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Abstract

In this paper, we introduce the concept of dynamic pricing within the context of our previous Stackelberg network
game model and view the ISP’s policy as an incentive policy, and the underlying game as a reverse Stackelberg game.
We study this incentive-design problem under complete information as well as incomplete information. In both cases, we
show that the game is not generally incentive controllable (that is, there may not exist pricing policies that would lead to
attainment of a Pareto-optimal solution), but it is ε-incentive controllable (that is, the ISP can come arbitrarily close to a
Pareto-optimal solution). The paper also includes a comparative study of the solutions under static and usage-based pricing
policies, illustrated by numerical computations.
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I. INTRODUCTION

Recent years have seen a surge of activity in the use of the framework and tools of game theory in studying pricing
issues in communication networks, and particularly Internet pricing. Basic knowledge of game theory can be acquired
from books such as [5] and [6], while [7] and [8] provide an introduction to this specific research area of network pricing.

The starting point for our work here is the Stackelberg game model formulated in [1]. In this model, the natural players
are the Internet Service Providers (ISPs) and the individual users, where the ISPs are the leaders and the users are the
followers. The leaders set the prices for the resources they offer (in this case, bandwidth) and the followers respond by
their choice of the amount of bandwidth (or flow) that they are willing to pay for. The payoff for each ISP is the total
revenue it collects (minus a fixed cost), and for each user it captures a tradeoff between the desire for high bandwidth (or
flow) and despise for high congestion cost due to bottleneck links and high payment for flow. The presence of congestion
cost in the net utility functions of users leads to a natural interaction (coupling) between the decisions of all users using
a particular link, which in turn necessitates the modeling of the decision making process among the users (for each fixed
pricing policy of the ISPs) as a noncooperative game, with Nash equilibrium being a natural candidate for a solution.
In the case of multiple ISPs, similarly the Nash equilibrium solution concept can be adopted at the higher level of the
Stackelberg game.

Our earlier work on this class of problems has looked at static pricing policies for such network games, and has obtained
results on the existence and the uiqueness of an equilibrium, as well as its characterization. This has led to appealing
admission policies as well as capacity-expansion schemes when the user population is large. In particular, [1] and [2]
have studied the interrelation of the ISP and the users, under uniform pricing and differentiated pricing, respectively.
Furthermore, we have extended the model to an environment where the user types may not be known to the ISPs, and
studied this network game under incomplete information in [3].

In this paper, we consider an extension of the earlier model in a significant new direction. As in [4], we allow the
leader’s (let us say there is only one ISP, but still multiple users) policy to be dynamic, in the sense that it is allowed to
depend on the actions of the users (that is, we have a usage-based policy). Hence, the ISP’s policy may also be viewed
as an incentive policy, and the underlying game a reverse Stackelberg game [5, pp. 392–396]. Intuitively, by turning to
a dynamic policy from a static one, the ISP takes some control over the users’ flows, and consequently could expect an
improved profit. On the other hand, a user’s payoff cannot deteriorate too much because of the fact that he always has
the choice of not participating, which imposes a restriction on the incentive policies that the ISP is allowed to choose.

Our goal here is to find a Pareto-optimal solution, what we refer to as the team solution, and to obtain the incentive
policies to achieve that optimal, what we call the solution of the incentive-design problem. We first consider the complete

∗ Research supported by NSF Grant CNS-0312976.
∗∗ Author for correspondence.



2

information game, where the ISP knows all user types, and hence can deduce their (unique) responses to an announced
usage-based pricing policy. Subsequently, we study the incomplete information game where the ISP knows only the
probability distribution of the user types, and hence cannot fully deduce the follower responses.

The paper is organized as follows. We first formulate the problem for the single user case, under complete information
as well as incomplete information. Then the complete information game and the incomplete information game are dealt
with in the next two sections III and IV, respectively. In Section III, which deals with complete information, the team
solution is obtained, followed by the discussion on incentive controllability, linear incentives, quadratic incentives and
general incentives. The team solution is also compared with the Stackelberg game solution obtained in [1]. In Section
IV for incomplete information, some properties of the optimal solution are discussed first, which leads to an inductive
method to solve for the team solution as well as the solution of the incentive-design problem. Numerical examples are
also provided to illustrate the idea. Finally, we provide formulation for the incentive-design problem for the multiple user
case and conclude the paper with some discussion.

II. INCENTIVE-DESIGN PROBLEM FORMULATION

Consider a link of capacity nc accessed by n users, and the Stackelberg game model formulated in [1] and generalized
in [2]. Let xi be the flow of User i and pi be the price per unit flow charged to him by the ISP. Then, User i’s net utility
is

Fwi
(xi, x−i; pi) = wi log(1 + xi) −

1

nc − xi − x−i
− pixi,

where wi is a positive parameter representing User i’s type and x−i :=
∑n

j=1 xj −xi. Now given the prices announced by
the leader (ISP), the n followers (users) play a noncooperative game, which admits a Nash equilibrium {xs

i (p1, · · · , pn) ≥
0}n

i=1 satisfying

max
xi∈[0,nc−xs

−i
(p1,···,pn)]

Fwi
(xi, x

s
−i(p1, · · · , pn); pi) = Fwi

(xs
i (p1, · · · , pn), xs

−i(p1, · · · , pn); pi)

for all i ∈ {1, · · · , n}. The existence and the uniqueness of such a Nash equilibrium for a given n-tuple {pi} has been
established in [1]. Then the ISP’s optimization problem is

max
{pi≥0}n

i=1

n
∑

i=1

pix
s
i (p1, · · · , pn),

which also admits a unique solution [2].
In this paper, we allow the ISP’s pricing policy to be dynamic and reframe the problem as a reverse Stackelberg game.

Instead of setting a fixed unit price pi for User i, and thus charging User i the amount pixi, the ISP announces the total
charge to him, ri = γi(xi), as a function of his flow, which is not necessarily linear. We start with a special case with a
single user and c taking the value of 1. Then the user’s net utility can be expressed as

Fw(x; r) := w log(1 + x) − 1

1 − x
− r

for 0 < x < 1; for x = 0, r ≡ 0 and Fw(0; r) ≡ −1. To compute the “team solution”, which is defined as the action
outcome desired by the leader (ISP), we identify two possible cases.

A. Complete Information

In this case, we assume that the user’s type, w, is known to the ISP. As stated in [5, pp. 392–396], the team solution is

(xt, rt) = arg max
0≤x<1,r≥0

r, (1)

s. t. Fw(x; r) ≥ −1, (2)

which we assume at this point to exist. The constraint (2) comes from the fact that the user always has the choice of not
participating, which guarantees a minimum net utility of −1 for him.

Now the incentive-design problem is to find a γ : [0, 1) → R, such that

arg max
0≤x<1

Fw(x; γ(x)) = xt, (3)

γ(xt) = rt. (4)

Note that γ(0) ≡ 0.
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B. Incomplete Information

In this case, the user’s type, w, is not revealed to the ISP; rather, the ISP knows only the distribution of the user’s type,
say (assuming a discrete distribution), w = wi w.p. qi ∈ (0, 1), i = 1, · · · ,m, where

∑m
j=1 qj = 1. Then the team solution

becomes

{(xit, rit)}m
i=1 = arg max

{0≤xi<1,ri≥0}m
i=1

{E[r] =

m
∑

j=1

qjr
j}, (5)

s. t. Fwi(xi; ri) ≥ −1, 1 ≤ i ≤ m, (6)

Fwi(xi; ri) ≥ Fwi(xj ; rj), 1 ≤ i 6= j ≤ m, (7)

where we again assume at this point that a solution exists. The constraint (7) is necessary such that a user with the type
wi will choose (xit, rit) which is the flow-charge pair desired for him.

As a result, the incentive-design problem is to find a γ : [0, 1) → R, such that for 1 ≤ i ≤ m,

arg max
0≤x<1

Fwi(x; γ(x)) = xit, (8)

γ(xit) = rit, (9)

and γ(0) ≡ 0.
Following the definition in [5, pp. 392–396], the incentive problem defined above is (linearly) incentive controllable

if there exists a (linear) γ-function with γ(0) ≡ 0 such that (3) and (4) for complete information, or (8) and (9) for
incomplete information, are satisfied, respectively.

III. COMPLETE INFORMATION

A. Team Solution

For convenience, define

Q(x;w) := w log(1 + x) − 1

1 − x
+ 1.

Then we can easily see that Fw(x; r) = Q(x;w)− 1− r. Hence, (2) is equivalent to Q(x;w) ≥ r. If w ≤ 1, Q(x;w) < 0
for 0 < x < 1. Obviously, the only feasible point satisfying (2) is (x, r) = (0, 0). In this case, the user will always choose
not to participate. On the other hand, if w > 1, then Q(x;w) > 0 for 0 < x < xw

max < 1, where xw
max can be obtained

by solving Q(x;w) = 0. Actually, to maximize r, we must have r = Q(x;w). Since Q(x;w) is strictly concave in x for
x ∈ [0, 1), its maximum is achieved at the point where ∂Q(x;w)

∂x = 0, provided that such a point exists in [0, 1). In fact it
does, and we have

w =
1 + x

(1 − x)2
=: α−1(x),

or equivalently,

x =
1 + 2w −

√
1 + 8w

2w
=: α(w).

Note that the function defined above, α : [1,∞) → [0, 1), is strictly increasing and thus its inverse is also well-defined.
Furthermore, extend the definition of α to [0, 1) so that α(w) ≡ 0 for w ≤ 1; note that it is continuous at w = 1. Finally,
we obtain the unique team solution as

xt = α(w),

rt = Q(α(w);w).

B. Solution of the Incentive-Design Problem

1) Incentive Controllability: After the team solution is obtained, the incentive controllability of the problem is to be
studied next. Suppose there exists a γ-function as stated in the definition. Combining (3) and (4), we know that Fw(x; γ(x))
for 0 ≤ x < 1 achieves its maximum Fw(xt; rt) = −1 at (xt, rt). Note that besides (xt, rt), γ also needs to go through
(0, 0), for which we have Fw(0; 0) = −1. In other words, (xt, rt) cannot be the unique maximizing point. Since the user
is indifferent at these two points, and there is always a possibility that the user may choose his flow to be zero, which
will lead to no profit for the ISP, thus, strictly to say, the problem is not incentive controllable.

However, by applying the same technique as in Example 7.4 of [5], we can show that the problem is ε-incentive
controllable. A problem is called ε-incentive controllable if there exists an incentive design such that the leader can come
arbitrarily close to the team solution (xt, rt). The method here is to first find a γ-function with γ(0) ≡ 0 satisfying (3)
and (4), and then make a small “dip” in the feasible set near (xt, rt) to guarantee the uniqueness of the maximizing point.
To illustrate this, we first study linear incentives and then proceed to more general incentives. We assume that w > 1,
since otherwise xt is not positive.



4

2) Linear Incentive: A linear function γ going through (0, 0) and (xt, rt) must be γ(x) = x · rt/xt. Now we need to
see whether this linear function satisfies (3) or not. Note that for 0 < a < 1, γ(axt) = art. Thus, (axt, art) is some point
along this line between (0, 0) and (xt, rt). On the other hand, remember that 0 = Q(0;w) and rt = Q(xt;w), where
Q(x;w) is strictly concave in x. Hence, Q(axt;w) > art. As a result,

Fw(axt; γ(axt)) = Q(axt;w) − 1 − art > −1 = Fw(xt; rt).

Therefore, (3) cannot be satisfied and the problem is not linearly incentive controllable. Note that a linear γ corresponds
to the constant unit price scheme in [1] and [2], which shows that the classical Stackelberg version of the pricing problem
cannot admit a solution that is team-optimal.

3) Quadratic Incentive: Now suppose that γ(x) = a1x + a2x
2, which is a quadratic function satisfying γ(0) = 0. For

(3) and (4) to hold, we need to have

a1x
t + a2(x

t)2 = rt, (10)
d

dx
Fw(x; γ(x))|x=xt =

∂Q(x;w)

∂x
|x=xt − dγ(x)

dx
|x=xt =

∂Q(x;w)

∂x
|x=xt − (a1 + 2a2x

t) = 0. (11)

Recall that ∂Q(x;w)
∂x |x=xt = 0. Thus, from the above two equations, we obtain that

a2 = − rt

(xt)2
and a1 = −2a2x

t =
2rt

xt
.

Note that (11) is necessary but not sufficient for (3) to hold. We still need to verify (3) for the above obtained quadratic
function.

First, we can prove the following inequality (see Appendix I):

d2

dx2
Fw(x; γ(x))|x=xt =

∂2Q(x;w)

∂x2
|x=xt − d2γ(x)

dx2
|x=xt < 0.

Thus, Fw(x; γ(x)) achieves a local maximum at xt.
Next, we need to show that for 0 ≤ x < 1, Fw(x; γ(x)) ≤ Fw(xt; γ(xt)) = −1, or equivalently, Q(x;w) ≤ γ(x). Note

that Q(0;w) = γ(0) = 0 and Q(xt;w) = γ(xt) = rt. For x other than 0 and xt, we actually have the following result:
Proposition 1: For 0 < x 6= xt < 1, Q(x;w) < γ(x).

Proof: To see the proposition, it is convenient to compare η(x;w) := Q(x;w)/x with ξ(x) := γ(x)/x = a1 + a2x
that is a linear function, and equivalently show that η(x;w) < ξ(x) for 0 < x 6= xt < 1.

First, since Q(x;w) and γ(x) coincide at (xt, rt) and so do their first-order derivatives, we have

∂η(x;w)

∂x
|x=xt =

[

1

x

∂Q(x;w)

∂x
− 1

x2
Q(x;w)

]

|x=xt =

[

1

x

dγ(x)

dx
− 1

x2
γ(x)

]

|x=xt =
dξ(x)

dx
|x=xt .

Hence, η(x;w) and ξ(x) are tangent at (xt, rt/xt).
Furthermore, since Q(x;w) has a smaller second-order derivative than γ(x) does at (xt, rt),

∂2η(x;w)

∂x2
|x=xt =

[

1

x

∂2Q(x;w)

∂x2
− 2

x2

∂Q(x;w)

∂x
+

2

x3
Q(x;w)

]

|x=xt

<

[

1

x

d2γ(x)

dx2
− 2

x2

dγ(x)

dx
+

2

x3
γ(x)

]

|x=xt =
d2ξ(x)

dx2
|x=xt = 0,

which means that η(x;w) is strictly concave at (xt, rt/xt).
We can also prove that ∂3η(x;w)

∂x3 < 0 for 0 < x < 1 (see Appendix II). Thus, as x increases from 0 to 1, η(x;w) is
either concave, or first convex and then concave. For the former case, obviously the proposition holds; for the latter one,
to reach the same conclusion, it is sufficient to show that limx→0+ η(x;w) = w − 1 < ξ(0) = a1, which can be verified
to be true (see Appendix II).

Hence we have proved that the above obtained γ(x) = a1x+a2x
2 is the unique quadratic incentive such that γ(0) = 0

and (3) and (4) hold. Next, we make a small “dip” in the feasible set near the team solution. For example, we can keep
all the points along γ(x) except for replacing (xt, rt) with (xt, rt − ε). For this revised incentive, (xt, rt − ε) becomes
the unique maximizing point for the user with a net utility of −1 + ε, which guarantees a profit of rt − ε for the ISP.

4) General Incentive: To further understand the incentive-design problem, we provide a graphical illustration in Figure
1. Take w = 100 as an example. The feasible set, as defined in (1) and (2), is the region below Fw(x; r) = −1, or
equivalently, r = Q(x;w). Then the team solution can be obtained as xt = 0.8635 and rt = 55.9196. The quadratic
incentive obtained previously, γ(x) = a1x+a2x

2, where a1 = 129.5200 and a2 = −74.9980, is also depicted in the figure.
In fact, any incentive policy which coincides with Fw(x; r) = −1 at (0, 0) and (xt, rt) and falls above Fw(x; r) = −1
at all other points satisfy (3) and (4). Then, by making a small “dip” in the feasible set near the team solution, the
ISP can come arbitrarily close to the optimal profit rt, leaving the user with a net utility that is slightly higher than
Fw(xt; rt) = −1.
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Fig. 1. Graphical illustration of incentives for the complete information case (w = 100)

C. Team Solution vs Stackelberg Game Solution

Now that the problem is ε-incentive controllable, we compare the team solution with the Stackelberg game solution. It
has been shown in [1] that under the Stackelberg game model, the user’s flow and the optimal profit for the ISP are

xs =
w

1
3 − 1

w
1
3 + 1

, and rs = (w
1
3 − 1)2(

1

2
w

1
3 +

1

4
),

given w > 1. Figure 2 shows for different values of w the comparison of the team solution with the Stackelberg game
solution. Not surprisingly, adoptation of the incentive policy improves the ISP’s profit. From the right side, we can see
that for w near 1, rt is almost two times rs and as w increases to 200, rt is still around 60 percent more than rs.
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Fig. 2. Comparison of the team solution with the Stackelberg game solution for the complete information case

IV. INCOMPLETE INFORMATION

A. Constraint Reduction

From the analysis for complete information, we know that if a user’s type as captured by the parameter w is less than
1, he will always choose not to participate. Thus, W.L.O.G., we can assume that w1 > · · · > wm > 1. To compute the
team solution, we first deduce some properties that this solution must satisfy.

Lemma 1: Given wi > wj > 1, for any xi ∈ [0, 1), xj ∈ [0, 1), ri ≥ 0 and rj ≥ 0 such that

Fwi(xi; ri) ≥ Fwi(xj ; rj) and Fwj (xj ; rj) ≥ Fwj (xi; ri) (12)

are satisfied, we must have xi ≥ xj .
Proof: Since wi > wj , (12) implies that

Fwi(xi; ri) ≥ Fwi(xj ; rj) ≥ Fwj (xj ; rj) ≥ Fwj (xi; ri).

Hence, we have

Fwi(xi; ri) − Fwj (xi; ri) = (wi − wj) log(1 + xi) ≥ Fwi(xj ; rj) − Fwj (xj ; rj) = (wi − wj) log(1 + xj),

which means xi ≥ xj .
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A direct result of Lemma 1 is as follows:
Corollary 1: For w1 > · · · > wm > 1, x1t ≥ · · · ≥ xmt ≥ 0. Futhermore,

Fwi(xit; rit) ≥ Fwi(xjt; rjt) ≥ Fwj (xjt; rjt) ≥ Fwj (xit; rit), 1 ≤ i < j ≤ m.

Now we are ready to prove the following theorem, which plays an important role in the derivation of {(xit, rit)}m
i=1.

Theorem 1: For w1 > · · · > wm > 1, to compute the action outcome desired by the ISP, {(xit, rit)}m
i=1, the constraints

(6) and (7) can be simplified as

x1 ≥ · · · ≥ xm ≥ 0; Fwm(xm; rm) = −1 and Fwi(xi; ri) = Fwi(xi+1; ri+1), 1 ≤ i ≤ m − 1. (13)

Proof: By Corollary 1, {(xit, rit)}m
i=1 must satisfy x1t ≥ · · · ≥ xmt ≥ 0. We prove the second half of the theorem

in several steps.
Step 1: From Corollary 1, we know that for any i < m, the solution must satisfy

Fwi(xit; rit) ≥ Fwi(xmt; rmt) ≥ Fwm(xmt; rmt).

Therefore, the constraint (6) can be reduced to Fwm(xm; rm) ≥ −1. Furthermore, from the definition of Fw(x; r), to
maximize the objective function in (5), we should make ri’s as large as possible, or equivalently, Fwi(xi; ri)’s as small
as possible. Therefore, the equality actually holds for (6), which can be written as

Fwm(xm; rm) = −1.

The constraint (7) will not affect this equality since it is a “soft” constraint instead of being a “hard” one. By “hard”
constraint, we mean that some given constant bounds are involved; otherwise, a constraint is called a “soft” one.

Step 2: Fix (xm, rm) such that xm ≥ 0 and Fwm(xm; rm) = −1. Then (7) can be rewritten as

Fwi(xi; ri) ≥ Fwi(xm; rm) and Fwm(xi; ri) ≤ Fwm(xm; rm), 1 ≤ i ≤ m − 1; (14)

Fwi(xi; ri) ≥ Fwi(xj ; rj), 1 ≤ i 6= j ≤ m − 1. (15)

In fact, for 1 ≤ i < j ≤ m − 1,

Fwi(xi; ri) − Fwj (xj ; rj) ≥ Fwi(xj ; rj) − Fwj (xj ; rj) ≥ Fwi(xm; rm) − Fwj (xm; rm).

The first inequality comes from (15) and the second inequality holds since xj ≥ xm ≥ 0. Therefore, Fwj (xj ; rj) ≥
Fwj (xm; rm) implies that Fwi(xi; ri) ≥ Fwi(xm; rm). On the other hand,

Fwm(xi; ri) = Fwj (xi; ri) − (wj − wm) log(1 + xi) ≤ Fwm(xj ; rj) = Fwj (xj ; rj) − (wj − wm) log(1 + xj),

because of (15) and the fact that xi ≥ xj ≥ 0. So, Fwm(xj ; rj) ≤ Fwm(xm; rm) implies that Fwm(xi; ri) ≤ Fwm(xm; rm).
As a conclusion, (14) can be reduced to

Fwm−1(xm−1; rm−1) ≥ Fwm−1(xm; rm) and Fwm(xm−1; rm−1) ≤ Fwm(xm; rm).

Note that (15) is a soft constraint. Thus, to maximize the objective function in (5), (14) can be further reduced to

Fwm−1(xm−1; rm−1) = Fwm−1(xm; rm),

and then the second half of the constraint is in fact equivalent to xm−1 ≥ xm.
Step 3: For 2 ≤ k ≤ m − 1, fix {(xi, ri)}m

i=k such that xk ≥ · · · ≥ xm ≥ 0, Fwm(xm; rm) = −1 and Fwi(xi; ri) =
Fwi(xi+1; ri+1) for k ≤ i ≤ m − 1. Rewrite (15) as

Fwi(xi; ri) ≥ Fwi(xk; rk) and Fwk(xi; ri) ≤ Fwk(xk; rk), 1 ≤ i ≤ k − 1; (16)

Fwi(xi; ri) ≥ Fwi(xj ; rj), 1 ≤ i 6= j ≤ k − 1. (17)

(17) is a soft constraint. For the hard constraint (16), following the similar reasoning as in Step 2, it can be reduced to

Fwk−1(xk−1; rk−1) = Fwk−1(xk; rk)

and xk−1 ≥ xk.
Step 4: By repeating Step 3 for k from m − 1 to 2, we inductively prove the theorem.

Corollary 2: For w1 > · · · > wm > 1, {(xit, rit)}m
i=1 must satisfy: x1t = α(w1) and xit ≤ α(wi) for 2 ≤ i ≤ m.

Proof: We prove this corollary by induction.
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First, we must have xmt ≤ α(wm). If this does not hold, i.e., xmt > α(wm), then we can compare rmt with rm′

defined as rm achieved at xm = α(wm). In fact, from Fwm(xm; rm) = −1, we know that rm′

= Q(α(wm);wm) and
rmt = Q(xmt;wm). Since Q(xm;wm) is strictly concave in xm and reaches the maximum at xm = α(wm), we have
that rm′

> rmt, Thus, when xm is reduced to α(wm), rm is actually improved. Furthermore, since xm decreases and
as a result Fwm−1(xm; rm) = Fwm(xm; rm) + (wm−1 − wm) log(1 + xm) decreases as well, the constraints in (13) are
actually relaxed for all the other flow-charge pairs. Therefore, a higher value for E[r] can be achieved, which contradicts
to the assumption that xmt is optimal.

Now, suppose for some k such that 2 ≤ k ≤ m, xit ≤ α(wi) holds for k ≤ i ≤ m. Note that α(wk−1) > α(wk) ≥ xit

for k ≤ i ≤ m. Then if xk−1 > α(wk−1), by reducing xk−1 to α(wk−1), the expected profit E[r] can be further improved,
following the similar reasoning as above. Therefore, x(k−1)t ≤ α(wk−1).

Finally, it is obvious that x1t = α(w1).

B. Team Solution

For the two equations in (13), Fwm(xm; rm) = −1 implies rm = Q(xm;wm), while Fwi(xi; ri) = Fwi(xi+1; ri+1)
implies ri = ri+1 + Q(xi;wi) − Q(xi+1;wi), for 1 ≤ i ≤ m − 1. Now we can compute the team solution by induction
on m.

1) Two-Type Incomplete Information: For w1 > w2 > 1 and q1 + q2 = 1, r2 = Q(x2;w2) and r1 = r2 + Q(x1;w1)−
Q(x2;w1). Therefore, the goal is to maximize

E[r] =
2

∑

j=1

qjr
j = q1Q(x1;w1) − q1Q(x2;w1) + Q(x2;w2) = q1Q(x1;w1) + q2Q(x2;

w2 − q1w
1

q2
).

Note that v2/2 := w2−q1w1

q2
< w2. We can easily see that x1t = α(w1) and x2t = α(v2/2), which is 0 if v2/2 ≤ 1. Then

the maximum of E[r] is E[rt] = q1Q(x1t;α−1(x1t)) + q2Q(x2t;α−1(x2t)). When v2/2 ≤ 1, x2t = 0 and α−1(x2t) is
not clearly defined; but this does not matter since Q(0;w) ≡ 0 for any w.

2) Three-Type Incomplete Information: For w1 > w2 > w3 > 1 and
∑3

j=1 qj = 1,

E[r] =

3
∑

j=1

qjr
j = q1Q(x1;w1) − q1Q(x2;w1) + (q1 + q2)Q(x2;w2) − (q1 + q2)Q(x3;w2) + Q(x3;w3)

= q1Q(x1;w1) + q2Q(x2;
(q1 + q2)w

2 − q1w
1

q2
) + q3Q(x3;

w3 − (q1 + q2)w
2

q3
).

Clearly, v2/3 := (q1+q2)w
2−q1w1

q2
< w2 and v3/3 := w3−(q1+q2)w

2

q3
< w3. We always have x1t = α(w1), while the values

of x2t and x3t depend on how v2/3 is compared with v3/3. We discuss several possibilities.
(i) If v2/3 ≤ v3/3, then x2t = x3t ≤ α(v3/3). So the expected profit can be expressed as

E[r] = q1Q(x1;w1) + (q2 + q3)Q(x2;
w3 − q1w

1

q2 + q3
).

Note that

v2/3 ≤ v2,3/3 :=
w3 − q1w

1

q2 + q3
=

q2v
2/3 + q3v

3/3

q2 + q3
≤ v3/3.

From the discussion for the two-type case, we know that x2t = x3t = α(v2,3/3), which is 0 if v2,3/3 ≤ 1.
(ii) If 1 ≥ v2/3 > v3/3, x2t = x3t = 0.
(iii) If v2/3 > 1 ≥ v3/3, x2t = α(v2/3) and x3t = 0.
(iv) If v2/3 > v3/3 > 1, x2t = α(v2/3) and x3t = α(v3/3).
In fact, (ii), (iii) and (iv) can be summarized as: if v2/3 > v3/3, x2t = α(v2/3) and x3t = α(v3/3). Finally, the optimal

expected profit is E[rt] =
∑3

j=1 qjQ(xjt;α−1(xjt)).
3) Multiple-Type Incomplete Information: Suppose that m ≥ 4, w1 > · · · > wm > 1 and

∑m
j=1 qj = 1. Then,

E[r] =

m
∑

j=1

qjr
j =

m−1
∑

k=1

k
∑

l=1

ql[Q(xk;wk) − Q(xk+1;wk)] + Q(xm;wm)

= q1Q(x1;w1) +

m
∑

k=2

qkQ(xk;

∑k
l=1 qlw

k − ∑k−1
l=1 qlw

k−1

qk
).
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For 2 ≤ k ≤ m, vk/m :=

∑

k

l=1
qlw

k−
∑

k−1

l=1
qlw

k−1

qk
< wk. Then we have the following corollary as an extension of

Corollary 2. The proof is similar, and hence is omitted here.
Corollary 3: For w1 > · · · > wm > 1, xit ≤ maxm

k=i α(vk/m) for 2 ≤ i ≤ m.
Now we can discuss the optimal solution based on vk/m’s.

(i) If vm−1/m ≤ vm/m, then x(m−1)t = xmt ≤ α(vm/m). So,

E[r] = q1Q(x1;w1) +
m−2
∑

k=2

qkQ(xk; vk/m) + (qm−1 + qm)Q(xm−1;
wm − ∑m−2

j=1 qjw
m−2

qm−1 + qm
),

where

vm−1/m ≤ vm−1,m/m :=
wm − ∑m−2

j=1 qjw
m−2

qm−1 + qm
≤ vm/m.

Therefore, we can continue the discussion as for the (m − 1)-type case and the solution can be obtained inductively.
(ii) If 1 ≥ vm−1/m > vm/m, x(m−1)t = xmt = 0. Then, E[r] = q1Q(x1;w1) +

∑m−2
k=2 qkQ(xk; vk/m), for which we

can proceed as in the (m − 2)-type case.
(iii) If vm−1/m > 1 ≥ vm/m, then xmt = 0 and E[r] = q1Q(x1;w1) +

∑m−1
k=2 qkQ(xk; vk/m). Proceed as in the

(m − 1)-type case.
(iv) If vm−1/m > vm/m > 1, then we need to further look at vm−2/m.
(iv a) If vm−2/m ≤ vm−1/m, then x(m−2)t = x(m−1)t ≤ α(vm−1/m). Thus,

E[r] = q1Q(x1;w1) +
m−3
∑

k=2

qkQ(xk; vk/m)

+ (qm−2 + qm−1)Q(xm−2;

∑m−1
j=1 qjw

m−1 −
∑m−3

j=1 qjw
m−3

qm−2 + qm−1
) + qmQ(xm; vm/m),

where

vm−2/m ≤ vm−2,m−1/m :=

∑m−1
j=1 qjw

m−1 − ∑m−3
j=1 qjw

m−3

qm−2 + qm−1
≤ vm−1/m.

Then proceed as in the (m − 1)-type case.
(iv b) If vm−2/m > vm−1/m, then we proceed to vm−3/m, vm−4/m and so on if necessary as follows: if at some

point we have vi−1/m ≤ vi/m for some i, then x(i−1)t = xit ≤ α(vi/m) and the m-type case can be reduced to the
(m−1)-type case similarly as discussed in (iv a); otherwise, w1 > v2/m > · · · > vm/m > 1 and as a result, x1t = α(w1)
and xit = α(vi/m) for 2 ≤ i ≤ m.

In conclusion, {xit}m
i=1 can be obtained inductively and E[rt] =

∑m
j=1 qjQ(xjt;α−1(xjt)). {rit}m

i=1 are computed
accordingly as rmt = Q(xmt;wm) and rit = r(i+1)t + Q(xit;wi) − Q(x(i+1)t;wi) for 1 ≤ i ≤ m − 1.

C. Solution of the Incentive-Design Problem

Now that the team solution {xit, rit)}m
i=1 has been computed, we turn to finding an incentive policy γ satisfying (8)

and (9). Note that γ(0) ≡ 0 and γ(xit) = rit for 1 ≤ i ≤ m. Yet from Theorem 1, we know that Fwm(xmt; rmt) =
Fwm(0; 0) = −1 and Fwi(xit; rit) = Fwi(x(i+1)t; r(i+1)t) for 1 ≤ i ≤ m − 1. For the same reason as in the complete
information case, the incentive-design problem for the incomplete information case is not incentive controllable but rather
ε-incentive controllable. An incentive policy β such that the ISP comes arbitrarily close to the team solution can be
achieved by making a small “dip” of γ near the team solution.

First, given the team solution, γ can be determined inductively according to Theorem 1.
Step 1: Start with i = m. Remember that x1t ≥ · · · ≥ xmt ≥ 0. If xmt = 0, decrease i to the next smaller integer

m− 1. Repeat this until for some i, xit > 0. Note that Fwi(x; r) = Fwi(0, 0) = −1 is equivalent to r = Q(x;wi), while
rit = Q(xit;wi). Then we can choose γ(0) = 0, γ(x) ≥ Q(x;wi) for 0 < x < xit and γ(xit) = rit.

Step 2: Now start with j = i − 1 and repeatedly decrease j by 1 until for some j, xjt > xit. Note that Fwj (x; r) =
Fwj (xit; rit) is equivalent to r = Q(x;wj) − 1 − Fwj (xit; rit), while Fwj (xjt; rjt) = Fwj (xit; rit) from Theorem 1
indicates that rjt = Q(xjt;wj) − 1 − Fwj (xit; rit). Therefore, we can choose γ(x) ≥ Q(x;wj) − 1 − Fwj (xit; rit) for
xit < x < xjt and γ(xjt) = rjt.

Step 3: Let i take the value of j and repeat Step 2 until j reaches 1. Finally, for x1t < x < 1, let γ(x) ≥ Q(x;w1) −
1 − Fw1(x1t; r1t) and we obtain γ that satisfies (8) and (9).

Next, to guarantee the uniqueness of the optimal solution, we may revise γ in the following way to obtain β. Remember
that in the above process to determine γ, we have a number i after Step 1 such that xkt = 0 for i < k ≤ m and
xit > 0. Correspondingly, here we let β(xkt) = rkt − εk, where εk = 0 for i < k ≤ m and εi > 0 for k = i. Then,
Fwi(xit;β(xit)) = −1 + εi > −1. Note that εi should be small enough such that Fwi+1(xit;β(xit)) < −1, which
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can be achieved since Fwi+1(xit, β(xit)) < Fwi(xit, β(xit)). The counterpart of the above Step 2 here is to choose
β(xkt) = rkt − εk, where εk = εi for j < k < i and εj > εi for k = j. Then, Fwj (xjt;β(xjt)) = Fwj (xit; rit) + εj >
Fwj (xit;β(xit)). On the other hand, εj should be small enough such that Fwj+1(xjt;β(xjt)) < Fwj+1(xit;β(xit)). Again,
repeat this as repeating Step 2 until j reaches 1.

In conclusion, for such an incentive policy β, where β(xit) = rit − εi for 1 ≤ i ≤ m and β = γ at all other points,
a user of the type wi, 1 ≤ i ≤ m, will choose (xit, rit − εi) and as a result the ISP achieves an expected profit of
∑m

j=1 qj(r
jt − εj) = E[rt] − ∑m

j=1 εj . By making εi’s small enough, the ISP can come arbitrarily close to the team
solution.

D. Numerical Examples

We next illustrate the team solution and the solution of the incentive-design problem by numerical examples. Suppose
that there are m = 5 types with equal probabilities for all types. Then E[r] =

∑5
j=1 Q(xj ; vj/5)/5, where v1/5 := w1

and vi/5 = i ∗ wi − (i − 1) ∗ wi−1 for 2 ≤ i ≤ 5.
Example 1: Take w1 to w5 to be 60, 40, 30, 24 and 20, respectively. Then,

v1/5 = 60 > v2/5 = 20 > v3/5 = 10 > v4/5 = 6 > v5/5 = 4 > 1.

From the case (iv b) in the discussion on team solution, we know immediately that xit = α(vi/5) for 1 ≤ i ≤ 5. The
numerical results for the team solution are shown in Table I.

TABLE I

TEAM SOLUTION FOR EXAMPLE 1

i 1 2 3 4 5

w
i 60 40 30 24 20

α
−1(xit) 60 20 10 6 4

x
it 0.8256 0.7078 0.6 0.5 0.4069

r
it 12.1782 10.4873 8.8017 7.3655 6.1421

F
wi (xit; rit) 18.2024 7.4985 2.7984 0.3656 −1

E[rt] 8.9949

Now that the team solution is known, the first graph in Figure 3 depicts the derivation of γ. The five dashed curves, from
the least steep one to the most steep one, stand for Fw5(x; r) = −1 (r = Q(x;w5)) and Fwi(x; r) = Fwi(x(i+1)t; r(i+1)t)
(r = Q(x;wi)− 1−Fwi(x(i+1)t; r(i+1)t)) for i = 4, 3, 2, 1, respectively. Then γ can be any function that coincides with
the solid curve at (0, 0) and (xit, rit)’s but is above it (including along the solid curve) at all other points. Note that the
feasible set is the region below the solid curve. From our previous analysis, we know that an incentive β making the ISP
come arbitrarily close to optimal would be β = γ except that β(xit) = rit − εi, where εi = 0 for xit = 0, εi = εj for
xit = xjt, εi > εj for xit > xjt, and εi’s are small enough.

Example 2: Now take w1 to w5 to be 70, 40, 33, 25 and 20, respectively. Then, v1/5 to v5/5 become 70, 10, 19, 1 and
0, respectively. First, 1 ≥ v4/5 > v5/5. Thus, from the case (ii) in the discussion on team solution, x4t = x5t = 0 and
the problem is reduced to 3 types. Next, observe that v2/5 < v3/5. As a result, x2t = x3t from (i), so that we can further
convert it to 2 types. Compute v2,3/5 = (3w3 − w1)/2 = 14.5. Since v1/5 > v2,3/5 > 1, finally from (iv b) we obtain
that x1t = α(v1/5) > x2t = x3t = α(v2,3/5). The results are listed in Table II.

The solution of the incentive-design problem for this example is illustrated in the second graph in Figure 3. Similarly
as in Example 1, γ can be any function above the solid curve that is the upper boundary of the feasible set. Then, β can
be obtained by making a small “dip” below (x2t, r2t) = (x3t, r3t) and (x1t, r1t) (ε1 > ε2 = ε3 > 0).

TABLE II

TEAM SOLUTION FOR EXAMPLE 2

i 1 2 3 4 5

w
i 70 40 33 25 20

α
−1(xit) 70 14.5 14.5 1 0

x
it 0.8380 0.6615 0.6615 0 0

r
it 18.6491 14.8005 14.8005 0 0

F
wi (xit; rit) 17.7856 2.5540 −1 −1 −1

E[rt] 9.6500
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Fig. 3. Graphical illustration of incentives for the incomplete information case

V. DISCUSSION AND EXTENSIONS

A. Incentive-Design Problem Formulation for Multiple Users

Now consider the case with a single ISP and n users. User i’s net utility, 1 ≤ i ≤ n, is

Fwi
(xi, x−i; ri) := wi log(1 + xi) −

1

n − xi − x−i
− ri,

where x−i :=
∑n

j=1 xj − xi.
1) Complete Information: Suppose that wi’s are known to the ISP. Then the team solution is

{(xt
i, r

t
i)}n

i=1 = arg max
{xi≥0,

∑

n

j=1
xj<n,ri≥0 }n

i=1

n
∑

j=1

rj ,

s. t. Fwi
(xi, x−i; ri) ≥ − 1

n − x−i
, 1 ≤ i ≤ n.

The incentive-design problem is to find {γi}n
i=1 such that for 1 ≤ i ≤ n,

arg max
0≤xi<n−xt

−i

Fwi
(xi, x

t
−i; γi(xi)) = xt

i,

γi(x
t
i) = rt

i ,

and it is restricted by γi(0) ≡ 0.
2) Incomplete Information: For this case, suppose that the ISP only knows that the users’ types are independent of

each other and for User i, 1 ≤ i ≤ n, wi = wji

i w.p. qji

i ∈ (0, 1), ji = 1, · · · ,mi, where
∑mi

ji=1 qji

i = 1. Thus, w.p.

qj1
1 ×· · ·×qjn

n , (w1, · · · , wn) = (wj1
1 , · · · , wjn

n ). Let ~J := (j1, · · · , jn)T , which can take the values from ~Jf := (1, · · · , 1)T

to ~Jl := (m1, · · · ,mn)T . Then the team solution is

{

{(x ~Jt
i , r

~Jt
i )}n

i=1

} ~Jl

~J= ~Jf

= arg max
{

{x
~J
i
≥0,

∑

n

j=1
x

~J
j

<n,r
~J
i
≥0}n

i=1

}~Jl

~J=~Jf







E





n
∑

j=1

rj



 =

~Jl
∑

~J= ~Jf

qj1
1 × · · · × qjn

n

n
∑

j=1

r
~J
j







,

s. t. F
w

ji
i

(x
~J
i , x

~J
−i; r

~J
i ) ≥ − 1

n − x
~J
−i

, 1 ≤ i ≤ n, ~J = ~Jf , · · · , ~Jl,

F
w

ji
i

(x
~J
i , x

~J
−i; r

~J
i ) ≥ F

w
ji
i

(x
~J ′

i , x
~J
−i; r

~J ′

i ), 1 ≤ i ≤ n, ~J, ~J ′ = ~Jf , · · · , ~Jl, ~J 6= ~J ′.

The incentive-design problem is to find {γi}n
i=1 such that for 1 ≤ i ≤ n and ~J = ~Jf , · · · , ~Jl,

arg max
0≤xi<n−x

~Jt
−i

F
w

ji
i

(xi, x
~Jt
−i; γi(xi)) = x

~Jt
i ,

γi(x
~Jt
i ) = r

~Jt
i ,

and it is restricted by γi(0) ≡ 0.
Incentive controllability is similarly defined for the multiple user case as for the single user case. We are currently

extending our previous analysis to solve for the solutions of the incentive-design problems formulated above for multiple
users.
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B. Concluding Remarks

This paper has studied Internet pricing from the perspective of the ISP by introducing dynamic pricing policies. We
have verified the ε-incentive controllability for the single ISP-single user case, and obtained ε-optimal incentive policies.
Current work involves extensions to the multiple user case, and further to the multiple ISP case. Another extension is to
the scenario where the distribution of user types is not discrete but continuous. These results provide useful guidelines for
the ISPs on the deployment of their pricing policies.

APPENDIX I
PROOF OF LOCAL MAXIMALITY OF QUADRATIC INCENTIVE UNDER COMPLETE INFORMATION

Recall that w = (1 + xt)/(1 − xt)2 and a2 = −rt/(xt)2, where rt = Q(xt;w). Therefore,

d2

dx2
Fw(x; γ(x))|x=xt =

∂2Q(x;w)

∂x2
|x=xt − d2γ(x)

dx2
|x=xt = − w

(1 + xt)2
− 2

(1 − xt)3
− 2a2

= −2xt + (xt)2 − (xt)3 + 2(xt)4 − 2(1 + xt)2(1 − xt) log(1 + xt)

(xt)2(1 + xt)(1 − xt)3
.

Since 0 < xt < 1 for w > 1, showing that the above quantity is negative is equivalent to proving

2xt + (xt)2 − (xt)3 + 2(xt)4 > 2(1 + xt)2(1 − xt) log(1 + xt).

This is true because (i) if xt = 0, both sides attain 0 and have zero first-order derivatives, and (ii) for 0 < xt < 1, the
first-order derivative of the left-hand side is larger than that of the right-hand side, or equivalently,

2xt − (xt)2 + 8(xt)3 > [2 − 4xt − 6(xt)2] log(1 + xt),

which holds since the left-hand side is always positive, while for 1
3 ≤ xt < 1, the right-hand side is nonpositive, and for

0 < xt < 1
3 ,

2xt − (xt)2 + 8(xt)3 > [2 − 4xt − 6(xt)2]xt > [2 − 4xt − 6(xt)2] log(1 + xt).

APPENDIX II
ADDITIONAL PROOF FOR PROPOSITION 1

A. Proof of ∂3η(x;w)
∂x3 < 0 for 0 < x < 1

The second-order derivative of η(x;w) can be written as

∂2η(x;w)

∂x2
= w

[

− 1

x2
+

1

(1 + x)2
− 1

x2(1 + x)
+

2 log(1 + x)

x3

]

− 2

(1 − x)3
.

Note that −2/(1− x)3 is strictly decreasing. Thus, it is sufficient to show that the quantity in the brackets has a negative
first-order derivative, i.e.,

2x(1 + x)3 + 4x(1 + x)2 + x2(1 + x) − 2x4 − 6(1 + x)3 log(1 + x)

x4(1 + x)3
< 0.

Now we compare 2x(1 + x)3 + 4x(1 + x)2 + x2(1 + x) with 2x4 + 6(1 + x)3 log(1 + x). It can easily be verified
that the third-order derivative of the former function is always less than that of the latter one. Hence, the second-order
derivatives, which assume the same value at x = 0, follow the same order. So do the first-order derivatives. Finally, we
have 2x(1 + x)3 + 4x(1 + x)2 + x2(1 + x) < 2x4 + 6(1 + x)3 log(1 + x), and it is concluded that ∂3η(x;w)

∂x3 < 0 for
0 < x < 1.

B. Proof of w − 1 < a1

Recall that

w − 1 =
1 + xt

(1 − xt)2
− 1 and a1 =

2rt

xt
=

2

xt
Q(xt;

1 + xt

(1 − xt)2
).

Consider them as functions of xt. Then they assume the same value at 0+, and the first-order derivative of w − 1 is less
than that of a1. Since 0 < xt < 1, so we must have w − 1 < a1.
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