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Abstract

Linear and substructural types are powerful tools, but adding them to standard func-
tional programming languages often means introducing extra annotations and typing ma-
chinery. We propose a lightweight substructural type system design that recasts the struc-
tural rules of weakening and contraction as type classes; we demonstrate this design in a
prototype language, Clamp.

Clamp supports polymorphic substructural types as well as an expressive system of
mutable references. At the same time, it adds little additional overhead to a standard
Damas—-Hindley—Milner type system enriched with type classes. We have established type
safety for the core model and implemented a type checker for Clamp in Haskell.

1 Introduction

Type classes [8, [15] provide a way to constrain types by which operations they support. If the
type class predicate Dup « indicates when assumptions of type « are subject to contraction (du-
plication), and Drop « indicates whether they are subject to weakening (dropping), then linear,
relevant, affine, and unlimited typing disciplines are all enforced by some subset of these classes.
Linear types, then, are types that satisfy neither Dup nor Drop. This idea, suggested in one
author’s dissertation [[12], forms of the basis of the type system for our prototype substructural
programming language Clamp.

The semantics of Clamp are given in terms of a syntactically linear internal language in
which all variables are used exactly once. To copy and discard values in the internal language,
Clamp provides dup and drop operations, which impose the corresponding type class constraints
on their arguments. Thus, in the internal language one might think of dup and drop as functions
with these qualified types:

dup :Va.Dupa = a = a® «
drop : Vaf.Dropa=a — 5 —

Clamp programs are written in an ML-like external language in which weakening and contrac-
tion are implicit, and then elaborated into the internal language through insertion of dups and
drops.

Thus, in the internal language all nonlinear usage must be mediated through the dup and
drop operations. For example, the internal language term Azx. x + z is ill formed because it uses
variable x twice, but the term

Az.let (x1,22) = dup x in z1 + x4

is well typed. Because elaboration into the internal language ensures that the resulting program
is linear, it can then be checked using nearly-standard Damas—Hindley—Milner type reconstruc-
tion [B] with type classes [§, [15]; improper duplication and dropping is indicated by unsatisfiable
type class constraints.
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fst :: Drop b => (a, b) -U> a
fst =\(z, y) -U> =z

constU :: (Dup a, Drop a, Drop b) => a -U> b -U> a
constU = \z -U> \y -U> 2

constL :: Drop b => a -U> b -L> a
constL = \z -U> \y -L> z

Figure 1: Prelude functions with inferred signatures

Contributions. We believe that Clamp offers substructural types with less fuss than many
prior approaches to programmer-facing substructural type systems. Throughout the design,
we leverage standard type class machinery to deal with most of the constraints imposed by
substructural types. The specific contributions in this paper include:

e a type system design with polymorphic substructural types and a type safety theorem (§E),
 a simple system for managing weak and strong references (§@);
e a type checker for Clamp derived directly from a type checker for Haskell (§E)7 and

 a dup-and-drop-insertion algorithm that is in some sense optimal (§E)

1.1 Clamp Basics

In this section, we introduce the Clamp external language, in which dup and drop operations
are implicit. The concrete syntax is borrowed from Haskell, but one prominent difference in
Clamp is that each function type and term must be annotated with one of four substructural
qualifiers: U for unlimited, R for relevant, A for affine, or L for linear.

Three examples of Clamp functions, translated from the Haskell standard prelude, appear
in figure m Their types need not be written explicitly, and are inferred by Clamp’s type checker.

Consider the fst function, which projects the first component of a pair. Because we would
like be able to use library functions any number of times or not at all, we annotate the arrow
in the lambda expression with qualifier U. This annotation determines the function type’s
structural properties—meaning, in this case, that fst satisfies both Dup and Drop. (Note that
this is a property of the function itself, not of how it treats its argument.) Because fst does
not use the second component of the pair, this induces the Drop b constraint on type variable
b. In particular, elaboration into the internal language inserts a drop operation for y to make
the term linear: \(z, y) -U> drop y z. The presence of drop, which disposes of its first
argument and returns its second, causes the Drop type class constraint to be inferred.

Function constU imposes a similar constraint on its second argument, but it also requires the
type of its first argument be unlimited. This is because constU returns an unlimited closure
containing the first argument in its environment. The argument is effectively duplicated or
discarded along with the closure, so it inherits the same structural restrictions. Alternatively,
we can lift this restriction with constL, which returns a linear closure and thus allows the first
argument to be linear.
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e n=x |v|erex]| e[| (e1,e2) | letp (x1,22) =eines | Inle | Inr e (terms)
| case e of Inl 21 — ey; Inr z2 — €2 | new? e | release™ e | swap’? e; with eg

| dup e; as x1,z2 in ey | drop e; in eg

v o= A4xre | Agg [Pl.v | (vi,v2) | Inlo [Inro | €] () (values)
Ti=a | 5Ty | X1 | i +72 | Unit | Ref™7 | VP = 7 (types)
P = (Ki7m,..., K1) (constraints)
rq == s (strong) | w (weak) (reference qualifiers)
aq == U (unlimited) | R (relevant) | A (affine) | L (linear) (arrow qualifiers)
K ::= Dup | Drop (predicate constructors)

Figure 2: Syntax of A\

2 Formalizing the Type System

To validate the soundness of our approach, we have developed A, a core model of the Clamp
internal language. M. is based on System F [7] with a few modifications: variable bindings
are treated linearly, arrows are annotated with qualifiers, and type class constraints [§, [L5]
are added under universal quantifiers. The \.; type system also shares many similarities with
Tov’s *Aps [13]. Unlike the external Clamp language prototype (§E), A provides first-class
polymorphism and does not support type inference.

2.1 Syntax of A\,

The syntax of \.; appears in figure E Most of the language is standard, but notably arrow types
and A terms in Clamp are annotated with an arrow qualifier (aq). These annotations determine
which structural operations a function allows, as well as the corresponding constraints imposed
on the types in its closure environment. Unlike some presentations of linear logic, 45 here
constrains usage of the function itself, not usage of the function’s argument. Type abstractions
specify the type class constraints that they abstract over; their bodies are restricted to values,
so unlike A terms, type abstractions do not need an arrow qualifier.

The new" e and release™ e forms introduce and eliminate mutable references. Each comes
in two flavors depending on its reference qualifier (rq), which records whether the reference
supports strong or merely weak updates. Form swap’ e; with ey provides linear access to
a reference by exchanging its contents for a different value. Store locations (£) appear at run
time but are not written by the programmer.

To incorporate type classes, universal types may include constraints on their type variables.
A constraint P denotes a set of atomic predicate constraints K7, each of which is a predicate
constructor K applied to a type. For the sake of our current analysis, K is either Dup or Drop.

2.2 Term Typing

Variable contexts I' associate variables with types, where each variable appears at most once.
Location contexts (store typings) ¥ associate locations (¢) with their types, and distinguish
between strong and weak locations (not shown); weak locations carry a reference count to track
aliasing.



Type Classes for Lightweight Substructural Types Gan, Tov & Morrisett

VAR TABs
P, PyT;%Fv:T domPp Ca;
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Dup Drop
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P;To,x1:m,20:T1; 50 F eg i 7o PIFDupny P;T'9;3Fes: 1o P IF DropTy

P;T1 4T3 +YF-dup e asxy,z2 ines @ 1 P;T1 4T3+ -drop e ines : 7

Figure 3: Selected A term typing rules

Linearity is enforced in A\, via standard context-splitting. Because I' and ¥ are linear
environments, we need operations to join them. The join operation + is defined only on
pairs of compatible environments, written I'y — I's and ¥; — ¥5. Two variable contexts are
compatible so long as they are disjoint. Two location contexts are compatible if the strong
locations are disjoint and the weak locations in their intersection agree on their types. Joining
variable contexts appends the two sets of bindings together, while joining location contexts also
involves adding the reference counts of any shared weak locations. Contexts are identified up
to permutation.

The term typing judgment (P;T; ¥ I e : 7) assigns term e type 7 under constraint, variable,
and location contexts P, I', and 3. Selected type inference rules appear in figure f. Consistency
conditions X1 — Y5 and I'y — I'y are assumed whenever contexts are combined. The core
language typing rules split and share the linear contexts as needed, but are otherwise a natural
extension of System F to support type class constraints.

We impose a syntactic restriction, similar to Haskell 98’s context reduction restrictions [L1],
on the form of constraints in type schemes introduced by the TABS rule: type abstractions
may only constrain the type variables that they bind, and not compound or unrelated types.
Additionally, in rule ABS, the variable and location contexts are constrained by the function’s
arrow qualifier, to ensure that values captured by the closure support any structural operations
that might be applied to the closure itself; this constraint must be entailed (IF) by the con-
straint context. Here Constrain®?(T'; X) is shorthand for the appropriate set of Dup and Drop
constraints applied to every type appearing in I and X, so that for instance Constrain" imposes
no constraints, while Constrain™ imposes only Dup constraints.

The dup and drop forms constrain the types of their parameters in the expected way, by
requiring their types to be members of the Dup or Drop type classes, respectively (again entailed
by the constraint context).

4
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(Dup a1, Dup az) = Dup (a1 x ag) (Drop a1, Drop ar2) = Drop (a1 X )
(Dup a1, Dup az) = Dup (a1 + a) (Drop a1, Drop ) = Drop (a1 + a2)
() = Dup (g N az) () = Drop(aq N az) () = DupUnit () = Drop Unit

() = Dup (01 —> as) () = Drop (a; - a2) () = Dup (Refa) (Dropa) = Drop(Ref™ )

Figure 4: Dup and Drop instances

2.3 Type Class Instances

The key relation on predicates in our type system is entailment, P; I+ P, which specifies
when one set of type class predicates (P,) is implied by another (P;) in the context of the fixed
background instance environment I''. For example, entailment allows our type system to derive
that Unit x Unit is duplicable because Unit is. Rules for entailment are given by Jones [8] and
adapt naturally to this setting. The substructural essence of the type class system in Clamp is
the set of base Dup and Drop instances I''*, which appears in figure @

The built-in instances specify restrictions on duplicating and dropping values, including
values of compound type. Since pairs and sums contain values that might be copied or ignored
along with the pair or sum value, their instance rules require instances for their components.
Functions impose constraints on their closure environments when they are assigned a qualifier
during term typing, so the instance rules for arrows depend only on the arrow qualifier.

Dealing correctly with references is more subtle, as seen in A\fURAL D] In Clamp, some
references support strong updates, which can change not only the value but the type of a
mutable reference. However it is unsafe to alias a reference cell whose type might change.

In \'¢fURAL “the restrictions on reference types are given in a sizable table, but Dup and Drop
instances make it easy to express these restrictions in Clamp. Clamp classifies references by the
kind of updates they support: strong or weak. This is specified by the rq qualifier in the Ref"?
type. Then most of the table of restrictions in AYRAL can be condensed into the two instances
on the last line of figure Y.

2.4 Type Safety

Here we sketch part of the type safety proof; more details may be found in Gan’s thesis [§].

The bulk of the work goes into proving preservation, and the key lemma in proving preser-
vation is about relating constraints to locations. Intuitively, this lemma says that structural
constraints on a value’s type respect the structural constraints of everything the value contains
or points to, via the variable and location contexts. Syntactic forms like DupI' are used to
denote the set of Dup constraints on all types in I'.

Lemma 1 (Constraints capture locations). Suppose that P;I;3X - v : 7. If P IF Dupt then
P+ (DupX,DupT); if P I+ Dropt then P IF (Drop X, DropT).

Proof. By induction on the typing derivation for v. O

Lemma m is essential to proving the substitution lemma (Lemma E), and the remainder of
the type safety proof is standard.

Lemma 2 (Substitution). If
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o Pl xiry; ¥ e,
e P Y¥okFv: T, and
o Xy — Yo,
then P;T;3 + Yo F {v/z}e: T

Proof. By induction on the typing derivation for e, making use of lemma ﬂ in the A case. [

3 Implementing the Clamp Type Checker

We have implemented a type checker that infers Damas—Hindley—Milner style type schemes
for Clamp terms. The type checker is an extension Jones’s “Typing Haskell in Haskell” type
checker [9]. Its source code may be found at https://github.com/edgan8d/clampcheck.

The process of modifying a Haskell type checker to support Clamp was straightforward
and illustrates one of the strengths of Clamp’s design: It requires only small and orthogonal
additions to a language like Haskell. Besides adding qualifiers to arrow types, we made three
modifications to the Haskell type checker:

1. an elaboration pass that inserts dups and drops,
2. Dup and Drop type classes and instances, and

3. constraints on the free variables in A terms, as in rule ABs.

Inferring dups and drops.  The elaboration pass is the bridge between a concise user-facing
language and leveraging conventional, nonlinear type checking techniques. The pass takes as
input a term with arbitrary variable usages; it inserts the appropriate dup and drop operations
and renames the duplicated copies so that in the resulting term all variable usage is strictly
linear. Structural properties are then enforced by the constraints imposed by dup and drop.

Since different elaborations can lead to different static and dynamic semantics, we have
proven that our algorithm generates an optimal elaboration in two senses:

e It minimizes the program’s live variables at each program point.
o It imposes minimal type class constraints.

Due to space constraints we omit details of the proof of optimality here. The strategy is to
recursively transform a term bottom-up, keeping track of the free variables fv in each recursively
transformed subterm. Dup operations are inserted where the free variables of two subterms of a
multiplicative form (e.g., application, but not branching) are discovered to intersect; drops are
added under binders when the bound variable is not free in its scope, and when a variable used
in one branch (say, of an if-then-else) is not free in the other. To illustrate this, we describe the
algorithm’s behavior on linear pair ® and with & respectively.

infer (e; ® e3) = dup fv(e;) Nfv(ez) in infer(e;) ® infer(es)
infer (e; & e3) = (drop fv(ez) \ fv(ey) in infer(e;)) & (drop fv(ei) \ fv(ez) in infer(es))

Establishing that this algorithm minimizes the set of free variables in each subterm is the
key invariant.

6
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Constraint processing. After the dup and drop insertion pass, type inference can proceed
without needing to count variable usages or split contexts, since the insertion pass has made
every dup and drop operation explicit. With the exception of the extra constraints imposed on
closure environments, inferring types for the Clamp internal language is like inferring types for
Haskell. For the constraint solver, the type classes Dup and Drop and their instances are no
different than any other type class.

Type checking in this system is thus separated into two self-contained steps: first, usage
analysis as performed by elaboration, and second, checking substructural constraints in the
same manner as any other type class system.

4 Related Work

Of the existing work in linear type systems, we will focus here on those which aim at general
purpose linear types with polymorphism. The first linear type systems derive directly from
intuitionistic linear logic, and use the exponential “!” to indicate types that support structural
operations [, 4]. Some later type systems, in order to support parametric polymorphism over
linearity, replace “!” with types composed of a qualifier and a pretype [2, [16], so that all types
in these languages have a form like 97. Similarly, the Clean programming language makes use
of qualifier variables and inequalities to capture a range of substructural polymorphism [B, 14].
Though Clean uses uniqueness rather than linear types, many of its design decisions can be
applied in a linear settings as well.

More recent languages such as Alms [13] and F*° [10] eliminate the notational overhead of
annotating every type with substructural qualifiers by using distinct kinds to separate sub-
structural types. Thus, rather than working with types like “file, a file type in Alms can be
defined to have kind A. Like Clean, Alms is highly polymorphic, but it makes use of compound
qualifier expressions on function types, as well as dependent kinds and subkinding.

Compared to type systems like those of Clean and Alms, we believe Clamp offers advantages
in simplicity and extensibility. Like Alms and F°, Clamp avoids the burden in Clean of anno-
tating every type with a qualifier. Type classes themselves are a general and powerful feature;
for a language that is going to have type classes anyway, the Clamp approach allows adding the
full spectrum of URAL types with little additional complexity. Programmers already familiar
with type classes will be well prepared to understand Clamp-style substructural types.

Further, type classes provide a clean formalism for constraining state-aware datatypes such
as the system of weak and strong mutable references found in Clamp (§R.3). Finally, we
anticipate that user-defined Dup and Drop instances, not yet supported by Clamp, will allow
defining custom destructors and copy constructors, which should enable a variety of resource
management strategies.

However, compared to Alms and Clean, Clamp does not provide as much polymorphism
because each arrow is assigned a concrete qualifier. Consider, for instance, a curry function
in Clamp. Unlike in Alms or Clean, Clamp requires different versions for different desired
structural properties. For instance, two possible type schemes for a curry function are

(Dup a, Drop a) => ((a, b) -U> ¢) -U> a -U> b -U> ¢
and
(Ca, b) -L> ¢) -U> a -L> b -L> c.

We believe that extending Clamp with qualifier variables and type class implications could
increase its expressiveness to the point where curry has a principal typing.
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5 Conclusion and Future Work

Clamp introduces techniques that make it easier and more desirable to add substructural types
to functional programming languages. The external / internal language distinction gives us both
a programmer friendly syntax as well as a simple core theory and type checker. Type classes
also make it easier to express polymorphism across the URAL lattice and encode state aware
types such as strong and weak references. Type classes are an expressive and well-established
language feature, and Clamp shows that they can serve as a good base for substructural types.

In future work, we would like to allow programmers to define their own Dup and Drop
instances, in order to specify custom resource management protocols. Additionally, we expect
that extending the language of qualifiers in Clamp as in Clean or Alms is feasible and would
give Clamp the qualifier polymorphism found in those languages.
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