# Network Game with a Probabilistic Description of User Types

Hongxia Shen and Tamer Başar
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
hshen1, tbasar@control.csl.uiuc.edu

CDC 2004, Atlantis, Bahamas December 17, 2004

## **Outline**

- Previous Work
- Problem Formulation
  - Complete Information
  - Partially Incomplete Information
  - Totally Incomplete Information
- Single User
- **➤ Two Users**
- Multiple Users
- Conclusions and Extensions

## **Previous Work**

➤ Başar and Srikant (2002a, 2002b)

Hierarchical Stackelberg Network Game Model

Solution under Uniform Pricing

Asymptotic Behavior Analysis

➤ Shen and Başar (2004)

Solution under Differentiated Pricing

Comparison with Uniform Pricing and Asymptotic Behavior Analysis

T. Başar and R. Srikant (2002a), "Revenue-maximizing pricing and capacity expansion in a many-users regime," *Proc. IEEE INFOCOM 2002*, pp. 1556–1563.

T. Başar and R. Srikant (2002b), "A Stackelberg network game with a large number of followers," *J. Optimization Theory and Applications*, 115(3): 479–490.

H.-X. Shen and T. Başar (2004), "Differentiated Internet pricing using a hierarchical network game model," *Proc. IEEE ACC 2004*, pp. 2322–2327.

## **Two-Level Hierarchical Network Game**



## **Problem Formulation**

- > Single Internet Service Provider (ISP)
- ightharpoonup Set of users:  $\mathcal{I} = \{i : 1 \le i \le I\}$
- ightharpoonup Flow vector:  $\vec{x} = (x_1, \dots, x_I)^T \in \Omega$
- ightharpoonup Price vector:  $\vec{p} = (p_1, \dots, p_I)^T$
- ightharpoonup User *i*'s net utility:  $f_i(x_i) + g(\vec{x}) p_i x_i$
- > ISP's profit:  $\vec{p}^T \vec{x}$
- Classification of games based on the information structure:
  - Complete information
  - 2 Partially incomplete information
  - 3 Totally incomplete information

## **Complete Information**

- > The utility function of each user is common knowledge for all the users and the ISP.
- ightharpoonup Given  $\vec{p}$ , a Nash equilibrium is  $\vec{x}(\vec{p}) = (x_1(\vec{p}), \cdots, x_I(\vec{p}))^T$ , such that for User i,

$$x_i(\vec{p}) = \arg\max_{x_i} f_i(x_i) + g(x_i, x_{-i}(\vec{p})) - p_i x_i,$$
 where  $x_{-i} = \{x_j\}_{j \neq i}$ .

- ➤ There exists a unique Nash equilibrium. See Başar and Srikant (2002a).
- The optimal price vector for the ISP is:

$$\vec{p}^* = \arg\max_{\vec{p}: \vec{p} \ge \theta} \sum_{i \in \mathcal{I}} p_i x_i(\vec{p}).$$

T. Başar and R. Srikant (2002a), "Revenue-maximizing pricing and capacity expansion in a many-users regime," *Proc. IEEE INFOCOM 2002*, pp. 1556–1563.

# **Partially Incomplete Information**

- > The utility function of each user is common knowledge for all the users, but not for the ISP.
- The distribution of the users' types,  $\vec{w} = (w_1, \dots, w_I)^T$ , that determine  $f_i$ 's (g is deterministic), is known to the ISP.
- ightharpoonup Given  $\vec{p}$ , for each fixed  $\vec{w}$ , the unique Nash equilibrium is  $\vec{x}^{\vec{w}}(\vec{p}) = (x_1^{\vec{w}}(\vec{p}), \cdots, x_I^{\vec{w}}(\vec{p}))^T$ , such that for User i,

$$x_i^{\vec{w}}(\vec{p}) = \arg\max_{x_i} f_i^{w_i}(x_i) + g(x_i, x_{-i}^{\vec{w}}(\vec{p})) - p_i x_i.$$

> The optimal price vector for the ISP is:

$$\vec{p}^* = \arg\max_{\vec{p}: \vec{p} \ge \theta} \sum_{i \in \mathcal{I}} p_i E_{\vec{w}}[x_i^{\vec{w}}(\vec{p})].$$

# **Totally Incomplete Information**

- > User i has private information  $w_i$  and knows the distribution of  $w_{-i} = \{w_j\}_{j \neq i}$ .
- ightharpoonup The distribution of  $\vec{w}=(w_1,\cdots,w_I)^T$  is known to the ISP.
- ightharpoonup Given  $\vec{p}$ , the pure strategy Bayesian equilibrium, if it exists, is  $x_i^{w_i}(\vec{p})$  for User i, such that

$$x_i^{w_i}(\vec{p}) = \arg\max_{x_i} f_i^{w_i}(x_i) + E_{w_{-i}}[g(x_i, x_{-i}^{w_{-i}}(\vec{p}))] - p_i x_i.$$

> The optimal price vector for the ISP is:

$$\vec{p}^* = \arg\max_{\vec{p}: \vec{p} \ge \theta} \sum_{i \in \mathcal{I}} p_i E_{\vec{w}}[x_i^{w_i}(\vec{p})].$$

## Single User

- No Classification for Incomplete Information
- Complete Information
- Incomplete Information: Two-point Distribution
- Incomplete Information: Continuous Distribution
  - A Numerical Example
- Comparison of Complete Information and Incomplete Information

# **Complete Information**

> User:  $\max_{x} f(x) + g(x) - px = p = f'(x(p)) + g'(x(p))$ 

> ISP:  $\max_p px(p)$ 

Graphical illustration of the solution



# Incomplete Information — Two-point Distribution

- > User:  $x^{i}(p) = \arg\max_{x} f^{i}(x) + g(x) px$  w.p.  $q_{i}, i = 1, 2$
- > ISP:  $p^* = \arg\max_p p[q_1 x^1(p) + q_2 x^2(p)]$
- ightharpoonup Complete information:  $p^{i*} = \arg \max_{p} px^{i}(p)$ , i = 1, 2
- Graphical illustration of the solution and comparison



# Incomplete Information — Uniform Distribution

- $> f^{w'}(x) = w(1 c^{-1}x), \ g'(x) = -ac^{-1}x$
- ightharpoonup w uniformly distributed over [0,b]
- ightharpoonup Numerical example: a=b=c=1
- ightharpoonup Profit loss of 12.8% for the ISP due to incomplete information



CDC 2004 Two Users

#### **Two Users**

- Complete Information and Partially Incomplete Information
  - Unique Nash Equilibrium
- Totally Incomplete Information
  - Pure Strategy Bayesian Equilibrium
- Quadratic Utility Functions
  - Complete Information
  - Partially Incomplete Information
  - Totally Incomplete Information
  - Numerical Results
- Comparison of the Three Classes of Games

## Pure Strategy Bayesian Equilibrium

- > Special case: independent users  $i=1,2,\ f_i(x_i)=f^k(x_i)$  w.p.  $q_k,$  k=1,2
- > Pure strategy Bayesian equilibrium:  $x_1^k(\vec{p})$  and  $x_2^k(\vec{p})$ , k=1,2, solve  $\max_{x_1^k} \{ f^k(x_1^k) + q_1 g(x_1^k, x_2^1(\vec{p})) + q_2 g(x_1^k, x_2^2(\vec{p})) p_1 x_1^k \}$ ,  $\max_{x_2^k} \{ f^k(x_2^k) + q_1 g(x_1^1(\vec{p}), x_2^k) + q_2 g(x_1^2(\vec{p}), x_2^k) p_2 x_2^k \}$
- > Sufficient condition for the existence, uniqueness and stability
  - 1 apply the techniques in Li and Başar (1987)
  - 2 convergence by the Banach contraction mapping theorem

S. Li and T. Başar (1987), "Distributed algorithms for the computation of noncooperative equilibria," *Automatica*, 23: 523–533.

## **Quadratic Utility Functions**

- >  $f_i^{w_i}(x_i) = w_i(1 c^{-1}x_i)$ , i = 1, 2  $\nabla g(\vec{x}) = -ac^{-1}(x_1 + x_2)(1, 1)^T$ independent users:  $i = 1, 2, \ w_i = w^k$  w.p.  $q_k$ , k = 1, 2
- Analytical results for the three types of games
- Numerical results:

$$a = c = 1$$
,  $w^1 = 2$ ,  $w^2 = 1$ ,  $q_1 = q_2 = 0.5$ 

# **Numerical Results and Comparison of Games**

| $(w_1,w_2)$     | Game | Optimal Price Vector | Optimal Flow Vector | ISP's Profit |
|-----------------|------|----------------------|---------------------|--------------|
| (2,2)           | С    | (1,1)                | (0.25, 0.25)        | 0.5          |
|                 | Р    | (0.3, 0.3)           | (0.4250, 0.4250)    | 0.2550       |
|                 | Т    | (0.7, 0.7)           | (0.3647, 0.3647)    | 0.5106       |
| (2,1)           | С    | (1, 0.5)             | (0.3, 0.1)          | 0.35         |
|                 | Р    | (0.3, 0.3)           | (0.5400, 0.0800)    | 0.1860       |
|                 | Т    | (0.7, 0.7)           | (0.3647, 0.0471)    | 0.2882       |
| $\boxed{(1,2)}$ | С    | (0.5, 1)             | (0.1, 0.3)          | 0.35         |
|                 | Р    | (0.3, 0.3)           | (0.0800, 0.5400)    | 0.1860       |
|                 | Т    | (0.7, 0.7)           | (0.0471, 0.3647)    | 0.2882       |
| $\boxed{(1,1)}$ | С    | (0.5, 0.5)           | (0.1667, 0.1667)    | 0.1667       |
|                 | Р    | (0.3, 0.3)           | (0.2333, 0.2333)    | 0.1400       |
|                 | Т    | (0.7, 0.7)           | (0.0471, 0.0471)    | 0.0659       |

Expected Profit: C - 0.3417 P - 0.1918 T - 0.2882

CDC 2004 Multiple Users

## **Multiple Users**

- Quadratic Utility Functions
  - Complete Information
  - Partially Incomplete Information
  - Totally Incomplete Information
  - ➤ Numerical Results
- Comparison of the Three Classes of Games

## **Quadratic Utility Functions**

- $> f_i^{w_i}(x_i) = w_i(1-x_i), \frac{\partial g(\vec{x})}{\partial x_i} = -\sum_{j=1}^I x_j$ Independent users:  $1 \le i \le I$
- Complete Information: Nash equilibrium extension of differentiated pricing in Shen and Başar (2004)
- ➤ Partially Incomplete Information: Nash equilibrium extension of uniform pricing in Shen and Başar (2004)
- Totally Incomplete Information: analytical results for the special case with four user types

H.-X. Shen and T. Başar (2004), "Differentiated Internet pricing using a hierarchical network game model," *Proc. IEEE ACC 2004*, pp. 2322–2327.

# **Numerical Results and Comparison of Games**

#### > Numerical results:

$$w^t = t$$
 w.p.  $q_t = \frac{1}{4}$ ,  $t \in \{1, 2, 3, 4\}$ ;  $I = 40$ ,  $10$  for each type

|                | С             |                  | Р      |                      | Т      |            |
|----------------|---------------|------------------|--------|----------------------|--------|------------|
| $i, w_i$       | $p_i^*$       | $x_i(\vec{p}^*)$ | $p^*$  | $x_i^{\vec{w}}(p^*)$ | $p^*$  | $x^t(p^*)$ |
| 1–10, 4        | 2             | 0.1341           | 1.99   | 0.1436               | 2      | 0.1356     |
| 11–20, 3       | 1.5           | 0.0122           | 1.99   | 0                    | 2      | 0          |
| 21–30, 2       | $\geq 0.5366$ | 0                | 1.99   | 0                    | 2      | 0          |
| 31–40, 1       | $\geq 0$      | 0                | 1.99   | 0                    | 2      | 0          |
| $\overline{n}$ | 20            |                  | 10     |                      | 10     |            |
| $\sum x_j$     | 1.463         | 34               | 1.4357 |                      | 1.3559 |            |
| $\sum p_j x_j$ | 2.865         | 59               | 2.8571 |                      | 2.7119 |            |

# **Partially? Totally?**

> Partially Incomplete Information vs Totally Incomplete Information



## **Conclusions**

- > Formulation of the three classes of games
- Complete Information vs Incomplete Information: Complete Information — ISP and less aggressive users Incomplete Information — more aggressive users
- Partially Incomplete Information vs Totally Incomplete Information for the ISP:
  - Partially Incomplete Information with a large number of users Totally Incomplete Information with a small number of users

## **Extensions**

> General utility functions; Multiple ISPs; . . .

\_\_\_\_\_ End of the Talk \_\_\_\_\_