Homework 4: Graph

Code due: Tue., Nov. 5 at 11:59 PM (via GSC)
Self-eval due: Thu., Nov. 7 at 11:59 PM (on GSC)

You may work on your own or with one (1) partner.

For this assignment you will implement an API for weighted, undirected graphs; then you will use this API to implement a depth-first search.

In graph.rkt I've supplied headers for the methods and function that you'll need to write, along with a few suggested helpers and some code to help you with testing.

Orientation

The graph for this assignment is a weighted, undirected graph whose vertices are natural numbers. In particular, a graph of n vertices will have vertices numbered $0,1, \ldots, n-1$. This makes it straightforward to associate information with each vertex in a vector of size n via direct addressing.

Before defining our signature for weighted, undirected graphs, we define contracts for describing several of the arguments and results involved.

- A vertex is represented as a natural number:

```
let Vertex? = nat?
```

- We use singly-linked lists of vertices, made out of a cons struct with car and cdr fields as in the previous homework:
let VertexList? = Cons.ListC[Vertex?]
The Cons.ListC contract (from import cons) optionally takes a contract for the list element, which lets us express that a VertexList? is indeed a linked list of Vertex?es.
- A weight is a real number, and an optional weight is either a weight or None:

[^0]```
let Weight? = AndC(num?, NotC(OrC(inf, -inf, nan)))
let OptWeight? = OrC(Weight?, NoneC)
```

- A weighted edge is represented by a struct containing two vertices and a weight; we use lists of those as well:

```
struct WEdge:
 let u: Vertex?
 let v: Vertex?
 let w: Weight?
let WEdgeList? = Cons.ListC[WEdge?]
```

Note that WEdge is used in the result of one of the graph methods (below), but is not intended, and probably not well-suited, for use internally in your graph representation.

Now we can give our signature for weighted, undirected graphs as a DSSL2 interface with five operations:

```
interface WU_GRAPH:
 def len(self) -> nat?
 def set_edge(self, u: Vertex?,
 v: Vertex?, w: OptWeight?) -> NoneC
 def get_edge(self, u: Vertex?, v: Vertex?) -> OptWeight?
 def get_adjacent(self, v: Vertex?) -> VertexList?
 def get_all_edges(self) -> WEdgeList?
```

The operations behave as follows:

- The len method returns the number of vertices in the graph, that is, $n$.
- The set_edge method adds an edge of weight w between vertices vand $u$ when $w$ is a number; if the edge already exists, its weight is updated to w . If w is None then the edge, if it exists, is removed, and if absent remains absent.

Note that because the edges of undirected graphs are symmetric, the order of $u$ and $v$ mustn't matter; this implies that set_edge must maintain an invariant.

- The get_edge method returns the weight of the edge between vertices $u$ and $v$ if it exists, or None if it does not.
- The get_adjacent method returns a list of all vertices that are directly connected to vertex v . The order of the list is unspecified.
- The get_all_edges method returns a list of all edges in the graph, in unspecified order ${ }^{2}$. For each edge in the graph, it includes only one direction in the list. For example, if a graph has an edge of weight 10 between vertices 1 and 3 , then the resulting list will contain either WEdge (1, 3, 10) or $\operatorname{WEdge}(3,1,10)$, but not both.

One easy way to avoid redundant edges is to only add an edge e to the list when e.u <= e.v.

## Your task

## Representation

Your job is to implement the WuGraph class, which must satisfy the WU_GRAPH interface. To do so, you must choose a representation, as either an adjacency matrix or adjacency lists. Whichever you choose, you will need to add some field(s) to the WuGraph class and fill in the __init__ method to initialize them.

1. Define the field(s) for your representation at the top of the WuGraph class.
2. Complete the definition of the __init__ method. The WuGraph constructor takes one natural number argument, which is the number of vertices desired in the new graph.

## Graph operations

Once you've defined your graph representation, you will have to implement the five graph API methods as specified by the WU_GRAPH interface. Their required time complexities depend on your choice of representation.

[^1]
## Adjacency matrix representation

3. Implement the len method, which must be $\mathcal{O}(1)$ time.
4. Implement the set_edge method, which must be $\mathcal{O}(1)$ time.
5. Implement the get_edge method, which must be $\mathcal{O}(1)$ time.
6. Implement the get_adjacent method, which must be $\mathcal{O}(V)$ time.
7. Implement the get_all_edges method, which must be $\mathcal{O}\left(V^{2}\right)$ time.

## Adjacency lists representation

The running times of several adjacency list operations depend on $d$, the degree of the graph.
3. Implement the len method, which must be $\mathcal{O}(1)$ time.
4. Implement the set_edge method, which must be $\mathcal{O}(d)$ time.
5. Implement the get_edge method, which must be $\mathcal{O}(d)$ time.
6. Implement the get_adjacent method, which must be $\mathcal{O}(d)$ time.
7. Implement the get_all_edges method, which must be $\mathcal{O}(V+E)$ time.

## Depth-first search

Once you have your graph implementation working, there's one more thing to implement, a depth-first search function:
dfs : WU_GRAPH Vertex [Vertex -> None] -> None
This function takes a graph $g$, a vertex $u$, and a visitor function $f$. It performs a depth-first search starting at $u$. As it encounters each vertex $v$ for the first time, it calls $f(v)$. The visitor function is called on each reachable vertex exactly once, in a valid depth-first order.
8. Implement the dfs function, which must have the optimal asymptotic time complexity: $\mathcal{O}(V+E)$ if using adjacency lists, or $\mathcal{O}\left(V^{2}\right)$ if using an adjacency matrix.

In order to help you test dfs, we have provided a function dfs_to_list that uses it to construct a list of vertices in DFS-order. It should be relatively easy to write assert_eq tests for dfs_to_list once you know in what order your dfs function visits vertices.

## Testing

To facilitate testing, we have provided you two example graphs. Function EX_GRAPH1 returns the four-vertex graph on the left, function EX_GRAPH2 returns the six-vertex graph on the right:


The starter code also includes functions sort_vertices and sort_edges, which sort lists of vertices and WEdges, respectively. This is useful for testing because several methods produce lists in an unspecified order.

## Deliverables

Your completed "graph.rkt," containing

- working definition of the WuGraph class,
- a working definition of the dfs function, and
- sufficient tests to be confident of your code's correctness.


[^0]:    ${ }^{1}$ https://bit.ly/2P74yWC

[^1]:    ${ }^{2}$ This means any order you like.

