
Introduction
EECS 211

Winter 2019



Road map

• What’s it all about?
• Topics
• Policies
• Academic honesty
• How to get help

2



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111) to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale.

We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111) to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111) to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum

(that is, EECS 111) to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111)

to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111) to real, industry-standard
languages and tools.

Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111) to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (1/2)

From the course abstract:

• EECS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
curriculum (that is, EECS 111) to real, industry-standard
languages and tools. Like C11, C++14, the UNIX shell,
Make, and CLion.

• We begin by learning…

3



What EECS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language.

This will help you form
connections between the high-level programming concepts
you learned in EECS 111 and the low-level machine
concepts you will learn in EECS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas. We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



What EECS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language. This will help you form
connections between the high-level programming concepts
you learned in EECS 111 and the low-level machine
concepts you will learn in EECS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas.

We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



What EECS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language. This will help you form
connections between the high-level programming concepts
you learned in EECS 111 and the low-level machine
concepts you will learn in EECS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas. We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



What EECS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language. This will help you form
connections between the high-level programming concepts
you learned in EECS 111 and the low-level machine
concepts you will learn in EECS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas. We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



Topics

• Language basics

: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing

: how we know software works
• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works

• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data

: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors

• The stack and the heap: how data is laid out and managed
in memory

• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors
• The stack and the heap

: how data is laid out and managed
in memory

• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory

• Data abstraction: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction

: using classes to define our own types

5



Topics

• Language basics: expressions, statements, variables,
types, assignment, control structures, functions

• Testing: how we know software works
• Structuring data: structs and vectors
• The stack and the heap: how data is laid out and managed

in memory
• Data abstraction: using classes to define our own types

5



Policies

• There will be a homework assignment due every Thursday

I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams

I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own

I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams

I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner

I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams

I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted

I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams

I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade

I Last two (final project) worth 20% of your grade

• Two exams

I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams

I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams
I Tuesday, February 5

I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams
I Tuesday, February 5
I Tuesday, March 12

I Each worth 15% of your grade
• Mapping of point totals to letter grades is at instructor’s

discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams
I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Policies

• There will be a homework assignment due every Thursday
I Some will be done on your own
I Most will be pair-programmed with an assigned partner
I Late work will not be accepted
I Best six of first seven worth 50% of your grade
I Last two (final project) worth 20% of your grade

• Two exams
I Tuesday, February 5
I Tuesday, March 12
I Each worth 15% of your grade

• Mapping of point totals to letter grades is at instructor’s
discretion

6



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:

I Receive help of any kind on an exam (except from
authorized course staff)

I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow

• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:

I Receive help of any kind on an exam (except from
authorized course staff)

I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)

I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam

I Share (give or receive) homework code with anyone who is
not your official partner

I Obtain code from an outside resource, such as Stack
Overflow

• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner

I Obtain code from an outside resource, such as Stack
Overflow

• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow

• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation
• If unsure about your particular situation, ask the instructor

or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good

I All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation

• If unsure about your particular situation, ask the instructor
or other course staff

7



Academic honesty

In EECS 211, we take cheating very seriously.

• Cheating is when you:
I Receive help of any kind on an exam (except from

authorized course staff)
I Give help of any kind on an exam
I Share (give or receive) homework code with anyone who is

not your official partner
I Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things

I If you don’t write code, you won’t learn; struggle is good
I All cheating will be reported to the relevant dean for

investigation
• If unsure about your particular situation, ask the instructor

or other course staff

7



Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov

Head TAs: German Espinosa, Samuel Hill
Peer TAs: Alex Rhee, Corinne Burger, Elise Lee,

Finley Lau, Jayden Soni, Jordan Zax,
Kevin Qiu, Kieran Bondy, Mario Lizano,
Matt Cheung, Michael Cuevas, Michael Ji,
Paul Farcasanu, Sarah O’Brien

Times and locations and will be listed on the course web
page:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/

• Online. Ask questions on Piazza:
https://piazza.com/northwestern/winter2019/eecs211

8

http://users.eecs.northwestern.edu/~jesse/course/eecs211/
https://piazza.com/northwestern/winter2019/eecs211


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov
Head TAs: German Espinosa, Samuel Hill

Peer TAs: Alex Rhee, Corinne Burger, Elise Lee,
Finley Lau, Jayden Soni, Jordan Zax,
Kevin Qiu, Kieran Bondy, Mario Lizano,
Matt Cheung, Michael Cuevas, Michael Ji,
Paul Farcasanu, Sarah O’Brien

Times and locations and will be listed on the course web
page:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/

• Online. Ask questions on Piazza:
https://piazza.com/northwestern/winter2019/eecs211

8

http://users.eecs.northwestern.edu/~jesse/course/eecs211/
https://piazza.com/northwestern/winter2019/eecs211


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov
Head TAs: German Espinosa, Samuel Hill
Peer TAs: Alex Rhee, Corinne Burger, Elise Lee,

Finley Lau, Jayden Soni, Jordan Zax,
Kevin Qiu, Kieran Bondy, Mario Lizano,
Matt Cheung, Michael Cuevas, Michael Ji,
Paul Farcasanu, Sarah O’Brien

Times and locations and will be listed on the course web
page:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/

• Online. Ask questions on Piazza:
https://piazza.com/northwestern/winter2019/eecs211

8

http://users.eecs.northwestern.edu/~jesse/course/eecs211/
https://piazza.com/northwestern/winter2019/eecs211


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov
Head TAs: German Espinosa, Samuel Hill
Peer TAs: Alex Rhee, Corinne Burger, Elise Lee,

Finley Lau, Jayden Soni, Jordan Zax,
Kevin Qiu, Kieran Bondy, Mario Lizano,
Matt Cheung, Michael Cuevas, Michael Ji,
Paul Farcasanu, Sarah O’Brien

Times and locations and will be listed on the course web
page:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/

• Online. Ask questions on Piazza:
https://piazza.com/northwestern/winter2019/eecs211

8

http://users.eecs.northwestern.edu/~jesse/course/eecs211/
https://piazza.com/northwestern/winter2019/eecs211


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov
Head TAs: German Espinosa, Samuel Hill
Peer TAs: Alex Rhee, Corinne Burger, Elise Lee,

Finley Lau, Jayden Soni, Jordan Zax,
Kevin Qiu, Kieran Bondy, Mario Lizano,
Matt Cheung, Michael Cuevas, Michael Ji,
Paul Farcasanu, Sarah O’Brien

Times and locations and will be listed on the course web
page:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/

• Online. Ask questions on Piazza:
https://piazza.com/northwestern/winter2019/eecs211

8

http://users.eecs.northwestern.edu/~jesse/course/eecs211/
https://piazza.com/northwestern/winter2019/eecs211


Pop quiz!

Suppose each function is called with an arbitrary int value.
Circle all possible outcomes:

C The function cannot be run, because the compiler rejects it
T The function returns true
F The function returns false
A The function causes the program to terminate abnormally

9



Pop quiz!

Suppose each function is called with an arbitrary int value.
Circle all possible outcomes:

C The function cannot be run, because the compiler rejects it
T The function returns true
F The function returns false
A The function causes the program to terminate abnormally

bool f(int z)

{

return false;

}

C T F A

9



Pop quiz!

Suppose each function is called with an arbitrary int value.
Circle all possible outcomes:

C The function cannot be run, because the compiler rejects it
T The function returns true
F The function returns false
A The function causes the program to terminate abnormally

bool f(int z)

{

return false;

}

C T F A

9



Pop quiz!

Suppose each function is called with an arbitrary int value.
Circle all possible outcomes:

C The function cannot be run, because the compiler rejects it
T The function returns true
F The function returns false
A The function causes the program to terminate abnormally

bool f(int z)

{

int y = z / 0;

return false;

}

C T F A

9



Pop quiz!

Suppose each function is called with an arbitrary int value.
Circle all possible outcomes:

C The function cannot be run, because the compiler rejects it
T The function returns true
F The function returns false
A The function causes the program to terminate abnormally

bool f(int z)

{

int y = z / 0;

return false;

}

C T F A

9


