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Abstract— We consider, in this paper, a class of hierarchi-
cal network games where there is a single service provider
(leader, in a Stackelberg game framework) and multiple users
(followers) which could be of different types. Depending on
whether the type of a particular user is private information
(only to that user), or public information (shared with all
users as well as the service provider), or whether we have the
intermediate case where this is common (shared) information
among the users but not shared with the service provider, one
can introduce and study the equilibria of different types of
games, covering the entire gamut from complete information
to incomplete information games. We undertake such a study
in this paper, with general utility functions for the players
and general distributions for user characteristics. We compare
the performances of the leader and the followers under the
different scenarios, and also study the asymptotic case as the
user population grows. The study for the many-followers regime
provides useful insight for communication network applications.

Index Terms— Stackelberg game, private information, public
information, Nash equilbrium, Bayesian equilibrium, Wardrop
equilibrium.

I. INTRODUCTION

In recent years, there has developed much interest in the
design of optimal congestion control schemes for commu-
nication networks. Some previous works study flow control
problems (for example, [1], [2]), some focus on routing ([3],
[4]), and others examine combined flow control and routing
([5]). While many of these works apply game theory to
network optimization, most of them aim at achieving optimal
aggregate efficiency for the whole system. [6] and [7] take
a different perspective and consider optimizing profits of
network service providers. In [6], a hierarchical Stackelberg
game model has been introduced to analyze the flow control
problem on a single link network, and the work has been
extended to a linear network in [7].

In this paper, we study this hierarchical Stackelberg net-
work game model played by a monopolistic service provider
and multiple users, with the extension to various types of
public and private information. Now, suppose that we have
stochastic users, whose types are random variables with
certain distributions. In the classical version of Stackelberg
game as modeled in [6], it is assumed that the true type of
each user is publicly known to the service provider as well as
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to all the users. This is called a complete information game
here. We have here two other classes of games: if the true
types of users are common shared information among users
themselves, but are not disclosed to the service provider, the
game is called a partially incomplete information game; on
the other hand, if each user’s true type is private information
to him and is not shared with the others, we have a totally
incomplete information game. Precise problem formulations
for these three classes of games will be given in the next
section.

Interaction of product suppliers (service providers) and
buyers (users) with stochastic types under various types of
public and private information has been extensively studied
in economics, especially in the context of auction theory
and mechanism design (for example, see [8], [9]). However,
in the congestion control literature for communication net-
works, as previously mentioned, it is generally assumed that
user types (utility preference or weight parameters) are fixed,
though sometimes they may not be known to the network
or to the service providers. Also, there lacks a comparative
study of complete and incomplete information. In [10], we
made an effort in this direction by considering the three
classes of network games. Some analytical and numerical
results had been obtained, mainly based on special quadratic
utility functions and discrete distributions of user types.

This paper is a follow-up to [10], with the extension to
general utility functions for the players and general distribu-
tions for user characteristics. We first provide precise prob-
lem formulations for the three classes of games. Then, we
prove the existence and uniqueness of Nash equilibrium, as
well as of Bayesian equilibrium. The next section deals with
the two-user case, and the study indicates that how the users
behave comparatively under partially incomplete information
or under totally incomplete information depends on the users’
true types. A thorough comparison of the three classes of
games, especially from the service provider’s perspective,
proves to be hard for this case. Accordingly, we turn to the
asymptotic case with a large number of users. The analysis
shows that the distinction between the partially incomplete
information game and the totally incomplete information
game vanishes as the user population increases. Thus, the
service provider’s game preference becomes clear in this
case. This insight is especially useful for communication
networks with a large population of users. The paper ends
with concluding remarks and discussion on future work.



II. PROBLEM FORMULATION

In the Stackelberg game model, the monopolistic service
provider announces prices for the service he provides as the
leader, and the n users respond with their choices of usage
(for communication networks, flows). The service provider’s
payoff (revenue) is the total payment collected from all the
users, and a user’s payoff (net utility) is what he gets from
using the service deducted by his payment to the service
provider.

In this paper, we model the users’ utility functions as
follows. For User i, i ∈ N := {1, · · · , n}, his net utility
consists of three additive terms. The first term is a nonneg-
ative function f(xi;wi), modeling the benefit from his own
usage, xi, and f is strictly increasing and strictly concave in
xi

1. Here, wi is a one-dimensional parameter representing
the user’s type. We assume that f(x;w) and ∂f(x;w)/∂x
are strictly increasing in w, which means that the higher is
a user’s type, the more he benefits from a certain amount of
usage increase. The second term is a common negative part
−g(x1, · · · , xn), depending on the usage of all the users,
which models a user’s loss in utility from the competition
with the other users for the provided service. We assume
that g is convex and symmetric for all the users, i.e., any
two arguments xi and xj , i, j ∈ N , of g(x1, · · · , xn) can
be exchanged without changing the value of the function.
Also, for any i ∈ N , g(x1, · · · , xn) and ∂g(x1, · · · , xn)/∂xj ,
j ∈ N and j 6= i, are increasing in xi, which means that
a user’s usage increase leads to deterioration of the network
performance and makes it more sensitive to congestion. The
third part of User i’s utility is the negative of his payment,
pixi, where pi is the price per unit usage charged to him by
the service provider.

Now for stochastic users, we assume that all the wi’s are
independently and identically distributed, with the common
distribution publicly known to all the players. However,
whether the true types are known to the players depends on
the classes of games, which can be formulated as follows.

A. Complete Information

In the complete information game, all the users’ true
types, w := {wi}i∈N , are known to all the players. The
service provider first announces the prices, p := {pi}i∈N ,
as the leader, and then the users play a noncooperative game,
whose solution, if exists, is a Nash equilibrium. In this Nash
equilibrium, User i’s usage, i ∈ N , is

xc
i (w;p) = arg max

xi

{f(xi;wi)−g(xi,x−i
c(w;p))−pixi},

(1)
where x−i := {xj}j 6=i,j∈N . Note that g in (1) should be

g(xc
1(w;p), · · · , xc

i−1(w;p), xi, x
c
i+1(w;p), · · · , xc

n(w;p)),

and we can write it as in (1) because of its symmetry for all
the users. Then, for the Stackelberg game, the optimal price

1Here, to avoid the trouble of dealing with non-differentiable functions,
we assume that f is twice continuously differentiable. The same assumption
holds for other functions such as g, when necessary, throughout the paper.

vector for the service provider is

pc(w) = arg max
p

∑
i∈N

pix
c
i (w;p). (2)

B. Partially Incomplete Information

In the partially incomplete information game, each user’s
true type is known to the other users, but not to the service
provider. In this case, all the users look like the same to
the service provider, because (i) all the users’ types are
independently and identically distributed, and (ii) all the
users are symmetric in g and thus in the utility functions.
Therefore, the service provider charges a uniform unit price
p to all the users. Then the Nash equilibrium for the users’
game, if exists, satisfies

xp
i (w; p) = arg max

xi

{f(xi;wi)− g(xi,x−i
p(w; p))− pxi},

(3)
for i ∈ N . For the Stackelberg game, the optimal price for
the service provider is

pp = arg max
p

pEw[
∑
i∈N

xp
i (w; p)]. (4)

Note that the subscript w of E indicates that the expectation
is calculated with respect to w.

C. Totally Incomplete Information

In the totally incomplete information game, each user’s
true type is private information to him. For the same reason
as for the partially incomplete information game, the service
provider again charges a uniform unit price p to all the users.
Here the solution to the users’ game, if exists, is a pure
strategy Bayesian equilibrium, which satisfies

xt
i(wi; p) = arg max

xi

{f(xi;wi)

− Ew−i

[
g(xi,x−i

t(w−i; p))
]
− pxi}, (5)

where w−i := {wj}j 6=i,j∈N , and the precise form of g is

g(xt
1(w1; p),· · · , xt

i−1(wi−1; p),
xi, x

t
i+1(wi+1; p), · · · , xt

n(wn; p)).

Actually, in this users’ game, from the perspective of any
user, the other n−1 users have independently and identically
distributed types with the same distribution; thus, for the
Bayesian equilibrium, we should have xt

i(wi; p) = xt(wi; p)
for all i ∈ N . Then for the Stackelberg game, the optimal
price for the service provider is

pt = arg max
p

pnEwi
[xt(wi; p)], (6)

for an arbitrary i ∈ N .

III. EXISTENCE OF A UNIQUE EQUILIBRIUM

Following the approach in [6], we can show for the
complete information or partially incomplete information
game the existence of a unique Nash equilibrium for the



users’ game given the prices. Note that the Nash equilibrium,
which solves (1) or (3), actually maximizes∑

j∈N

f(xj ;wj)− g(x1, · · · , xn)−
∑
j∈N

pjxj (7)

for each i (with pj’s all equal to p in (7) for partially
incomplete information), since the added quantity is not a
function of xi. Therefore, the unique maximizing n-tuple for
this common objective function (7), which is strictly concave
since f is strictly concave in the first argument and g is
convex by assumption, is just the unique Nash equilibrium.

We can also extend the above approach to prove the
existence of a unique Bayesian equilibrium. Without loss
of generality, we assume that the users’ types are discretely
distributed, and a continuous distribution is just the limit of a
discrete distribution. Suppose that wi = wl with probability
ql, for l ∈ M := {1, · · · ,m}, where ql > 0 and

∑m
l=1 ql = 1.

Then, given the prices, the Bayesian equilibrium, which
solves (5), is the (n×m)-tuple {xli

i }i∈N,li∈M such that xli
i

maximizes

f(xli
i ;wli)−

∑
{lj}j 6=i,lj∈M

(
∏
j 6=i

qlj )g(xl1
1 , · · · , xln

n )− pxli
i .

By multiplying the above quantity by qli , and adding a
quantity not relevant to xli

i , we obtain that xli
i equivalently

maximizes∑
j∈N

∑
lj∈M

qlj [f(xlj
j ;wlj )− px

lj
j ]

−
∑

{lj}j∈N,lj∈M

(
∏
j∈N

qlj )g(xl1
1 , · · · , xln

n ). (8)

Again, this common objective function (8) is strictly concave
and admits a unique maximizing (n×m)-tuple, which is the
unique Bayesian equilibrium.

IV. TWO-USER CASE

Next, we first compare the partially incomplete informa-
tion game with the totally incomplete information game. To
start with, we consider the simplest case with two symmetric
users, and assume that the service provider charges the same
fixed unit price p to the two users. Since p is fixed, to
save notation, we can simply write the Nash equilibrium as
xp

1(w1, w2) and xp
2(w1, w2), and the Bayesian equilibrium as

xt
1(w1) = xt(w1) and xt

2(w2) = xt(w2).

A. Optimization Problems

For the two users under partially incomplete information,
(3) gives the Nash equilibrium. We first consider the follow-
ing optimization problem:

T (y;w) = arg max
x
{f(x;w)− g(x, y)− px}. (9)

Note that T is well defined because of the strict concavity of
f and the convexity of g. Furthermore, we can easily show
that T (y;w) is strictly increasing in w and is decreasing in y.
The first argument comes from the assumption that f(x;w)
and ∂f(x;w)/∂x are strictly increasing in w, and the second

holds because g(x, y) and ∂g(x, y)/∂x are increasing in y.
This conclusion is consistent with our intuition that a high
type user tends to act more aggressively, and an increase in
one user’s usage has a negative impact on the other user’s
usage.

Now looking back at (3), we can see that the Nash
equilibrium is given by

xp
1(w1, w2) = T (xp

2(w1, w2);w1), (10)
xp

2(w1, w2) = T (xp
1(w1;w2);w2), (11)

which we know exists and is unique.
On the other hand, for the two users under totally in-

complete information, (5) gives the Bayesian equilibrium.
Consider the following optimization problem:

L(w) = arg max
x
{f(x;w)− Ev[g(x, L(v))]− px}. (12)

Then, we have xt = L and the Bayesian equilibrium is:

xt
1(w1) = xt(w1) = L(w1),

xt
2(w2) = xt(w2) = L(w2),

for which we have already proved the existence and unique-
ness. Again, we can easily see that L(w) is strictly increasing
in w, since f(x;w) and ∂f(x;w)/∂x are both strictly
increasing in w.

B. Same True Types
First, consider the special case where the two users’ true

types are the same, i.e., w1 = w2 = w. Then the two
users are completely symmetric in the partially incomplete
information game, and for the unique Nash equilibrium, we
must have xp

1(w,w) = xp
2(w,w) =: xp(w), which solves

xp(w) = T (xp(w);w). (13)

Obviously, xp(w) cannot be decreasing in w; otherwise, by
(13), xp(w) would be strictly increasing in w, since T (y;w)
is strictly increasing in w and decreasing in y, which leads to
a contradiction. Therefore, xp(w) must be strictly increasing
in w. Furthermore, since T (y;w) is decreasing in y, we have
the following results: if x < xp(w), then

T (x;w) ≥ T (xp(w);w) = xp(w) > x;

similarly, if x > xp(w), then T (x;w) < x. We summarize
this in the following proposition:

Proposition 1: (i) T (x;w) > x if and only if x < xp(w);
(ii) T (x;w) = x if and only if x = xp(w); and
(iii) T (x;w) < x if and only if x > xp(w).

Now for the totally incomplete information game, the
Bayesian equilibrium is xt

1(w) = xt
2(w) = L(w), where L

solves (12). Note that in the partially incomplete information
game, xp solves (13), where T is given by (9). Thus, in order
to compare xp with L, we want to relate (9) to (12).

Actually, since L(w) is strictly increasing in w and
∂g(x, y)/∂x is increasing in y, as a result, ∂g(x, L(w))/∂x
is increasing in w. Thus, we can define three sets, S, S0 and
S, such that

S := {w :
∂g(x, L(w))

∂x
<

∂

∂x
Ev [g(x, L(v))]},



and S0 and S are similarly defined except that “<” in the
above relation is changed to “=” and “>”, respectively. Then,
we must have supS < w0 < inf S, for any w0 ∈ S0

(provided S0 is nonempty) 2. Now, for w ∈ S,

∂g(x, L(w))
∂x

<
∂

∂x
Ev [g(x, L(v))] ,

and thus by observing (9) and (12), we can easily see that
T (L(w);w) > L(w). Similarly, for w ∈ S0, T (L(w);w) =
L(w) and for w ∈ S, T (L(w);w) < L(w). Then, immedi-
ately from Proposition 1, we conclude the following:

Theorem 1: For w ∈ S, xp(w) > L(w); for w ∈ S0,
xp(w) = L(w); and for w ∈ S, xp(w) < L(w).

Theorem 1 tells us that when the two users have the same
true types, how they behave in the two games depends on
whether the types are low or high. Reasonably, if one user’s
true type is low, then knowing that the other user also has
a low type makes him act more aggressively in the partially
incomplete information game; on the other hand, if the true
types are high, the two users tend to act more aggressively
in the totally incomplete information game. Moreover, the
results obtained on this special case can help us to compare
the two games in a more general context, which follows next.

C. General True Types

Generally, the two users’ true types may not necessarily
be the same. Then for the partially incomplete information
game, x1 can be computed from (10) and x2 from (11), alter-
natively, and the limit is just the unique Nash equilibrium. We
can derive several properties of this Nash equilibrium. First,
it is obvious that xp

1(u, v) = xp
2(v, u), or in other words, the

solution is symmetric for the two users. Furthermore, since
T (y;w) is strictly increasing in w and is decreasing in y, if
we increase w1, then x1 strictly increases by (10), and as a
result x2 decreases from (11); then going back to (10), x1

further increases; and so on. Finally, xp
1(w1, w2) is strictly

increasing and xp
2(w1, w2) is decreasing in w1. On the other

hand, if we increase w2, xp
2(w1, w2) strictly increases and

xp
1(w1, w2) decreases. Thus, xp

1(w1, w2) is strictly increasing
in w1 and is decreasing in w2, while xp

2(w1, w2) is strictly
increasing in w2 and is decreasing in w1, which is consistent
with the above symmetry property.

Recall that for the same true types, xp
1(w,w) =

xp
2(w,w) = xp(w), which is strictly increasing in w. Then,

we have the following proposition, whose proof is obvious
and thus is omitted here:

Proposition 2: For u < v, we have xp
1(u, v) ≤ xp(u) <

xp(v) ≤ xp
1(v, u), and equivalently, xp

2(v, u) ≤ xp(u) <
xp(v) ≤ xp

2(u, v).
Based on Theorem 1 and Proposition 2, we can directly

deduce the following theorem, which compares the Nash
equilibrium for the partially incomplete information game
with the Bayesian equilibrium for the totally incomplete
information game:

Theorem 2: For User 1:
(i) if w1 ∈ S and w1 ≥ w2, then xp

1(w1, w2) > L(w1);

2If S is empty, then we let sup S = −∞; if S is empty, then inf S =∞.

(ii) if w1 ∈ S0 and
(iia) if w1 > w2, then xp

1(w1, w2) ≥ L(w1);
(iib) if w1 = w2, then xp

1(w1, w2) = L(w1);
(iic) if w1 < w2, then xp

1(w1, w2) ≤ L(w1);
(iii) if w1 ∈ S and w1 ≤ w2, then xp

1(w1, w2) < L(w1).
For User 2, symmetric results hold.

From Theorem 2, we can see that for a user with a
comparatively low type, if he knows that the other user’s type
is not higher, then this information will make him act more
aggressively in the partially incomplete information game
than in the totally incomplete information game without
this information. On the other hand, for a user with a
comparatively high type, if the other user’s type is not lower,
then he will definitely act less aggressively in the partially
incomplete information game than in the totally incomplete
information game.

From the perspective of the service provider, given a fixed
pricing policy, intuitively, if the two users’ true types are
comparatively low, then they will act more aggressively in
the partially incomplete information game, which will lead
to a higher profit for the service provider. On the other
hand, if the two users’ true types are comparatively high,
then the service provider may prefer the totally incomplete
information game. However, we cannot obtain precise com-
parison results here, which thus makes it hard to compare
the two games under different pricing policies and then to
evaluate the service provider’s game preference. Analysis of
the asymptotic case, however, may provide some insights on
this, which will be discussed in the following section.

V. ASYMPTOTIC CASE

In this section, we consider the asymptotic case for net-
work games, where the user population is very high, as
in communication networks. Again, to compare the three
classes of games, we first assume that the service provider’s
pricing policy is fixed.

A. Wardrop Equilibrium

For the asymptotic case, we first discuss the concept of
Wardrop equilibrium, which will be applied subsequently
to the analysis of the three classes of games. The Wardrop
equilibrium originates from [11] to deal with a traffic net-
work where an individual vehicle’s impact on the total traffic
along the route it takes can be neglected. The Wardrop
principle states that “the journey time on all the routes
actually used are equal, and less than those which would be
experienced by a single vehicle on any unused route”, and
this property is referred to as the delay-equalizing property.
It has been shown in [12] that for a network with a very
large number of users, the asymptotic behavior of the Nash
equilibrium converges to the Wardrop equilibrium (under
appropriate assumptions). Therefore, when analyzing the
asymptotic case, the concept of the Wardrop equilibrium
can be used instead of the Nash equilibrium to avoid the
computational complexity. This idea has been widely and
successfully applied to the study of transportation networks
since its inception [13], [14].



Telecommunication and communication networks with a
large number of users are analogous to transportation net-
works, and the Wardrop equilibrium has been increasingly
used in recent years to study telecommunication networks
[15] and communication networks for routing and flow
control problems [4], [5]. Particularly in [5], which deals
with a combined flow control and routing problem for com-
munication networks, it has been proved that for the given
utility functions, the asymptotic Nash equilibrium satisfies
the delay-equalizing property as in the Wardrop equilibrium.
Henceforth, we apply the Wardrop equilibrium concept to
analyze the asymptotic behavior for the flow control problem
in this paper.

B. Complete Information

In the complete information game, given p, the Nash
equilibrium of the users’ game is formulated in (1).
Recall that the second term of the objective function,
−g(xi,x−i

p(w; p)), depends on the usage of all users and
models one user’s loss from the other users’ competition,
especially, the congestion cost for the case of communication
networks. However, as the number of users gets large, i.e., as
n →∞, we can apply the Wardrop equilibrium concept and
assume that an individual user’s usage is so small compared
with the total usage of all users that his contribution to this
aggregation term is infinitesimal. In other words, for each
individual user, the second term in (1) can be regarded as a
constant, and thus we can revise the equilibrium of the users’
game for the asymptotic case as:

x̃c
i (w;p) = arg max

xi

{f(xi;wi)− pixi}, i ∈ N. (14)

In the following, we verify by two examples that the
Wardrop equilibrium is actually the limiting solution to the
asymptotic case for a special class of utility functions.

Example 1: The first example is taken from [6], where

f(xi;wi) = wi log(1 + xi), i ∈ N,

g(x1, · · · , xn) =
1

nc−
∑

j∈N xj
,

for some positive constant c, and each user is charged a
uniform price per unit bandwidth p. It has been shown in
[6] that as n →∞, the asymptotic optimal price and users’
optimal flows are:

pc(w) → wav

c + 1
,

xc
i (w; pc(w)) → wi

pc(w)
− 1 = (c + 1)

wi

wav
− 1, i ∈ N,

where wav :=
∑

j∈N wj/n 3. On the other hand, if we omit
the congestion cost, then the Wardrop equilibrium can be
obtained from (14) as

x̃c
i (w; p) =

wi

p
− 1, i ∈ N.

3Note that we need wi > wav/(c + 1) for User i to be admitted, i.e.,
have a positive flow, which we assume to be the case here.

Thus, the optimal price for the service provider is to max-
imize the total profit p

∑
i∈N x̃c

i (w; p) subject to the con-
straint

∑
i∈N x̃c

i (w; p) ≤ nc 4, and finally can be obtained
as

p̃c(w) =
wav

c + 1
.

We can see that the solution calculated from the Wardrop
equilibrium is consistent with the asymptotic solution calcu-
lated from the Nash equilibrium.

Example 2: The second example, taken from [16], extends
the uniform pricing scheme in [6] to differentiated pricing
such that the service provider may charge a unit price pi

to User i. For the same f and g as defined in [6], it has
been shown in [16] that as n →∞, the asymptotic optimal
differentiated prices and users’ corresponding optimal flows
are:

pc
i (w) →

√
wiv

1
2
av

c + 1
, xc

i (w;pc(w)) → (c + 1)
√

wi

v
1
2
av

− 1,

for i ∈ N , where v
1
2
av :=

∑
j∈N

√
wj/n 5. Now without

considering the congestion cost, the Wardrop equilibrium
from (14) is

x̃c
i (w;p) =

wi

pi
− 1, i ∈ N.

Then, the optimal prices for the service provider are to
maximize

∑
i∈N pix̃

c
i (w;p) subject to

∑
i∈N x̃c

i (w;p) ≤
nc. This can be solved by using the Lagrange multiplier
method, and finally we obtain

p̃c
i (w) =

√
wiv

1
2
av

c + 1
, x̃c

i (w; p̃c(w)) = (c + 1)
√

wi

v
1
2
av

− 1,

for i ∈ N . Again, the asymptotic solution from the Nash
equilibrium is the same as that from the Wardrop equilibrium.

C. Incomplete Information

Similarly as for the complete information game, we apply
the Wardrop equilibrium concept to the partially and totally
incomplete information games for the asymptotic case. Then,
for the partially incomplete information game, given p, (3)
can be revised as

x̃p
i (w; p) = arg max

xi

{f(xi;wi)− pxi}, i ∈ N. (15)

For the totally incomplete information game, given p, the
Bayesian equilibrium is formulated in (5), where the second
term of the objective function is the expectation of −g.
However, for a network with a very large number of users,
from the perspective of each individual user, this term
can still be regarded as a constant term for the following
two reasons. First, compared with the large population, an
individual’s impact on the total usage of the network is
insignificant. Second, as the number of users gets large, the
real distribution of all the users’ true types should become

4Although we do not consider the congestion cost here, it is still required
that the total usage cannot exceed the network capacity nc.

5Again, we assume that
√

wi > v
1
2
av/(c + 1) for i ∈ N .



more and more concentrated on some certain pattern which is
consistent with q, and thus an individual user can reasonably
neglect the variance of distribution of the other users’ types.
Therefore, finally, (5) can be revised as

x̃t
i(wi; p) = arg max

xi

{f(xi;wi)− pxi}, i ∈ N. (16)

Comparing (15) with (16), we can see that given a fixed
price p, the Nash equilibrium for partially incomplete infor-
mation and the Bayesian equilibrium for totally incomplete
information actually become the same in the limiting case.
As a result, as n → ∞, the optimization problems to solve
for the asymptotic optimal prices for the service provider,
given by (4) and (6) for partially and totally incomplete
information, respectively, actually become the same problem.
In other words, the distinction between partially incomplete
information and totally incomplete information vanishes as
the user population grows large, and thus we can refer to
both games just as the incomplete information game.

Intuitively, in a network with a very large number of
users, the aggregate usage and thus the network performance
remain comparably stable. Therefore, each individual user
just determines his optimal usage based on his own type and
the price, and as a result the knowledge of the other users’
true types in the partially incomplete information game is of
no value to him.

D. Service Provider’s Game Preference

Next, we compare the complete information game with the
incomplete information game for the asymptotic case from
the perspective of the service provider. These two games
are different in two aspects. First, by observing (14) and
(15), we can see that the service provider can differentiate
prices based on the users’ types in the complete information
game, while for incomplete information, he has to charge a
uniform price to all users due to lack of information on each
user’s true type. Second, by observing (2) and (4), in the
complete information game, the service provider determines
his optimal prices such that the profit is maximized, while
in the incomplete information game, his objective function
is the expected profit. However, as the number of users gets
large, as mentioned previously, the real distribution of all the
users’ true types should become more and more concentrated
on some certain pattern, and thus the service provider can
neglect the variance of this distribution. Therefore, the effect
of the second distinction of the two games disappears for the
asymptotic case. Then, it becomes obvious that the service
provider prefers the complete information game, where he
may get a higher profit by price differentiation 6.

VI. CONCLUSION AND EXTENSIONS

In this study, we have focused on understanding how a
monopolistic service provider and multiple users perform
in network games with various types of public and private
information. Specifically, we have shown that for a network

6For a comparison of the uniform pricing and differentiated pricing
schemes, see [16].

with a large number of users, the distinction between the
partially incomplete information game and the totally incom-
plete information game is inconsequential, while the service
provider prefers the complete information game to the in-
complete information game for possibly higher profit. This
result provides useful insight for communication network
applications.

This work can be extended in several directions. First,
for the asymptotic case, other than the two examples which
show for the complete information game that the limiting
Nash equilibrium does converge to the Wardrop equilibrium
for a special class of utility functions, applying the Wardrop
equilibrium to solve for the asymptotic solution is rather
intuitive. In the future, we wish to obtain a general proof of
this convergence for the three classes of games. Also, in this
paper, we have assumed that the service provider has a linear
pricing policy, i.e., each user is charged a fixed unit price.
This can be relaxed to include nonlinear pricing policies as
well [17]. Finally, network games with multiple competitive
service providers need to be studied in the future.
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