Binary Search Trees

CS 214, Fall 2019

A data structure for dictionaries

There are several data structures that we can use to represent dictionaries:

- A list of keys-value pairs
- A hash table
- An array of key-value pairs
- A sorted array of key-value pairs

Let's consider the last one

A sorted array dictionary

Easy to lookup

Input: a dictionary array array and a key key
Output: a value, or nothing
start $\leftarrow 0$;
limit \leftarrow the length of array;
while start < limit do
mid \leftarrow the average of start and limit;
if key < array [mid]. key then
limit \leftarrow mid
else if key > array [mid]. Key then
start \leftarrow mid +1
else
return array[mid].val
end
end
return null

Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same algorithm works, but it fits on less screen space.)

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 17 & 19 & 56 & 75 & 77 & 90 \\
\hline
\end{array}
$$

- Suppose we want 75 . We'll track where it might be with a area

Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same algorithm works, but it fits on less screen space.)

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 17 & 19 & 56 & 75 & 77 & 90 \\
\hline
\end{array}
$$

- Suppose we want 75 . We'll track where it might be with a area
- Initially, the element could be anywhere in the array

Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same algorithm works, but it fits on less screen space.)

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 17 & 19 & 56 & 75 & 77 & 90 \\
\hline
\end{array}
$$

- Suppose we want 75 . We'll track where it might be with a area
- Initially, the element could be anywhere in the array
- At each iteration, limit - start is cut in half

Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same algorithm works, but it fits on less screen space.)

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 17 & 19 & 56 & 75 & 77 & 90 \\
\hline
\end{array}
$$

- Suppose we want 75 . We'll track where it might be with a area
- Initially, the element could be anywhere in the array
- At each iteration, limit - start is cut in half
- This can happen at most $\log _{2} n$ times

Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same algorithm works, but it fits on less screen space.)

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 17 & 19 & 56 & 75 & 77 & 90 \\
\hline
\end{array}
$$

- Suppose we want 75 . We'll track where it might be with a area
- Initially, the element could be anywhere in the array
- At each iteration, limit - start is cut in half
- This can happen at most $\log _{2} n$ times
- Hence, $\mathcal{O}(\log n)$

Difficult to insert

- Inserting into an array requires shifting elements out of the way

Difficult to insert

- Inserting into an array requires shifting elements out of the way
- There may be as many as n elements to move

Difficult to insert

- Inserting into an array requires shifting elements out of the way
- There may be as many as n elements to move
- Hence insertion is $\mathcal{O}(n)$

Enter the BST

A binary search tree stores elements in order in a linked data structure

- In order means we can binary search
- Linked means we can easily insert new elements

BST example

BST lookup algorithm

Input: a BST root root and a key key
Output: a value, or nothing
curr \leftarrow root;
while curr is not null do
| if key < curr.key then
curr \leftarrow curr.left
else if key > curr.key then curr \leftarrow curr.right
else
return curr.val
end
end
return null

Complexity of BST lookup

It's binary search, right?

Binary search, again

Input: a dictionary array array and a key key
Output: a value, or nothing
start $\leftarrow 0$;
limit \leftarrow the length of array;
while start < limit do
mid \leftarrow the average of start and limit;
if key < array [mid]. key then
limit \leftarrow mid
else if key > array [mid]. Key then
start \leftarrow mid +1
else
return array[mid].val
end
end
return null

Complexity of BST lookup

Complexity of BST lookup

Complexity of BST lookup

Complexity of BST lookup

Complexity of BST lookup, take 2

BST insert algorithm (recursive)

```
Function BstInsert(node, key, value) is
    Output: the updated BST
    if node is null then
                node \(\leftarrow\) a new node with key, value, and no children
    else if key < node.key then
                node.left \(\leftarrow\) BstInsert(node.left, key, value)
    else if key > node.key then
                node.right \(\leftarrow\) BstInsert(node.right, key, value)
    else
            node.val \(=\) value
    end
    return node
end
```


BST insert algorithm (with pointers)

Input: a BST root root, a key key, and a value value Output: the updated BST
curr \leftarrow the address of root; while the value addressed by curr is not null do
| if key < curr.key then
curr \leftarrow the address of curr.left
else if key > curr.key then curr \leftarrow the address of curr.right
else curr.val \leftarrow value; return
end
end
newNode \leftarrow
a new node with key, value, and null for both children; the value addressed by curr \leftarrow newNode

Complexity of BST insert

- First do a search - $\mathcal{O}(\log n)$

Complexity of BST insert

- First do a search $-\mathcal{O}(\log n)$
- If we find the key, replace the value - $\mathcal{O}(1)$

Complexity of BST insert

- First do a search - $\mathcal{O}(\log n)$
- If we find the key, replace the value - $\mathcal{O}(1)$
- If not, add a new leaf where we hit bottom - $\mathcal{O}(1)$

Complexity of BST insert

- First do a search $-\mathcal{O}(\log n)$
- If we find the key, replace the value - $\mathcal{O}(1)$
- If not, add a new leaf where we hit bottom - $\mathcal{O}(1)$
- Hence, $\mathcal{O}(\log n)$

BST delete

Next time: hashing and hash tables

