
Structs, Vectors, and Classes in DSSL2

CS 214, Fall 2019

Welcome to DSSL2

• A close relative of Python
• But with data structures taken out!

I (Otherwise, where’s the fun?)

• And with data structure building blocks added in
• Built on top of Racket

I But quite different from Racket/BSL/ISL/…

2

Welcome to DSSL2

• Code organized in statements, functions, and classes
I Similar to C++

• Variables and data are mutable (= assignment)
I Similar to C++

• No explicit pointers (arrows) or memory management
I Similar to the 111 teaching languages

• No explicit types
I Similar to the 111 teaching languages

• (These also apply to Python)

3

DSSL2 expressions

3 + 5 # comments start with ‘#’ and continue

to the end of the line

6 * (3 + 5)

1 + 'hello'.len()

4

DSSL2 expressions

3 + 5 # comments start with ‘#’ and continue

to the end of the line

6 * (3 + 5)

1 + 'hello'.len()

4

DSSL2 statements

let x = 5 # variable definitions use ‘let’ —

this minor difference from Python

helps avoid ambiguity and thus bugs

println(8 * x) # an expression can also be a statement

if condition: # indentation matters! just like Python

do_some_stuff()

else:

do_other_stuff(x, y, z)

5

DSSL2 statements

let x = 5 # variable definitions use ‘let’ —

this minor difference from Python

helps avoid ambiguity and thus bugs

println(8 * x) # an expression can also be a statement

if condition: # indentation matters! just like Python

do_some_stuff()

else:

do_other_stuff(x, y, z)

5

DSSL2 statements

let x = 5 # variable definitions use ‘let’ —

this minor difference from Python

helps avoid ambiguity and thus bugs

println(8 * x) # an expression can also be a statement

if condition: # indentation matters! just like Python

do_some_stuff()

else:

do_other_stuff(x, y, z)

5

DSSL2 functions

hypotenuse: Number Number -> Number

Finds the length of the hypotenuse.

def hypotenuse(a, b):

(a * a + b * b).sqrt()

fact: Natural -> Natural

Computes the factorial of `n`.

def fact(n):

if n == 0:

1

else:

n * fact(n - 1)

6

DSSL2 functions

hypotenuse: Number Number -> Number

Finds the length of the hypotenuse.

def hypotenuse(a, b):

(a * a + b * b).sqrt()

fact: Natural -> Natural

Computes the factorial of `n`.

def fact(n):

if n == 0:

1

else:

n * fact(n - 1)

6

DSSL2 functions

hypotenuse: Number Number -> Number

Finds the length of the hypotenuse.

def hypotenuse(a, b):

(a * a + b * b).sqrt()

fact: Natural -> Natural

Computes the factorial of `n`.

def fact(n):

if n == 0:

1

else:

n * fact(n - 1)

6

DSSL2 assertions and test cases

An assertion errors (and stops your program) if it fails:

fails if fact(5) != 120:

assert_eq fact(5), 120

To run multiple tests, put your assertions in test blocks. When
an error happens in a test block, it counts it as a failed test and
continues running the program after the test block:

test 'fact works':

assert_eq fact(3), 6

assert_eq fact(5), 120

7

DSSL2 assertions and test cases

An assertion errors (and stops your program) if it fails:

fails if fact(5) != 120:

assert_eq fact(5), 120

To run multiple tests, put your assertions in test blocks. When
an error happens in a test block, it counts it as a failed test and
continues running the program after the test block:

test 'fact works':

assert_eq fact(3), 6

assert_eq fact(5), 120

7

DSSL2 programs
Every DSSL2 program starts with a #lang line, followed by any
number of statements:

#lang dssl2

let CM_PER_INCH = 2.54

Converts centimeters to inches.

def cm_to_inch(cm):

cm / CM_PER_INCH

Converts inches to centimeters.

def inch_to_cm(inches):

inches * CM_PER_INCH

test 'round trip':

assert_eq inch_to_cm(cm_to_inch(17)), 17

assert_eq cm_to_inch(inch_to_cm(17)), 17

8

Vectors

• One of the key building blocks of data structures:

0
0

1
1

1
2

2
3

4
4

7
5

13
6

24
7

44
8

82
9

• Literal vector notation:
[0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

9

Vector operations

let v = [0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

you can give names to test cases

and get nicer error messages than bare assumptions

test 'vector basics':

assert_eq v[3], 2

assert_eq v[6], 13

test 'vector set':

v[6] = 23

assert_eq v[6], 23

10

Vector operations

let v = [0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

you can give names to test cases

and get nicer error messages than bare assumptions

test 'vector basics':

assert_eq v[3], 2

assert_eq v[6], 13

test 'vector set':

v[6] = 23

assert_eq v[6], 23

10

Vector operations

let v = [0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

you can give names to test cases

and get nicer error messages than bare assumptions

test 'vector basics':

assert_eq v[3], 2

assert_eq v[6], 13

test 'vector set':

v[6] = 23

assert_eq v[6], 23

10

What if I want a really big vector?

• Vector comprehensions allow you to create a vector using
a “description” rather than literal elements

[0; 1000000]

• Creates a vector with 1000000 elements, all 0s
I Much nicer than typing the whole thing!

• Supports more complicated descriptions too, see the docs

11

Example: average

average: Vector<Number> -> Number

Averages the elements of a non-empty vector.

def average(vec):

sum(vec) / vec.len()

sum: Vector<Number> -> Number

Sums the elements of a non-empty vector.

def sum(vec):

let result = 0

for-each loop, like in C++

`v` becomes each element of the vector, in turn

for v in vec:

result = result + v

return result

12

Discuss with your Neighbor

• Discuss what you already know about DSSL2
• And what is still mysterious
• In 2 minutes, let’s hear your questions

13

Structs

• Another key building block

x 12
y -5

x 0
y 0

x 3
y 4

struct posn:

let x

let y

different ways to construct

posn { x: 12, y: -5 }

posn { x: 0, y: 0 }

posn(3, 4)

14

Working with structs

struct posn:

let x

let y

let p = posn(3, 4)

assert posn?(p) # asserts that the result is true

assert_eq p.x, 3

assert_eq p.y, 4 # uses `.` notation, like C++

p.x = 6

assert_eq p.x, 6

assert_eq p.y, 4

15

Structs and vectors

struct employee:

let id; let name; let position

let employees = [employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6)]

A l i c e B o b C a r o l D a v e

id 928
name

position 4

id 1089
name

position 6

id 14
name

position 6

id 546
name

position 6

0 1 2 3

16

Working with structs and vectors

struct employee:

let id; let name; let position

let employees = [

employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6),

]

QUIZ. Suppose we want to find out Carol’s position:

employees[2].position

QUIZ: How can we give her a promotion (from 6 to 5)?

employees[2].position = 5

17

Working with structs and vectors

struct employee:

let id; let name; let position

let employees = [

employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6),

]

QUIZ. Suppose we want to find out Carol’s position:

employees[2].position

QUIZ: How can we give her a promotion (from 6 to 5)?

employees[2].position = 5

17

Working with structs and vectors

struct employee:

let id; let name; let position

let employees = [

employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6),

]

QUIZ. Suppose we want to find out Carol’s position:

employees[2].position

QUIZ: How can we give her a promotion (from 6 to 5)?

employees[2].position = 5

17

Generalizing

promote_employee : Vector<Employee> Natural ->

Decrements the position of the `index`th employee.

def promote_employee(employees, index):

let emp = employees[index]

`emp` is not a copy! so we modify the original

emp.position = emp.position - 1

18

Classes

• Structs and vectors are enough to represent any data
• But data structures = representation + operations

I Classes allow us to combine the two

• Classes ≈ structs with methods
I A code organization machanism to group data and

operations together

19

Our first class example

class Posn:

let x # fields: initialized by

let y # the constructor

def __init__(self, x, y): # constructor: method

self.x = x # with a special name

self.y = y

def get_x(self): self.x # fields are private

`return` is optional

def get_y(self): self.y # `self` = receiver

def distance(self, other): # some other method

need to use getter for `other`

let dx = self.x - other.get_x()

let dy = self.y - other.get_y()

(dx * dx + dy * dy).sqrt()

20

Using the Posn class

let p = Posn(3, 4)

assert_eq p.get_x(), 3

assert_eq p.get_y(), 4

assert_error p.x # fields are private

let q = Posn(0, 0);

assert_eq p.distance(q), 5

21

Discuss with your Neighbor

• Now that we’ve seen more of DSSL2, let’s repeat the
exercise

• In 2 minutes, let’s hear your questions

22

Codewalk

Let’s look at a rational number class

23

For more DSSL2 information

See the DSSL2 reference (or help desk)

24

Next time: The humble linked list

	Next time: The humble linked list

