Have you heard of tetration?

It's the fourth hyperoperation.

Have you heard of tetration?

It's the fourth hyperoperation.

$$
b+n \triangleq b \underbrace{+1+1+\cdots+1}_{n}
$$

Have you heard of tetration?

It's the fourth hyperoperation.

$$
\begin{aligned}
& b+n \triangleq b \underbrace{b+1+1+\cdots+1}_{n} \\
& b \times n \triangleq \underbrace{b+b+\cdots+b}_{n}
\end{aligned}
$$

Have you heard of tetration?

It's the fourth hyperoperation.

$$
\begin{aligned}
b+n & \triangleq b \underbrace{b+1+1+\cdots+1}_{n} \\
b \times n & \triangleq \underbrace{b+b+\cdots+b}_{n} \\
b^{n} & \triangleq \underbrace{b \times b \times \cdots \times b}_{n}
\end{aligned}
$$

Have you heard of tetration?

It's the fourth hyperoperation.

$$
\begin{aligned}
b+n & \triangleq b \underbrace{b+1+1+\cdots+1}_{n} \\
b \times n & \triangleq \underbrace{b+b+\cdots+b}_{n} \\
b^{n} & \triangleq \underbrace{b \times b \times \cdots \times b}_{n} \\
n^{n} b & \triangleq \underbrace{b^{b}}_{n}
\end{aligned}
$$

Have you heard of tetration?

It's the fourth hyperoperation.

$$
\begin{aligned}
b+n & \triangleq b \underbrace{b+1+1+\cdots+1}_{n} \\
b \times n & \triangleq \underbrace{b+b+\cdots+b}_{n} \\
b^{n} & \triangleq \underbrace{b \times b \times \cdots \times b}_{n} \\
{ }^{n} b & \triangleq \underbrace{b^{b}}_{n}
\end{aligned}
$$

Exponentiation associates to the right, so for example ${ }^{4} b$ means $b^{\left(b^{\left(b^{b}\right)}\right)}, \operatorname{not}\left(\left(b^{b}\right)^{b}\right)^{b}$.

Have you heard of tetration?

It's the fourth hyperoperation.

$$
\begin{aligned}
b+n & \triangleq b \underbrace{b+1+1+\cdots+1}_{n} \\
b \times n & \triangleq \underbrace{b+b+\cdots+b}_{n} \\
b^{n} & \triangleq \underbrace{b \times b \times \cdots \times b}_{n} \\
{ }^{n} b & \triangleq \underbrace{b^{b}}_{n}
\end{aligned}
$$

Exponentiation associates to the right, so for example ${ }^{4} b$ means $b^{\left(b^{\left(b^{b}\right)}\right)}$, not $\left(\left(b^{b}\right)^{b}\right)^{b}$. Why?

Have you heard of tetration?

It's the fourth hyperoperation.

$$
\begin{aligned}
b+n & \triangleq b \underbrace{b+1+1+\cdots+1}_{n} \\
b \times n & \triangleq \underbrace{b+b+\cdots+b}_{n} \\
b^{n} & \triangleq \underbrace{b \times b \times \cdots \times b}_{n} \\
n^{n} b & \triangleq \underbrace{b^{b}}_{n}
\end{aligned}
$$

Exponentiation associates to the right, so for example ${ }^{4} b$ means $b^{\left(b^{\left(b^{b}\right)}\right)}$, not $\left(\left(b^{b}\right)^{b}\right)^{b}$. Why? Which is bigger?

Tetration FAQ

Q: How fast does it grow?

Tetration FAQ

Q: How fast does it grow? A: Real fast.

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{aligned}
& \text { If } \quad \ldots \quad \text { then } \ldots, \text { and also } \ldots . \\
& b+n=a \\
& b \times n=a \\
& b^{n}=a \\
& n_{b}=a
\end{aligned}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{lll}
\text { If } \quad \ldots & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=a-n & n=a-b \\
b \times n=a & & \\
b^{n}=a & & \\
n^{n} b=a & &
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{lcc}
\text { If } \ldots & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=a-n & n=a-b \\
b \times n=a & b=a / n & n=a / b \\
b^{n}=a & & \\
n^{n} b=a & &
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{ccc}
\text { If } \ldots & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=a-n & n=a-b \\
b \times n=a & b=a / n & n=a / b \\
b^{n}=a & b=\sqrt[n]{a} & n=\log _{b} a \\
n^{n} b=a & &
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{lcc}
\text { If } & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=a-n & n=a-b \\
b \times n=a & b=a / n & n=a / b \\
b^{n}=a & b=\sqrt[n]{a} & n=\log _{b} a \\
n^{n} b=a & b=\sqrt[n]{a_{4}} &
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{lcc}
\text { If } \ldots & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=a-n & n=a-b \\
b \times n=a & b=a / n & n=a / b \\
b^{n}=a & b=\sqrt[n]{a} & n=\log _{b} a \\
n_{b}=a & b=\sqrt[n]{a_{4}} & n=\log _{b}^{\star} a
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{llc}
\text { If } & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=a-n & n=a-b \\
b \times n=a & b=a / n & n=a / b \\
b^{n}=a & b=\sqrt[n]{a_{3}} & n=\log _{b} a \\
n^{n} b=a & b=\sqrt[n]{a_{4}} & n=\log _{b}^{\star} a
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{aligned}
& \text { If } \ldots \text { then ..., and also.... } \\
& b+n=a \quad b=a-n \quad n=a-b \\
& b \times n=a \quad b=a / n \quad n=a / b \\
& b^{n}=a \quad b=\sqrt[n]{a_{3}} \quad n=\log _{b}^{3} a \\
& { }^{n} b=a \quad b=\sqrt[n]{a_{4}} \quad n=\log _{b}^{\star} a
\end{aligned}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{ccc}
\text { If } \ldots & \text { then } \ldots, & \text { and also } \ldots . \\
b+n=a & b=\sqrt[n]{a_{1}} & n=\log _{b}^{1} a \\
b \times n=a & b=\sqrt[n]{a_{2}} & n=\log _{b}^{2} a \\
b^{n}=a & b=\sqrt[n]{a_{3}} & n=\log _{b}^{3} a \\
n_{b}=a & b=\sqrt[n]{a_{4}} & n=\log _{b}^{4} a
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

$$
\begin{array}{ccc}
\text { If } \ldots & \text { then } \ldots, & \text { and also } \ldots . \\
1+n=a & b-\sqrt[n]{a_{0}} & n=\log _{b}^{0} a \\
b+n=a & b=\sqrt[n]{a_{1}} & n=\log _{b}^{1} a \\
b \times n=a & b=\sqrt[n]{a_{2}} & n=\log _{b}^{2} a \\
b^{n}=a & b=\sqrt[n]{a_{3}} & n=\log _{b}^{3} a \\
n^{3} b=a & b=\sqrt[n]{a_{4}} & n=\log _{b}^{4} a
\end{array}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

If $\quad \ldots$	then \ldots,	and also \ldots.
$H_{0}(b, n)=a$	$b-\sqrt[n]{a_{0}}$	$n=\log _{b}^{0} a$
$H_{1}(b, n)=a$	$b=\sqrt[n]{a_{1}}$	$n=\log _{b}^{1} a$
$H_{2}(b, n)=a$	$b=\sqrt[n]{a_{2}}$	$n=\log _{b}^{2} a$
$H_{3}(b, n)=a$	$b=\sqrt[n]{a_{3}}$	$n=\log _{b}^{3} a$
$H_{4}(b, n)=a$	$b=\sqrt[n]{a_{4}}$	$n=\log _{b}^{4} a$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{aligned}
& \text { If } \ldots \\
& \begin{array}{ccc}
b+n=a & \text { then } \ldots, & \text { and also } \ldots \\
b \times n=a & b=a / n & n=a-b \\
b^{n}=a & b=\sqrt[n]{a} & n=\log _{b} a \\
n_{b} & =a & b=\sqrt[n]{a_{4}} \\
n=\log _{b}^{\star} a
\end{array} \\
& \log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 ; \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{aligned}
$$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 ; \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

n	0	1	2	3	4	5	6
n_{2}	1	2					

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

n	0	1	2	3	4	5	6
n_{2}	1	2	4				

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

n	0	1	2	3	4	5	6
n_{2}	1	2	4	16			

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

n	0	1	2	3	4	5	6
n_{2}	1	2	4	16	65,536		

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

n	0	1	2	3	4	5	6
n_{2}	1	2	4	16	65,536	$2^{65,536}$	

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

n	0	1	2	3	4	5	6
${ }^{n} 2$	1	2	4	16	65,536	$2^{65,536}$	$\approx 2^{2.0035 \times 10^{19,728}}$

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: One we care about:

$$
\begin{gathered}
{ }^{n} b=a \Rightarrow n=\log _{b}^{\star} a \\
\log _{b}^{\star} a= \begin{cases}0 & \text { if } a \leq 1 ; \\
1+\log _{b}^{\star} \log _{b} a & \text { otherwise. }\end{cases}
\end{gathered}
$$

Q: Why should we care? A: Its inverse grows as slow as its self grows fast, and tetration grows real fast:

$a \leq$	1	2	4	16	65,536	$2^{65,536}$	$2^{2.0035 \times 10^{19,728}}$
$\lg ^{\star} a$	0	1	2	3	4	5	6

Union-Find

CS 214, Fall 2019

> We're going to use the chalkboard from here on, but if you want union-find slides to read on your own then I suggest these slides from Robert Sedgewick and Kevin Wayne's algorithms \& data structures course at Princeton University. l've included a selection of those same union-find slides as the rest of this PDF, and the rest of their original lectures may be found here.

Union-find abstractions

- Objects.
- Disjoint sets of objects.
- Find queries: are two objects in the same set?
- Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: p and q are connected if they have the same id.

```
cllllllllll
```


Quick-find [eager approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: p and q are connected if they have the same id.

$$
\begin{array}{ccccccccccc}
\text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { id[i] } & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

5 and 6 are connected
$2,3,4$, and 9 are connected

Find. Check if p and q have the same id.

Union. To merge components containing p and q , change all entries with id[p] to id[q].

union of 3 and 6
$2,3,4,5,6$, and 9 are connected

Quick-find example

```
3-4 0
4-9 0
```



```
5-6 0
5-9 
```



```
4-8}0
6-1 
problem: many values can change
```

```
(0) (1) (2) (4) (5) (ㄷ) (7) (8) (9)
```

(0) (1) (2) (4) (5) (ㄷ) (7) (8) (9)
(1) (1) (2) ${ }^{(3)}{ }^{9}{ }^{(4)}$ (5) (5) (7) (8)
(1) (1) (2) ${ }^{(3)}{ }^{9}{ }^{(4)}$ (5) (5) (7) (8)
(1) (2) (3) ${ }^{8}$ (4) (5) (6) (7) (8)
(1) (2) (3) ${ }^{8}$ (4) (5) (6) (7) (8)
(1) ${ }_{(2)}^{8}$ (3) (4) (5) (5) (7)
(1) ${ }_{(2)}^{8}$ (3) (4) (5) (5) (7)
(1) (3) (3) (4) (5) (3) (8)
(1) (3) (3) (4) (5) (3) (8)
(1) (3) (4) (5) (6) (3) (3)
(1) (3) (4) (5) (6) (3) (3)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) (3)(4) (5) (6) (7) (8)(9)
(1) (3)(4) (5) (6) (7) (8)(9)
(1)-(2) (3) (4) (5) (6) (7) (8-(9)

```
(1)-(2) (3) (4) (5) (6) (7) (8-(9)
```

Quick-find is too slow
Quick-find algorithm may take ~MN steps to process M union commands on N objects

Rough standard (for now).

- 10^{9} operations per second.
- 10^{9} words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10^{10} edges connecting 10^{9} nodes.
- Quick-find takes more than 10^{19} operations.
- 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be $10 x$ as fast.
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes $10 x$ as long!

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]].

$$
\begin{array}{ccccccccccc}
\text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
i d[i] & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

3 's root is $9 ; 5$'s root is 6

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

```
cllllllllll
```

(0)

(6) 7
(8)

3's root is 9; 5's root is 6
3 and 5 are not connected

Union. Set the id of q's root to the id of p's root.

Quick-union example

$$
\begin{array}{lllllllllll}
3-4 & 0 & 1 & 2 & 4 & 4 & 5 & 6 & 7 & 8 & 9 \\
4-9 & 0 & 1 & 2 & 4 & 9 & 5 & 6 & 7 & 8 & 9 \\
8-0 & 0 & 1 & 2 & 4 & 9 & 5 & 6 & 7 & 0 & 9 \\
2-3 & 0 & 1 & 9 & 4 & 9 & 5 & 6 & 7 & 0 & 9 \\
5-6 & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 0 & 9 \\
5-9 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 7 & 0 & 9 \\
7-3 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 9 \\
4-8 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 0 \\
4-1 & 1 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 0
\end{array}
$$

Quick-union is also too slow
Quick-find defect.

- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N steps)
- Need to do find to do union

algorithm	union find	
Quick-find	N	1
Quick-union	N^{\star}	$\mathrm{N} \longleftarrow$ worst case
* includes cost of find		

Improvement 1: Weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.
size

Weighted quick-union example

```
3-4 0
4-9 0
8-0 8 8 1 2 2 3 3 5 6 7 7 8 3
2-3
5-6 8
5-9
7-3 8
4-8
6-1
no problem: trees stay flat
\(\square\)
(1) (1) (2) (3) (4) (6) (7) (3) (9)
(1) (1) (2) (4) \(^{3}\) (9) (5) (6) (7) (8)
(8) (1) (2) \(\left.{ }^{3}\right)^{3}(5)\) (5) (3)
```



```
no problem: trees stay flat (1) (1) (4) (5) (6)
```


Weighted quick-union: Java implementation

Java implementation.

- Almost identical to quick-union.
- Maintain extra array sz[] to count number of elements in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

- merge smaller tree into larger tree
- update the sz[] array.

```
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }
```


Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q .
- Union: takes constant time, given roots.
- Fact: depth is at most $\lg N$. [needs proof]

Data Structure	Union	Find
Quick-find	N	1
Quick-union	N^{*}	N
Weighted QU	$\lg \mathrm{N}^{*}$	$\lg \mathrm{~N}$

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

Improvement 2: Path compression

Path compression. Just after computing the root of i, set the id of each examined node to root (i).

Weighted quick-union with path compression

Path compression.

- Standard implementation: add second loop to root () to set the id of each examined node to the root.
- Simpler one-pass variant: make every other node in path point to its grandparent.

```
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

 only one extra line of code!
 In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression

```
3-4 0
```



```
2-3
5-6 8
5-9
7-3 8
```



```
6-1 
no problem: trees stay VERY flat
```

\qquad

```
(0) (1) (2) (3) (3) (3) (7) (3) (4)
(1) (1) (2) (4)(9) (5) (3) (7) (8)
    (8) (1) (2) (4) (3) (5) (5) (2)
    (8) (1) (2) (4) (9) (5) (6) (2)
    ((1) (2) (4) (5) (%)
    (8) (1) (4) (5) (4)
    (8) (1) (2) (4) (%)
    (8)(4) (5), (1) (1)
(8)(1)(2) (4) (5)(6) (7)(9)
```


WQUPC performance

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N+M \lg * N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!
number of times needed to take
the \lg of a number until reaching 1

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

N	$\lg ^{\star} \mathrm{N}$
1	0
2	1
4	2
16	3
65536	4
265536	5

Amazing fact:

- In theory, no linear linking strategy exists

Summary

Algorithm	Worst-case time
Quick-find	$M N$
Quick-union	$M N$
Weighted QU	$N+M \log N$
Path compression	$N+M \log N$
Weighted + path	$(M+N) \lg { }^{\star} N$
M union-find ops on a set of N objects	

Ex. Huge practical problem.

- 10^{10} edges connecting 10^{9} nodes.
- WQUPC reduces time from 3,000 years to 1 minute.
- Supercomputer won't help much.
- Good algorithm makes solution possible.

Bottom line.
WQUPC makes it possible to solve problems that could not otherwise be addressed

