Single-Source Shortest Paths

CS 214, Fall 2019

The problem

Find the shortest path from A to D:

The problem

Find the shortest path from A to D:

Typically generalized as single-source shortest paths (SSSP): find the shortest path to everywhere from A.

Relaxation idea

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

Relaxation idea

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

To "relax" an edge, we consider whether our knowledge thus far, combined that that edge, can improve our knowledge by finding a shorter path

Relaxation idea

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

To "relax" an edge, we consider whether our knowledge thus far, combined that that edge, can improve our knowledge by finding a shorter path

For example, suppose that

- the best known distance to node C is 15 ,
- the best known distance to node D is 4 , and
- there's an edge of weight 5 from D to C.

Relaxation idea

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

To "relax" an edge, we consider whether our knowledge thus far, combined that that edge, can improve our knowledge by finding a shorter path
For example, suppose that

- the best known distance to node C is 15 ,
- the best known distance to node D is 4 , and
- there's an edge of weight 5 from D to C.

Then we update the best known distance to C to be 9 , via D.

Relaxation demonstration

Bellman-Ford algorithm summary

Solves:
Main idea:
Time complexity: $\mathcal{O}(V E)$

The Bellman-Ford algorithm

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred
for every vertex v in graph do
$\left\lvert\, \begin{aligned} & \operatorname{dist}[v] \leftarrow \infty ; \\ & \operatorname{pred}[v] \leftarrow-1\end{aligned}\right.$
end
dist $[$ start $] \leftarrow 0$;
for \mid Vertices (graph) |- 1 iterations do
for every edge (v, u) with weight w in graph do if $\operatorname{dist}[v]+w<\operatorname{dist}[u]$ then
$\operatorname{dist}[u] \leftarrow \operatorname{dist}[v]+w ;$ pred $[u] \leftarrow v$
end
end
end
continued...

Bellman-Ford, continued

At this point we have the answer provided there are no negative-weight cycles. We do one more pass to ensure this is the case:
for every edge (v, u) with weight w in graph do
if dist $[v]+w<\operatorname{dist}[u]$ then
| graph contains a negative cycle!
end
end

Dijkstra's algorithm summary

Solves:
Main idea:
Time complexity: depends

Dijkstra's algorithm summary

Solves:
Main idea:
Time complexity: depends
What's the clever order? Relax the edges coming out of the nearest vertex, then repeat

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm demonstration

Dijkstra's algorithm (original)

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred
for every vertex v in graph do
$\mid \operatorname{dist}[v] \leftarrow \infty ; \operatorname{pred}[v] \leftarrow-1$;
end
dist $[$ start $] \leftarrow 0$;
todo \leftarrow the set of vertices in graph;
while todo is not empty do
$v \leftarrow$ remove the element of todo with minimal dist $[v]$; for every outgoing edge (v, u) with weight w do if $\operatorname{dist}[v]+w<\operatorname{dist}[u]$ then
$\operatorname{dist}[u] \leftarrow \operatorname{dist}[v]+w ;$
$\operatorname{pred}[u] \leftarrow v$
end
end
end

Priority Queue ADT

Looks like: 〈 2:g 5:i 5:b 17:c 89:g 〈
struct key_value:
let key
let value
interface PRIORITY_QUEUE:
def is_empty(self) -> bool?
def insert(self, key: num?, value: AnyC) -> VoidC def peek_min(self) -> key_value? def remove_min(self) -> key_value?

Behavior:

- Keeps key-value pairs sorted by key, so that
- remove_min can find and remove the pair with the smallest key

Dijkstra's algorithm with priority queue (1/2)

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred
for every vertex v in graph do
$\mid \operatorname{dist}[v] \leftarrow \infty ; \operatorname{pred}[v] \leftarrow-1$;
end
dist[start] $\leftarrow 0$;
done \leftarrow empty vertex set;
todo \leftarrow empty priority queue;
Insert (todo, 0, start);

Dijkstra's algorithm with priority queue (2/2)

while todo is not empty do

```
    \(\left(\_, v\right) \leftarrow\) RemoveMin(todo);
    if \(v \notin\) done then
        done \(\leftarrow\) done \(\cup\{v\}\);
        for every outgoing edge \((v, u)\) with weight \(w\) do
            if \(\operatorname{dist}[v]+w<\operatorname{dist}[u]\) then
                        \(\operatorname{dist}[u] \leftarrow \operatorname{dist}[v]+w\);
        \(\operatorname{pred}[u] \leftarrow v\);
        Insert(todo, dist[u], u)
        end
        end
    end
end
```


Complexity of Dijkstra's algorithm

- Relax every edge once, for $\mathcal{O}(E)$
- For every edge, we (might) do an insert, which takes how long?

Complexity of Dijkstra's algorithm

- Relax every edge once, for $\mathcal{O}(E)$
- For every edge, we (might) do an insert, which takes how long? Call it $T_{\text {in }}$.
- For every edge, we (might) do an remove_min, which takes how long? Call it $T_{r m}$.

Complexity of Dijkstra's algorithm

- Relax every edge once, for $\mathcal{O}(E)$
- For every edge, we (might) do an insert, which takes how long? Call it $T_{\text {in }}$.
- For every edge, we (might) do an remove_min, which takes how long? Call it $T_{r m}$.
- Then Dijkstra's algorithm is $\mathcal{O}\left(E\left(T_{i n}+T_{r m}\right)\right)$.

Next: making remove_min and insert fast

