$$b+n \triangleq b \underbrace{+1+1+\dots+1}_{n}$$

$$b+n \triangleq b + 1 + 1 + \dots + 1$$

$$b \times n \triangleq \underbrace{b+b+\dots+b}_{n}$$

$$b+n \triangleq b + 1 + 1 + \dots + 1$$

$$b \times n \triangleq b + b + \dots + b$$

$$b^{n} \triangleq b \times b \times \dots \times b$$

$$n$$

$$b+n \triangleq b + 1 + 1 + \dots + 1$$

$$b \times n \triangleq b + b + \dots + b$$

$$b^{n} \triangleq b \times b \times \dots \times b$$

$$n^{n} b \triangleq b^{b} \cdot \frac{b}{n}$$

It's the fourth hyperoperation.

$$b+n \triangleq b + 1 + 1 + \dots + 1$$

$$b \times n \triangleq b + b + \dots + b$$

$$b^{n} \triangleq b \times b \times \dots \times b$$

$$n^{n} b \triangleq b^{b}$$

Exponentiation associates to the right, so for example ⁴b means $b^{(b^{(b^b)})}$, not $((b^b)^b)^b$.

It's the fourth hyperoperation.

$$b+n \triangleq b + 1 + 1 + \dots + 1$$

$$b \times n \triangleq b + b + \dots + b$$

$$b^{n} \triangleq b \times b \times \dots \times b$$

$$n^{n} b \triangleq b^{b}$$

Exponentiation *associates to the right,* so for example ⁴*b* means $b^{(b^{(b^b)})}$, not $((b^b)^b)^b$. Why?

It's the fourth hyperoperation.

$$b+n \triangleq b + 1 + 1 + \dots + 1$$

$$b \times n \triangleq b + b + \dots + b$$

$$b^{n} \triangleq b \times b \times \dots \times b$$

$$n^{n} b \triangleq b^{b}$$

Exponentiation *associates to the right,* so for example ⁴*b* means $b^{(b^{(b^b)})}$, not $((b^b)^b)^b$. Why? Which is bigger?

Q: How fast does it grow?

Q: How fast does it grow? A: Real fast.

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse?

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

- Q: How fast does it grow? A: Real fast.
- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other?

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

Q: Is one better than the other? A: Maybe, you decide:

If ..., then ..., and also b+n=a $b \times n = a$ $b^n = a$ $^nb = a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

Q: Is one better than the other? A: Maybe, you decide:

If ... then ..., and also b+n=a b=a-n n=a-b $b \times n=a$ $b^n = a$ $^nb=a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

Q: Is one better than the other? A: Maybe, you decide:

If ... then ..., and also b+n=a b=a-n n=a-b $b \times n=a$ b=a/n n=a/b $b^n=a$ $^nb=a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
b+n=a	b = a - n	n = a - b
$b \times n = a$	b = a/n	n = a/b
$b^n = a$	$b = \sqrt[n]{a}$	$n = \log_b a$
ⁿ b = a		

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
b+n=a	b = a - n	n = a - b
$b \times n = a$	b = a/n	n = a/b
$b^n = a$	$b = \sqrt[n]{a}$	$n = \log_b a$
$^{n}b = a$	$b = \sqrt[n]{a}_4$	

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
b+n=a	b = a - n	n = a - b
$b \times n = a$	b = a/n	n = a/b
$b^n = a$	$b=\sqrt[n]{a}$	<i>n</i> = log _b <i>a</i>
$^{n}b = a$	$\textit{b}=\sqrt[n]{\pmb{a}_4}$	$n = \log_b^* a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
b+n=a	b = a - n	n = a - b
$b \times n = a$	b = a/n	n = a/b
$b^n = a$	$b = \sqrt[n]{a_3}$	<i>n</i> = log _b <i>a</i>
$^{n}b = a$	$b=\sqrt[n]{a_4}$	$n = \log_b^* a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
b+n=a	b = a - n	n = a - b
$b \times n = a$	b = a/n	n = a/b
$b^n = a$	$b = \sqrt[n]{a_3}$	$n = \log_b^3 a$
$^{n}b = a$	$b=\sqrt[n]{a_4}$	$n = \log_b^* a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
b+n=a	$b = \sqrt[n]{a_1}$	$n = \log_b^1 a$
$b \times n = a$	$b = \sqrt[n]{a}_2$	$n = \log_b^2 a$
$b^n = a$	$b = \sqrt[n]{a_3}$	$n = \log_b^3 a$
$^{n}b = a$	$b = \sqrt[n]{a_4}$	$n = \log_b^4 a$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

lf	then,	and also
1 + n = a	$b = \sqrt[n]{a_0}$	$n = \log_b^0 a$
b+n=a	$b = \sqrt[n]{a_1}$	$n = \log_b^1 a$
$b \times n = a$	$\pmb{b}=\sqrt[n]{\pmb{a}_2}$	$n = \log_b^2 a$
$b^n = a$	$b = \sqrt[n]{a_3}$	$n = \log_b^3 a$
ⁿ b = a	$b = \sqrt[n]{a_4}$	$n = \log_{b}^{\overline{4}} a$

Q: How fast does it grow? A: Real fast.

- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other? A: Maybe, you decide:

Q: How fast does it grow? A: Real fast.Q: Does it have an inverse? A: Yeah, 2—which do you want?Q: Is one better than the other? A: One we care about:

If ... then ..., and also b+n=a b=a-n n=a-b $b \times n=a$ b=a/n n=a/b $b^n=a$ $b=\sqrt[n]{a}$ $n=\log_b a$ ${}^nb=a$ $b=\sqrt[n]{a}$ $n=\log_b a$ ${}^nb=a$ $b=\sqrt[n]{a}$ $n=\log_b a$ $\log_b^* a = \begin{cases} 0 & \text{if } a \le 1; \\ 1+\log_b^* \log_b a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \implies n = \log_{b}^{*}a$$
$$\log_{b}^{*}a = \begin{cases} 0 & \text{if } a \le 1;\\ 1 + \log_{b}^{*} \log_{b} a & \text{otherwise.} \end{cases}$$

Q: Why should we care?

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star}\log_{b}a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star}\log_{b}a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2-which do you want?

Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star}\log_{b}a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star} \log_{b}a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star} \log_{b}a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star} \log_{b}a & \text{otherwise.} \end{cases}$

Q: How fast does it grow? A: Real fast.

- Q: Does it have an inverse? A: Yeah, 2-which do you want?
- Q: Is one better than the other? A: One we care about:

$${}^{n}b = a \Rightarrow n = \log_{b}^{\star}a$$

 $\log_{b}^{\star}a = \begin{cases} 0 & \text{if } a \leq 1; \\ 1 + \log_{b}^{\star} \log_{b}a & \text{otherwise.} \end{cases}$

Union-Find

CS 214, Fall 2019

We're going to use the chalkboard from here on, but if you want union-find slides to read on your own then I suggest <u>these slides</u> from Robert Sedgewick and Kevin Wayne's algorithms & data structures course at Princeton University. I've included a selection of those same union-find slides as the rest of this PDF, and the rest of their original lectures may be found <u>here</u>.

Union-find abstractions

- Objects.
- Disjoint sets of objects.
- Find queries: are two objects in the same set?
- Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: p and g are connected if they have the same id.

i	0	1	2	3	4	5	6	7	8	9	5 and 6 are connected
id[i]	0	1	9	9	9	6	6	7	8	9	2, 3, 4, and 9 are connected

Quick-find [eager approach]

Data structure.

- Integer array ia[] of size N.
- Interpretation: p and q are connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected id[i] 0 1 9 9 9 6 6 7 8 9 2, 3, 4, and 9 are connected

Find. Check if p and q have the same id.

```
id[3] = 9; id[6] = 6
3 and 6 not connected
```

Union. To merge components containing p and q, change all entries with id[p] to id[q].

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 6 6 6 6 6 7 8 6

problem: many values can change

Quick-find example

3-4	0	1	2	4	4	5	6	7	8	9
4-9	0	1	2	9	9	5	6	7	8	9
8-0	0	1	2	9	9	5	6	7	0	9
2-3	0	1	9	9	9	5	6	7	0	9
5-6	0	1	9	9	9	6	6	7	0	9
5-9	0	1	9	9	9	9	9	7	0	9
7-3	0	1	9	9	9	9	9	9	0	9
4-8	0	1	0	0	0	0	0	0	0	0
6-1	1	1	1	1	1	1	1	1	1	1
		pro	blei	n: n	nany	/ va	lues	ca	n ch	ange

Quick-find is too slow

Quick-find algorithm may take ~MN steps to process M union commands on N objects

Rough standard (for now).

- 10⁹ operations per second.
- 10⁹ words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10¹⁰ edges connecting 10⁹ nodes.
- Quick-find takes more than 10¹⁹ operations.
- 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!

🖉 a truism (roughly) since 1950 !

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9

3's root is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

i 0 1 2 3 4 5 6 7 8 9 id[i] 0 1 9 4 9 6 6 7 8 9

Find. Check if p and q have the same root.

 $3\,{}^{\prime}s$ root is 9; 5's root is 6 3 and 5 are not connected

Union. Set the id of q's root to the id of p's root.

Quick-union example

3-4	0	1	2	4	4	5	6	7	8	9
4-9	0	1	2	4	9	5	6	7	8	9
8-0	0	1	2	4	9	5	6	7	0	9
2-3	0	1	9	4	9	5	6	7	0	9
5-6	0	1	9	4	9	6	6	7	0	9
5-9	0	1	9	4	9	6	9	7	0	9
7-3	0	1	9	4	9	6	9	9	0	9
4-8	0	1	9	4	9	6	9	9	0	0
6-1	1	1	9	4	9	6	9	9	0	0

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N steps)
- Need to do find to do union

algorithm	union	find				
Quick-find	Ν	1				
Quick-union	N*	N 🔶	— worst case			
* includes cost of find						

Improvement 1: Weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.

Weighted quick-union example

Weighted quick-union: Java implementation

Java implementation.

- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

- merge smaller tree into larger tree
- update the sz[] array.

```
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }</pre>
```

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of ${\tt p}$ and ${\tt q}.$
- Union: takes constant time, given roots.
- Fact: depth is at most lg N. [needs proof]

Data Structure	Union	Find
Quick-find	Ν	1
Quick-union	N *	Ν
Weighted QU	lg N *	lg N

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

Improvement 2: Path compression

Path compression. Just after computing the root of i, set the id of each examined node to root(i).

Weighted quick-union with path compression

Path compression.

- Standard implementation: add second loop to root() to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression

3-4	0 1 2 3 3 5 6 7 8 9	0 1 2 3 5 6 7 8 9
4-9	0 1 2 3 3 5 6 7 8 3	() () () () () () () () () () () () () (
8-0	8 1 2 3 3 5 6 7 8 3	
2-3	8 1 3 3 3 5 6 7 8 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5-6	8 1 3 3 3 5 5 7 8 3	
5-9	8 1 3 3 3 3 5 7 8 3	
7-3	8 1 3 3 3 3 5 3 8 3	6 0 2 4 6 6
4-8	8 1 3 3 3 3 5 3 3 3	
6-1	8 3 3 3 3 3 3 3 3 3 3	
		8 2 4 5 7 9 0 6
	no problem: trees stay VERY flat	0 1 2 4 6 6 0 9

WQUPC performance

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N + M \lg^* N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!

number of times needed to take the lg of a number until reaching 1

Linear algorithm?

Amazing fact:

• In theory, no linear linking strategy exists

Summary

Algorithm	Worst-case time
Quick-find	MN
Quick-union	MN
Weighted QU	N + M log N
Path compression	N + M log N
Weighted + path	(M + N) lg* N

M union-find ops on a set of N objects

Ex. Huge practical problem.

- 10¹⁰ edges connecting 10⁹ nodes.
- WQUPC reduces time from 3,000 years to 1 minute.
- Supercomputer won't help much. WQUPC on Java cell phone beats QF on supercomputer!
- Good algorithm makes solution possible.

Bottom line.

WQUPC makes it possible to solve problems that could not otherwise be addressed