO USERS

A. Nash Equilibrium under Totally Incomplete Information

We have already established the existence of a unique
Nash equilibrium for multiple users under complete in-
formation (and thus also under partially incomplete in-
formation). In the following, we will deduce a sufficient
condition for the existence of a unique and stable pure



strategy Bayesian equilibrium for a special two user case
under totally incomplete information.

Suppose that f1(x1) and f2(x2) are i.i.d. such that fi(xi)
is f1(xi) w.p. q1 ∈ (0, 1) and is f2(xi) w.p. q2 =
1 − q1, where f1(xi) and f2(xi) are twice continuously
differentiable strictly concave functions, i = 1, 2. Also
assume g(x1, x2) is deterministic and is twice continuously
differentiable and concave over a compact convex set Ω.

Given ~p = (p1, p2)
T , denote the pure strategy Bayesian

equilibrium for (6) by xi(~p) = x1
i (~p) if fi(xi) = f1(xi),

and xi(~p) = x2
i (~p) if fi(xi) = f2(xi), i = 1, 2. Then,

xk
1(~p) and xk

2(~p) solve

max
xk
1

{fk(xk
1) + q1g(xk

1 , x1
2(~p)) + q2g(xk

1 , x2
2(~p)) − p1x

k
1},

max
xk
2

{fk(xk
2) + q1g(x1

1(~p), xk
2) + q2g(x2

1(~p), xk
2) − p2x

k
2},

respectively, for k = 1, 2. To study the existence of a
pure strategy Bayesian equilibrium here, we apply the
techniques developed in [8] where the existence, uniqueness
and stability of a Nash equilibrium follows from the Banach
contraction mapping theorem [9].

From the strict concavity of the users’ utility functions,
we know that if there exist x1

1, x2
1, x1

2 and x2
2 such that

fk′(xk
1) + q1 51 g(xk

1 , x1
2) + q2 51 g(xk

1 , x2
2) − p1 = 0,

(12)

fk′(xk
2) + q1 52 g(x1

1, x
k
2) + q2 52 g(x2

1, x
k
2) − p2 = 0,

(13)

k = 1, 2, then this yields the values of x1
1(~p), x2

1(~p), x1
2(~p)

and x2
2(~p) for a pure strategy Bayesian equilibrium [10].

In fact, if (x1
1, x

2
1)

T takes the value of some vector
~u0 = (u10, u20)

T , then (x1
2, x

2
2)

T can be deduced from (13)
as ~v = (v1, v2)

T . Define this mapping as ~v = L2(~u0).
Similarly, from (12) we can obtain ~u = L1(~v). Thus,
~u = L1(L2(~u0)) = L1 ◦ L2(~u0) =: L11(~u0). Define
5L1(~v) as

(

511L1(~v) 512 L1(~v)
521L1(~v) 522 L1(~v)

)

:=

(

∂u1/∂v1 ∂u2/∂v1

∂u1/∂v2 ∂u2/∂v2

)

,

and similarly define the gradient matrices of L2 and L11.
Now rewrite (13) for k = 1 as
f1′(v1) + q1 52 g(u10, v1) + q2 52 g(u20, v1) − p2 = 0,
and take the derivative with respect to u10 on both sides
to obtain 511L2(~u0) = −[f1′′(v1) + q1 52

22 g(u10, v1) +
q2 52

22 g(u20, v1)]
−1q1 52

21 g(u10, v1). Repeat the above
step for (12) and (13) with k = 1, 2, respectively. Finally,
we have 5L11(~u0) = 5L2(~u0) · 5L1(~v), where

5L2(~u0) =

−

(

q1 0
0 q2

)(

52
21g(u10, v1) 52

21 g(u10, v2)
52

21g(u20, v1) 52
21 g(u20, v2)

)(

a1 0
0 a2

)

,

5L1(~v) =

−

(

q1 0
0 q2

)(

52
12g(u1, v1) 52

12 g(u2, v1)
52

12g(u1, v2) 52
12 g(u2, v2)

)(

b1 0
0 b2

)

,

with a1, a2, b1 and b2 equal to

[f1′′(v1) + q1 5
2
22 g(u10, v1) + q2 5

2
22 g(u20, v1)]

−1,
[f2′′(v2) + q1 5

2
22 g(u10, v2) + q2 5

2
22 g(u20, v2)]

−1,
[f1′′(u1) + q1 5

2
11 g(u1, v1) + q2 5

2
11 g(u1, v2)]

−1,
[f2′′(u2) + q1 5

2
11 g(u2, v1) + q2 5

2
11 g(u2, v2)]

−1,

respectively.
Similarly, starting from some vector ~v0 for (x1

2, x
2
2)

T , we
can define ~u = L1(~v0) from (12), ~v = L2(~u) from (13),
and ~v = L2(L1(~v0)) = L2 ◦ L1(~v0) =: L22(~v0). Then,
5L22(~v0) = 5L1(~v0) · 5L2(~u).

Theorem 3: If
(i) for some α ∈ (0, 1), ‖ 5 L11(~u0)‖ ≤ α < 1 for all
feasible ~u0 and ~v = L2(~u0), ~u = L1(~v), or
(ii) for some β ∈ (0, 1), ‖ 5 L22(~v0)‖ ≤ β < 1 for all
feasible ~v0 and ~u = L1(~v0), ~v = L2(~u),
then there exists a unique stable pure strategy Bayesian
equilibrium for the users’ game, i.e. starting from any
feasible ~u0 or ~v0, the sequence of {~u,~v} generated by L1

and L2 alternatively converges and the limit point is the
Bayesian equilibrium.

Proof: (i) implies L11 is a contraction mapping and
(ii) implies L22 is a contraction mapping. In either case,
it follows from the Banach contraction mapping theorem
that the sequence of {~u,~v} converges, which guarantees
the existence, uniqueness and stability of a pure strategy
Bayesian equilibrium.

B. Quadratic Utility Functions

Assume fwi

i
′(xi) = wi(1 − c−1xi), i = 1, 2, and

5g(~x) = −ac−1(x1 + x2)(1, 1)
T , where w1 > 0, w2 > 0,

and a and c are positive constants.
1) Complete Information: From (1) and (2), p∗i = wi/2,

xi(~p
∗) =

c

2
·

w1w2 + awi − awj

w1w2 + aw1 + aw2
, i = 1, 2, j 6= i,

2
∑

i=1

p∗i xi(~p
∗) =

c

4
·
w2

1w2 + w1w
2
2 + a(w1 − w2)

2

w1w2 + aw1 + aw2
,

subject to a ≤ w1w2/|w1 − w2|. Note that the condition
guarantees that xi(~p

∗) ≥ 0; if it is not satisfied, one user
may have zero flow and thus is not admitted.

2) Partially Incomplete Information: Solving (4) gives

x~w
i (~p) = c

w1w2 + awi − (a + pi)wj − api + apj

w1w2 + aw1 + aw2
, (14)

for i = 1, 2, and j 6= i, subject to

a(pi − pj) + piwj ≤ w1w2 + awi − awj ,

for i = 1, 2, and j 6= i. Substituting (14) in (5), we finally
obtain

p∗i =
MiM12 + aM2

i − aM1M2 + 2aM0M12

2(M1M2 + 2aM0M1 + 2aM0M2)
, i = 1, 2,

where

M12 := E~w[w1w2/(w1w2 + aw1 + aw2)],
Mi := E~w[wi/(w1w2 + aw1 + aw2)], i = 1, 2,
M0 := E~w[1/(w1w2 + aw1 + aw2)].



3) Totally Incomplete Information: Suppose that w1 and
w2 are i.i.d. , with each taking the value of w1 w.p. q1 ∈
(0, 1) and w2 w.p. q2 = 1 − q1. It is easy to verify that

‖ 5 L11(~u0)‖ =
aq1

w1 + a
+

aq2

w2 + a
< q1 + q2 = 1

for any ~u0. Thus, by Theorem 3, there exists a unique and
stable pure strategy Bayesian equilibrium for the two users.

To further proceed, notice that the two users are symmet-
ric. Hence, the optimal price vector must satisfy p∗

1 = p∗2 =
p∗. So we can let p1 = p2 = p and as a result we must
have x1

1(p) = x1
2(p) = x1(p) and x2

1(p) = x2
2(p) = x2(p).

After the above simplification, we can solve (6) to obtain

xi(p) =
c[(wj + a)(wi − p) + aqj(w

i − wj)]

w1w2 + a(w1 + w2) + 2a2 + aq1w2 + aq2w1
,

for i = 1, 2, and j 6= i, subject to

(wj + a)(wi − p) + aqj(w
i − wj) ≥ 0,

for i = 1, 2, and j 6= i. Then by (7), it can be deduced that

p∗ =
w1w2 + aq1w

1 + aq2w
2

2(q1w2 + q2w1 + a)
.

4) Numerical Results: The results are shown in Table I to
Table III for a = c = 1, w1 = 2, w2 = 1 and q1 = q2 = 1

2 .

TABLE I

COMPLETE INFORMATION

(w1, w2) (p∗
1
, p∗

2
) (x1(~p∗), x2(~p∗))

∑

2

i=1
p∗i xi(~p

∗)

(2, 2) (1, 1) (0.25, 0.25) 0.5

(2, 1) (1, 0.5) (0.3, 0.1) 0.35

(1, 2) (0.5, 1) (0.1, 0.3) 0.35

(1, 1) (0.5, 0.5) (0.1667, 0.1667) 0.1667

E~w[xi(~p
∗)] = 0.2042, E~w[

∑

2

i=1
p∗i xi(~p

∗)] = 0.3417

TABLE II

PARTIALLY INCOMPLETE INFORMATION

(w1, w2) (p∗
1
, p∗

2
) (x~w

1
(~p∗), x~w

2
(~p∗))

∑

2

i=1
p∗i x~w

i (~p∗)

(2, 2) (0.3, 0.3) (0.4250, 0.4250) 0.2550

(2, 1) (0.3, 0.3) (0.5400, 0.0800) 0.1860

(1, 2) (0.3, 0.3) (0.0800, 0.5400) 0.1860

(1, 1) (0.3, 0.3) (0.2333, 0.2333) 0.1400

E~w[x~w
i (~p∗)] = 0.3196, E~w[

∑

2

i=1
p∗i x~w

i (~p∗)] = 0.1918

TABLE III

TOTALLY INCOMPLETE INFORMATION

(w1, w2) (p∗, p∗) (xw1

1
(p∗), xw2

2
(p∗))

∑

2

i=1
p∗x

wi
i

(p∗)

(2, 2) (0.7, 0.7) (0.3647, 0.3647) 0.5106

(2, 1) (0.7, 0.7) (0.3647, 0.0471) 0.2882

(1, 2) (0.7, 0.7) (0.0471, 0.3647) 0.2882

(1, 1) (0.7, 0.7) (0.0471, 0.0471) 0.0659

Ewi
[x

wi
i

(p∗)] = 0.2059,
∑

2

i=1
p∗Ewi

[x
wi
i

(p∗)] = 0.2882

We can see that the ISP makes the most profit under
complete information, while the worst case for the ISP
is the partially incomplete information game because of
information asymmetry. Evidently, the users have more
information than the ISP has in the latter case and thus
can take advantage of that to claim more network services.

V. MULTIPLE USERS

Now we study the multiple user case, assuming quadratic
utility functions, i. e. , f ′

i(xi) = wi(1 − xi) and ∂g(~x)
∂xi

=

−
∑I

j=1 xj , 1 ≤ i ≤ I .

A. Complete Information

The complete information network game under uniform
and differentiated pricing has been studied in [7], with a
user’s utility function being a logarithmic function minus
the inverse of the total flow. The complete information case
here is actually an extension of differentiated pricing in
that previous work to the problem with quadratic utility
functions. Following similar analysis, we can obtain from
(1) and (2) the solution to the optimization problems as
follows: order the users in the nonincreasing order of
wi’s; find the largest number n, 1 ≤ n ≤ I , such that
wi(1 +

∑n
j=1

1
wj

) > n, 1 ≤ i ≤ n; 1 then, p∗i = wi

2 and
xi(~p

∗) = 1
2 − n

2wi
(1 +

∑n
j=1

1
wj

)−1, 1 ≤ i ≤ n, while
p∗i ≥ wi −

∑n
j=1 xj(~p

∗) such that xi(~p
∗) = 0, n < i ≤ I .

B. Partially Incomplete Information

Hereinafter, assume that wi’s are i.i.d.. Given the ISP’s
uniform price p and for each fixed ~w, the Nash equilibrium
can be obtained from (4) similarly as that in [7] under
uniform pricing, and it comes out to be: order the users
in the nonincreasing order of wi’s; find the largest number
n, 0 ≤ n ≤ I , such that wi(1 +

∑n
j=1

1
wj

) > n + p, 1 ≤

i ≤ n; 2 then, x̄~w(p) = (n − p
∑n

j=1
1

wj
)/(1 +

∑n
j=1

1
wj

),

x~w
i (p) = 1 − 1

wi
(p + x̄~w(p)), 1 ≤ i ≤ n, while x~w

i (p) = 0,
n < i ≤ I . Finally, the optimal price p∗ is the solution to
the ISP’s problem (5) and is determined by the number of
users as well as the distribution of wi’s.

C. Totally Incomplete Information

Given p, all the users must have the same strategy:
xwi

i (p) = xwi(p), 1 ≤ i ≤ I . We study here the case with
four user types, i.e., wi = wt with probability qt > 0, t ∈
{1, 2, 3, 4}, where w4 > w3 > w2 > w1 and

∑4
t=1 qt = 1.

Given the ISP’s price p, denote the corresponding flow to
type t by xt(p). Then, the users’ optimization problem (6)
can be equivalently written as:

wt(1 − xt(p)) − xt(p) − (I − 1)Et[x
t(p)] = p, xt(p) > 0,

wt − (I − 1)Et[x
t(p)] ≤ p, xt(p) = 0,

where Et[x
t(p)] =

∑4
t=1 qtx

t(p). Then it can be deduced
that there exist five possible cases depending on the price.

1Since wi’s are nonincreasing, the existence and uniqueness of such n
can be easily verified.

2A unique such n exists here also, for the same reason as above.



1) Case 1: xt(p) = 0, 4 ≥ t ≥ 1. The necessary and
sufficient condition for this case is: p ≥ w4.

2) Cases 2, 3 and 4: For k = 4, 3, 2, respectively, if

wk − (I − 1)
∑4

t=k+1 qt(w
t − wk)(1 + wt)−1

> p ≥ wk−1 − (I − 1)
∑4

t=k qt(w
t − wk−1)(1 + wt)−1,

then

xt(p) > 0, 4 ≥ t ≥ k, and xt(p) = 0, k − 1 ≥ t ≥ 1.

The expected flow of each user is

Et[x
t(p)] =

∑4
t=k qt(w

t − p)(1 + wt)−1

1 + (I − 1)
∑4

t=k qt(1 + wt)−1
.

3) Case 5: In this case, flows are positive for all types
under the condition

p < w1 − (I − 1)
∑4

t=2 qt(w
t − w1)(1 + wt)−1.

The expected flow of each user is

Et[x
t(p)] =

∑4
t=1 qt(w

t − p)(1 + wt)−1

1 + (I − 1)
∑4

t=1 qt(1 + wt)−1
.

Finally, according to the ISP’s optimization problem (7),
the optimal price p∗ is the one that maximizes pEt[x

t(p)].

D. Numerical Results

Assume wt = t w.p. qt = 1
4 , t ∈ {1, 2, 3, 4}. We compute

the results for an example with I = 40 users and 10 users
for each type. The users are in the nondecreasing order
of wi’s. The unique optimal solutions for the three games,
respectively, are shown in Table IV (the capital letters in the
first row stand for the games with corresponding initials).

For the users, again we can see that the comparatively
high types benefit from incomplete information. For the ISP,
complete information is still the most ideal case for him,
while partially incomplete information leads to a higher
profit than the totally incomplete information case does,
which is in contrast with our previous conclusions for the
two user case.

TABLE IV

NUMERICAL EXAMPLE WITH 40 USERS

C P T

i, wi p∗i xi(~p
∗) p∗ x~w

i (p∗) p∗ xt(p∗)

1–10, 4 2 0.1341 1.99 0.1436 2 0.1356

11–20, 3 1.5 0.0122 1.99 0 2 0

21–30, 2 ≥ 0.5366 0 1.99 0 2 0

31–40, 1 ≥ 0 0 1.99 0 2 0

n 20 10 10
∑

xj 1.4634 1.4357 1.3559
∑

pjxj 2.8659 2.8571 2.7119

Actually, numerical computation shows that under par-
tially incomplete information, if the distribution of wi’s
remains unchanged, as the number of users increases, the
optimal price for the ISP gets higher, with a higher expected
profit as well. For instance, for I = 1, 10, 20, 30 and
40, respectively, the optimal price is 1.41, 1.72, 1.84, 1.96
and 1.99, and the expected profit is 0.3920, 1.7036, 2.2128,
2.5557 and 2.8109. This tells us that if the number of users
is small, partially incomplete information may hurt the ISP
by information asymmetry, while as the number of users
gets large, the users’ sharing of information can eventually
benefit the ISP.

VI. DISCUSSION AND EXTENSIONS

This paper formulates a game theoretical framework for
strategic pricing in networks with complete information,
partially incomplete information and totally incomplete
information. Analyses and numerical results imply that
incomplete information decreases the payoff to the ISP and
to the less aggressive users and increases the payoff to the
more aggressive users. On the other hand, the comparison of
the partially incomplete information game and the totally in-
complete information game is more complicated, involving
consideration of the number of users. When there is a small
number of users, the ISP is in favor of totally incomplete
information; while as the number of users gets large, the
users’ sharing of information eventually benefits the ISP in
terms of improved profit.

Analyses for the multiple user case and numerical exam-
ples in this paper are mainly based on the quadratic utility
functions. More general utility functions shall be considered
as well in our future work. Also, extensions to general
networks with multiple ISPs are currently under study.
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[6] T. Başar and R. Srikant, “A Stackelberg Network Game with a Large
Number of Followers,” J. Optimization Theory and Applications,
115(3): 479–490, Dec. 2002.
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