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A self-balancing BST

Random binary search trees are very likely to be balanced
Self-balancing trees are guaranteed to be balanced
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Balanced search tree survey



AVL trees

Due to: Georgy Adelson-Velsky & Evgenii Landis (1962)
Main idea: Maintain a balance factor giving the difference
between each node’s subtrees’ heights
Local invariant: Balance factor between -1 and 1, maintained
via rotations
Global invariant: Tree is approximately height-balanced
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2–3 trees

Due to: John Hopcroft (1970)
Main idea: 2-nodes have one element and two children;
3-nodes have two elements and three children
Local invariant: All subtrees of a node have the same height
Global invariant: Every leaf is at the same depth
Advantage: Faster insertions, slower lookups (compared to
AVL)
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B-trees

Due to: Rudolf Bayer & Ed McCreight (1971)
Main idea: Generalizaton of 2–3 trees up to k children.
Local invariant: Like 2–3 trees, but allow up to k/2 missing
children.
Global invariant: Every leaf is at the same depth
Use: On-disk databases (or modern memory hierarchies)
Advantage: Larger nodes means fewer disk accesses (or
cache misses)
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2–3–4 trees (a/k/a 2–4 trees)

Due to: Rudolf Bayer (1972)
Main idea: B-tree of order 4.
Why interesting: Isometry of red–black tree
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Red–black trees

Due to: Leonidas J. Guibas & Robert Sedgewick (1978)
Main idea: Every node has an extra bit marking it “red” or
“black”
Local invariant: No red node has a red parent
Global invariant: Equal number of black nodes from root to
every leaf
Advantage: Faster insertions, slower lookups (compared to
AVL); easier representation than 2–3(–4) trees
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Splay trees (randomized or amortized!)

Due to: Daniel Sleator & Robert Tarjan (1985)
Main idea: Cache recently accessed elements near the root of
the tree
Local invariant: Complicated; required amortized analysis
Global invariant: Paths are very likely to be O(log n)
Advantage: Self optimizing; no extra balance data
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AVL trees



Example of an AVL tree

J

F

D

C

G

P

L

N

V

S

Q U

X

+1

-1

0

0

-1

+1

+1

0

-1

0

0 0

0

11



Local invariant maintains global property

• Balance factors are maintained locally
• Never recompute them from scratch
• Yet the whole tree stays reasonably balanced
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AVL insertion

• First do a normal leaf insertion
• Track balance factors on the way back up to the root
• Adjust with rotations as necessary
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AVL insertion example

Let’s insert H:
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Another AVL insertion example

Let’s insert B:
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Maintaining the AVL property

Suppose we have an AVL tree:

B
0

A C
(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0. So if we insert into A or C
and that subtree grows in height, it becomes -1 or 1.
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Maintaining the AVL property

B
+1

D
0A

C E

Right now the balance factor at B is +1.
Suppose we insert into A. What happens to B’s balance factor?

• If no change in A’s height then no change in B’s balance
• If A’s height grows then B’s balance factor goes to 0
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Maintaining the AVL property
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Right now the balance factor at B is +1.
Likewise, suppose we insert into E. What happens to B’s
balance factor?

• If no height change then B’s balance doesn’t change
• If E grows then B’s balance factor becomes +2—not okay!
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The right-right case

If the height of the right-right subtree (E) increases, we get a
situation like this:
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The right-left case

If the height of the right-left subtree (C) increases, we get a
situation like this:
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But this is now the right-right case, which we know how to
handle!
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Maintaining the AVL property

• We’ve seen the right-right and right-left cases
• The left-left and left-right cases are symmetrical
• Deletion is like ordinary BST deletion, with the same

rebalancing cases

See avl.rkt.
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Red–black trees



The red–black tree rules

The rules:

1. Nodes are colored red or black.

2. The root is always black.
3. “Dummy leaves” are black.
4. Every red node has a black parent.
5. For every node, all paths to leaves have the same “black

height.”
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Red–black colorability

5 5 5 5
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Red–black colorability
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Red–black tree insertion

1. Leaf insert, like any other BST

2. Color new node red.
3. If parent is also red (violating rule 4), color parent black

and look for problems further up.
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Next: C and C++
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