
Graph Search

CS 214, Fall 2019



Questions we might ask about graphs

• Is there a path from v to u?
• What’s the shortest path from v to u?
• Are there any cycles?

2



Graph search: basic idea

To answer whether there’s a path (among other things), we can
use:

• Depth-first search (DFS): go as far as you can along a
path, then go back and try anything you haven’t tried yet
• Breadth-first search (BFS): explore all the successors of a

vertex before exploring their successors in turn

3



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



DFS example

f

b
c

a

d

e

g

4



Recursive DFS algorithm (one source)

Procedure DFS(graph, start)is
seen← new array (same size as graph, filled with false);
Procedure Visit(v)is

if not seen[v] then
seen[v]← true;
for u in Successors(graph, v) do

Visit(u)
end

end
end
Visit(start);
return seen

end

5



Recursive DFS algorithm (one source, lifted)

Procedure Visit(graph, seen, v)is
if not seen[v] then

seen[v]← true;
for u in Successors(graph, v) do

Visit(graph, seen, u)
end

end
end
Procedure DFS(graph, start)is

seen← new array (same size as graph, filled with false);
Visit(graph, seen, start);
return seen

end

6



Recursive DFS algorithm (1 src., builds tree)

Procedure DFS(graph, start)is
preds← new array (same size as graph, filled with false);
Procedure Visit(pred, v)is

if not preds[v] then
preds[v]← pred;
for u in Successors(graph, v) do

Visit(v, u)
end

end
end
Visit(true, start);
return preds

end

7



Recursive DFS algorithm (full)

Procedure DFS(graph)is
preds← new array (same size as graph, filled with false);
Procedure Visit(pred, v)is

if not preds[v] then
preds[v]← pred;
for u in Successors(graph, v) do

Visit(v, u)
end

end
end
for v in Vertices(graph) do

Visit(true, v)
end
return preds

end

8



Iterative DFS algorithm

Procedure DFS(graph, start)is
preds← new array (same size as graph, filled with false);
todo← new stack;
preds[start]← true;
Push(todo, start);
while todo is not empty do

v ← Pop(todo);
for u in Successors(graph, v) do

if not preds[u] then
preds[u]← v;
Push(todo, u)

end
end

end
return preds

end

9



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



Running DFS on a digraph

a

b
c

d

e

fg

h

tree

back

cross

forward

10



A DFS tree

a

b

c

d

e

f

g h

tree

back

cross

forward

11



DFS for cycle detection
Procedure FindCycle(graph)is

started ← new array (same size as graph, filled with false);
finished ← new array (same size as graph, filled with false);
Procedure Visit(v)is

if not finished[v] then
if started[v] then

we found a cycle!
end
started[v]← true;
for u in Successors(graph, v) do

Visit(u)
end
finished[v]← true;

end
end
for v in Vertices(graph) do

Visit(v)
end

end 12



Breadth-first search
Procedure BFS(graph, start)is

preds← new array (same size as graph, filled with false);
todo← new queue;
preds[start]← true;
Enqueue(todo, start);
while todo is not empty do

v ← Dequeue(todo);
for u in Successors(graph, v) do

if not preds[u] then
preds[u]← v;
Enqueue(todo, u)

end
end

end
return preds

end

13



Running BFS on a digraph

a

b
c

d

e

fg

h

a

14



Running BFS on a digraph

a

b
c

d

e

fg

h

b e h

14



Running BFS on a digraph

a

b
c

d

e

fg

h

e h c

14



Running BFS on a digraph

a

b
c

d

e

fg

h

h c f

14



Running BFS on a digraph

a

b
c

d

e

fg

h

c f

14



Running BFS on a digraph

a

b
c

d

e

fg

h

f d

14



Running BFS on a digraph

a

b
c

d

e

fg

h

d g

14



Running BFS on a digraph

a

b
c

d

e

fg

h

g

14



Running BFS on a digraph

a

b
c

d

e

fg

h

14



Running BFS on a digraph

a

b
c

d

e

fg

h

14



Generic graph search
If todo is a stack we get DFS; if todo is a queue we get BFS:

Procedure Search(graph, start)is
preds← new array (same size as graph, filled with false);
todo← new collection;
preds[start]← true;
Add(todo, start);
while todo is not empty do

v ← Remove(todo);
for u in Successors(graph, v) do

if not preds[u] then
preds[u]← v;
Add(todo, u)

end
end

end
return preds

end
15



Next time: shortest paths


	Next time: shortest paths

