
A Theory of Substructural Types and Control

Jesse A. Tov Riccardo Pucella
Northeastern University, Boston, Massachusetts, USA

{tov,riccardo}@ccs.neu.edu

Abstract
Exceptions are invaluable for structured error handling in
high-level languages, but they are at odds with linear types.
More generally, control effects may delete or duplicate por-
tions of the stack, which, if we are not careful, can invalidate
all substructural usage guarantees for values on the stack.
We have developed a type-and-effect system that tracks con-
trol effects and ensures that values on the stack are never
wrongly duplicated or dropped. We present the system first
with abstract control effects and prove its soundness. We
then give examples of three instantiations with particular
control effects, including exceptions and delimited contin-
uations, and show that they meet the soundness criteria for
specific control effects.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages

1. Substructural Types and Control
Consider, for example, a language like Scala (Odersky and
Zenger 2005) with mutable references and arithmetic. Here
is a method that takes two integers and divides each by the
other, returning a pair of references to their quotients:

def divRef (z 1: Int, z 2: Int) =
(new Ref(z 1 / z 2), new Ref(z 2 / z 1))

Suppose that references in this language are linear, mean-
ing that they cannot be duplicated, and must be explicitly
deallocated rather than implicitly dropped. In such a lan-
guage, divRef has a memory leak. Most uses of divRef
are harmless, but consider the expression divRef (0, 5). The
method will raise a division-by-zero exception, but (assum-
ing one reasonable evaluation order) only after it has allo-
cated a reference to hold the result of the first division. Be-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

cause the method raises an exception but does not return the
successfully allocated reference, there is no way for recovery
code that catches the exception to free the reference.

In short, exceptions and linear types refuse to get along,
because linear types make promises that exceptions do not
let them keep.

With affine rather than linear types, however, divRef is
not a problem, because such a type system does not require
that references be freed explicitly. In a language with affine
types, implicitly dropping a value is just fine—presumably
there is a garbage collector—and only duplication is forbid-
den. Consider, however, adding delimited continuation oper-
ators such as shift and reset to a language with affine types.
Assuming a method unref that dereferences and deallocates
a reference, we might attempt to define a method squareRef
that takes a reference to an integer, frees it, and returns its
contents, squared:

def twiceTo(x : Int) =
shift { (k : Int⇒ Int)⇒ k(k(x)) }

def squareRef (r : Ref[Int]) =
reset { twiceTo(1) × r .unref () }

Method twiceTo uses shift to capture its continuation up to
the nearest enclosing reset, and it then applies the captured
continuation k twice to the parameter x . Method squareRef
provides the context for twiceTo to capture, which is to free
r and multiply by its contents:

[] × r .unref () .

Since twiceTo uses its continuation twice, the second use of
the continuation will access a dangling pointer that the first
use freed.

Typically, an affine type system works by imposing two
syntactic requirements: a variable of affine type, such as
r , cannot appear twice in its scope (up to branching), and
a function that closes over an affine variable must itself
have an affine type. The squareRef example violates neither
dictum. In the presence of delimited continuations, we need
to add a third rule: that a captured continuation that contains
an affine value must not duplicated. A simple approximation
of this rule is to give all captured continuations an affine
(or in a linear system, linear) type. Such a rule would per-
mit some limited uses of delimited continuations, such as

coroutines, but we will show that this simple rule is overly
restrictive.

Our solution. The memory leak and dangling pointer in
the above examples can be fixed by small changes to the
code. For divRef , it suffices to ensure that both divisions
happen before both allocations:

def divRef (z 1: Int, z 2: Int) = {
val z 12 = z 1 / z 2
val z 21 = z 2 / z 1
(new Ref(z 12), new Ref(z 21))

}

For squareRef , we need the dereferencing to happen once,
outside the reset delimiter:

def squareRef (r : Ref[Int]) = {
val z = r .unref ()
reset { twiceTo(1) × z }

}

Unfortunately, the conservative approximation suggested
above, that all continuations be treated linearly, would still
disallow these repaired examples. We have designed a type-
and-effect system (Lucassen and Gifford 1988) that permits
these two repaired versions of the methods while forbidding
the original, erroneous versions. The key idea is to assign to
each expression a control effect that reflects whether it may
duplicate or drop its continuation, and to prohibit using an
expression in a context that cannot be treated as the control
effect allows. In this paper, we

• exhibit a generic type system for substructural types and
control defined in terms of an unspecified, abstract con-
trol effect (§4);

• give soundness criteria for the abstract control effect and
prove type safety for the generic system, relying on the
soundness of the abstract control effect (§5); and

• demonstrate three concrete instantiations of control ef-
fects and prove that they meet the soundness criteria (§6).

The generic type-and-effect system in §4 is defined as
an extension to λURAL (Ahmed et al. 2005), a substructural
λ calculus, which we review in §3, after discussing related
work in §2.

2. Related Work and Comparison
This work is not the first to relate substructural types to con-
trol operators and control effects. Thielecke (2003) shows
how to use a type-and-effect system to reason about how
expressions treat their continuations. In particular, he gives
a continuation-passing style transform where continuations
that will be used linearly are given a linear type. Thielecke
notes that many useful applications of continuations treat
them linearly. However, his goals are different than ours.
He uses substructural types in his object language to reason

about how continuations will be used in a non-substructural
source language, whereas we want to reason about contin-
uations in order to safely use substructural types. Thielecke
has linear types only in the object language of his translation,
whereas we are interested in linear (and other substructural)
types in the source language.

Other recent work relates substructural logics and control.
Kiselyov and Shan (2007) use a substructural logic to al-
low the “dynamic” control operator shift0 to modify answer
types in a typed setting. Unlike this work, their terms are
structures in substructural logic, not their types. Mazurak
and Zdancewic’s Lolliproc (2010) relates double negation
elimination in classical linear logic to delimited control.

We draw significantly on other work on control operators,
effect systems, and substructural types as well.

Control operators. The literature contains a large vocabu-
lary of control operators, extending back to ISWIM’s J opera-
tor (Landin 1965), Reynolds’s escape (1972), and Scheme’s
call/cc (Clinger 1985). However, for integration in a lan-
guage with substructural types, control operators with delim-
ited extent, originating with Felleisen’s F (1988), are most
appropriate, because without some way to mask out control
effects, any use of control pollutes the entire program and
severely limits the utility of substructural types.

As examples of control features to add to our calculus, we
consider the delimited continuation operators shift and reset
(Danvy and Filinski 1989) and structured exception handling
(Goodenough 1975). Both shift/reset and structured excep-
tions have been combined with type-and-effect systems to
make them more amenable to static reasoning.

Type-and-effect systems for control. Java (Gosling et al.
1996) has checked exceptions, an effect system for tracking
the exceptions that a method may raise. Our version of
exception effects is similar to Java’s, except that we offer ef-
fect polymorphism, which makes higher-order programming
with checked exceptions more convenient. Our type system
for exceptions appears in §6.3.

Because Danvy and Filinski’s shift (1989) captures a de-
limited continuation up to the nearest reset delimiter, typing
shift and reset requires some nonlocal means of communi-
cating types between delimiters and control operators. They
realize this communication with a type-and-effect system,
which allows shift to capture and compose continuations of
varying types. Asai and Kameyama (2007) extend Danvy
and Filinski’s (monomorphic) type system with polymor-
phism, which includes polymorphism of answer types. We
give two substructural type systems with shift and reset.
Section 6.1 presents a simpler version that severely limits the
answer types of continuations that may be captured. Then,
in §6.2, we combine the simpler system with a polymor-
phic version of Danvy and Filinski’s, similar to Asai and
Kameyama’s, to allow answer-type modification and poly-
morphism in a substructural setting.

Substructural type systems. Researchers have proposed a
plethora of substructural type systems. These range from
minimalistic models (Wadler 1992; Bierman 1993; Bar-
ber 1996; Morrisett et al. 2005) based on Girard’s linear
logic (1987), to real programming languages, which are
often oriented toward specific problems such as safety in
low-level languages (Grossman et al. 2002), typestate and
protocol checking (Aldrich et al. 2009), or security (Swamy
et al. 2010).

We translate our substructural type-and-effect system into
Ahmed et al.’s λURAL (2005), which is a polymorphic λ
calculus that supports a variety of substructural typing dis-
ciplines. We provide a primer on λURAL in §3.

Motivation. The software engineering case for structured
exception handling is widely acknowledged and understood,
but shift and reset (Danvy and Filinski 1989), the other
control operators discussed in this paper, are more obscure.
The essential idea is simple: whereas raising an exception
discards the context up to some delimiter—the exception
handler—shift captures and reifies the context up to its delim-
iter, reset, which allows reinstating the context later. These
control operators may be used to implement exceptions, by
capturing continuations but never reinvoking them, but they
may also express other control structures, such as coroutines
and cooperative multithreading, and they may be used to
abstract non-determinism and search in an elegant way.

Our goal is to safely integrate control operators with
substructural types. A substructural type system regulates
the order and number of uses of data by statically ensuring
that some values be used at most once, at least once, or ex-
actly once (Walker 2005). Like shift and reset, substructural
types are a general facility that can express a variety of spe-
cific language features, mostly for the purpose of managing
stateful resources, such as typestate, region-based memory
management, and session types.

The direct impetus for this work is the design of the
programming language Alms (Tov and Pucella 2011), which
provides both exceptions and affine types, a variety of sub-
structural type that can prohibit reusing particular values.
As demonstrated in §1, the combination of affine types and
exceptions is not a problem. However, as we observe in that
previous work, “we anticipate that safely combining linear-
ity with exceptions requires a type-and-effect system to track
when raising an exception would implicitly discard linear
values.” Our desire to add linear types to Alms motivates
this development of a general theory of substructural types
and control effects.

3. Syntax and Semantics of λURAL

In this paper, we add control effects to Ahmed et al.’s λURAL

(2005), a substructural λ calculus. Our presentation of
λURAL is heavily based on theirs, with a few small changes.

The syntax of λURAL appears in Figure 1. Those non-
terminals that appear in blue are different from their coun-

v ::= x | λx.e | Λ.e | 〈〉 | inl v | inr v (values)
e ::= v | e1 e2 | e | let 〈〉 = e1 in e2 (expressions)

| case e of inl x1 → e1; inr x2 → e2

q ∈ {U,R,A, L} (qualifier constants)
ξ ::= α | q (qualifiers)
τ ::= α | τ1 (τ2 | ∀α:κ.τ | 1 | τ1 ⊕ τ2 (pretypes)
τ ::= α | ξτ (types)
ι ::= ξ | τ | τ (type-level terms)

κ ::= QUAL | ? | ? (kinds)

Figure 1. λURAL syntax

terparts in the calculus with control effects (§4), which will
appear in red.1

The expression level. Values include abstractions, type ab-
stractions, the unit value, and injections into a sum. (This
differs from Ahmed et al.’s presentation of λURAL by in-
cluding sums—additive disjunctions, to be precise—rather
than multiplicative conjunctions. Our theorems handle both,
but we omit products in this paper for brevity. Sums are
more useful for our purposes here.) Expressions include val-
ues, application, type application, unit elimination, and sum
elimination. Following Ahmed et al., we elide the formal
parameter in type abstractions and the actual parameter in
type applications.

The type level. Expressions in λURAL are classified by
types (τ), but the language at the type level is much richer.
Four constant qualifiers (q) distinguish four substructural
properties that may be enforced for values:

L as in linear, for values that may be
neither duplicated nor implicitly
dropped;

A as in affine, for values that may be
dropped (weakening) but not dupli-
cated;

R as in relevant, for values that may
be duplicated (contraction) but not
dropped; and

U as in unlimited, for ordinary values
that allow both dropping and dupli-
cation.

L

A R

U

�
�

@
@

@
@

�
�

The four constant qualifiers form a lattice, whereby it is
always safe to treat a value as if it has a higher qualifier than
its own.

Qualifiers (ξ) include both qualifier constants and type
variables, allowing for qualifier polymorphism. Pretypes (τ)

1 This is the color version of this paper; a black-and-white version, which is
more suitable for printing, is available online at www.ccs.neu.edu/∼tov/
pubs/substructural-control.

http://www.ccs.neu.edu/home/tov/pubs/substructural-control/
http://www.ccs.neu.edu/home/tov/pubs/substructural-control/

E ::= [] | E e2 | v1E | E (evaluation contexts)
| let 〈〉 = E in e2

| case E of inl x1 → e1; inr x2 → e2

e 7−→ e′ (reduction)

(λx.e1) v2 7−→ {v2/x}e2

(Λ.e) 7−→ e

let 〈〉 = 〈〉 in e 7−→ e

case inl v of inl x1 → e1; inr x2 → e2 7−→ {v/x1}e1

case inr v of inl x1 → e1; inr x2 → e2 7−→ {v/x2}e2

e

E[e]

7−→
7−→

e′

E[e′]

Figure 2. λURAL operational semantics

∆ ` ι : κ (kinding type-level terms)

K-VAR
α:κ ∈ ∆

∆ ` α : κ

K-QUAL

∆ ` q : QUAL

K-ARR
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 (τ2 : ?

K-ALL
∆, α:κ ` τ : ?

∆ ` ∀α:κ.τ : ?

K-UNIT

∆ ` 1 : ?

K-SUM
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 ⊕ τ2 : ?

K-TYPE
∆ ` τ : ? ∆ ` ξ : QUAL

∆ ` ξτ : ?

Figure 3. λURAL statics (i): kinding

∆ ` ξ1 � ξ2 (qualifier subsumption)

QSUB-BOT

∆ ` ξ : QUAL

∆ ` U � ξ

QSUB-TOP

∆ ` ξ : QUAL

∆ ` ξ � L

QSUB-REFL

∆ ` ξ : QUAL

∆ ` ξ � ξ

∆ ` τ � ξ (qualifier bound for types)

B-VAR
∆ ` α : ?

∆ ` α � L

B-TYPE
∆ ` τ : ? ∆ ` ξ′ � ξ

∆ ` ξ
′
τ � ξ

∆ ` Γ � ξ (qualifier bound for type contexts)

B-NIL
∆ ` ξ : QUAL

∆ ` • � ξ

B-CONS
∆ ` Γ � ξ ∆ ` τ � ξ

∆ ` Γ, x:τ � ξ

Figure 4. λURAL statics (ii): qualifiers

∆ ` Γ Γ1 � Γ2 (type context splitting)

S-NIL

∆ ` • •� •

S-CONSL
∆ ` Γ Γ1 � Γ2 ∆ ` τ : ?

∆ ` Γ, x:τ (Γ1, x:τ)� Γ2

S-CONSR
∆ ` Γ Γ1 � Γ2 ∆ ` τ : ?

∆ ` Γ, x:τ Γ1 � (Γ2, x:τ)

S-CONTRACT
∆ ` Γ Γ1 � Γ2 ∆ ` τ � R

∆ ` Γ, x:τ (Γ1, x:τ)� (Γ2, x:τ)

Figure 5. λURAL statics (iii): context splitting

specify the representation of a value, and its introduction and
elimination rules. Pretypes include type variables, function
types, universal quantification, the unit type, and additive
disjunction. Types (τ) classify expressions. A type is either
a pretype decorated with its qualifier (ξτ) or a type variable.
We use non-terminal ι to refer to the three kinds of type-level
terms as a group.

The kind level. Types in λURAL are classified by three
kinds (κ): QUAL for qualifiers, ? for pretypes, and ? for
types. Type variables may have any of these three kinds,
which is why universal quantification (∀α:κ.τ) specifies the
kind of α.

3.1 Operational Semantics
The operational semantics of λURAL is completely standard
and appears in Figure 2. Reduction is call-by-value and eval-
uates operators before operands, which is important when
we consider the sequencing of effects in §4.

3.2 Static Semantics
Type judgments for λURAL use two kinds of contexts:

∆ ::= • | ∆, α:κ (kind contexts)
Γ ::= • | Γ, x:τ (type contexts)

Figure 3 contains the kinding judgment (∆ ` ι : κ),
which assigns kinds to type-level terms. This judgment

∆; Γ ` e : τ (typing expressions)

T-WEAK
∆ ` Γ Γ1 � Γ2 ∆ ` Γ2 � A ∆; Γ1 ` e : τ

∆; Γ ` e : τ

T-VAR
∆ ` τ : ?

∆; •, x:τ ` x : τ

T-ABS
∆ ` Γ � ξ ∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx.e : ξ(τ1 (τ2)

T-TABS
∆ ` Γ � ξ ∆, α:κ; Γ ` e : τ

∆; Γ ` Λ.e : ξ∀α:κ.τ

T-UNIT
∆ ` ξ : QUAL

∆; • ` 〈〉 : ξ1

T-INL
∆ ` τ1 � ξ ∆ ` τ2 : ?

∆; Γ ` v1 : τ1

∆; Γ ` inl v1 : ξ(τ1 ⊕ τ2)

T-INR
∆ ` τ2 � ξ ∆ ` τ1 : ?

∆; Γ ` v2 : τ2

∆; Γ ` inr v2 : ξ(τ1 ⊕ τ2)

T-APP
∆ ` Γ Γ1 � Γ2

∆; Γ1 ` e1 : ξ(τ1 (τ2) ∆; Γ2 ` e2 : τ1

∆; Γ ` e1 e2 : τ2

T-TAPP

∆; Γ ` e : ξ∀α:κ.τ ∆ ` ι : κ

∆; Γ ` e : {ι/α}τ

T-LETUNIT
∆ ` Γ Γ1 � Γ2

∆; Γ1 ` e1 : ξ1 ∆; Γ2 ` e2 : τ

∆; Γ ` let 〈〉 = e1 in e2 : τ

T-CASE

∆ ` Γ Γ1 � Γ2 ∆; Γ1 ` e : ξ(τ1 ⊕ τ2)
∆; Γ2, x1:τ1 ` e1 : τ ∆; Γ2, x2:τ2 ` e2 : τ

∆; Γ ` case e of inl x1 → e1; inr x2 → e2 : τ

Figure 6. λURAL statics (iv): typing

enforces the type/pretype structure, whereby type construc-
tors such as ⊕ form a pretype from types (rule K-SUM),
and decorating a pretype with a qualifier forms a type
(rule K-TYPE).

In Figure 4, three judgments relate qualifiers to each
other, to types, and to type contexts. Qualifier subsumption
(∆ ` ξ1 � ξ2) defines the qualifier order, with top L and
bottom U. The next judgment bounds a type by a qualifier;
judgment ∆ ` τ � ξ means that values of type τ may safely
be used according to the structural rules implied by ξ. Finally,
bounding a type context by a qualifier (∆ ` Γ � ξ) means
that every type in context Γ is bounded by qualifier ξ.

Figure 5 gives rules for splitting a type context into
two (∆ ` Γ Γ1 � Γ2), which is necessary for dis-
tributing typing assumptions to multiple subterms of a term.
Any variable may be distributed to one side or the other.
Rule S-CONTRACT implements the contraction structural
rule, whereby variables whose type is unlimited or relevant
may be duplicated to both contexts.

Finally, Figure 6 gives the judgment for assigning types
to expressions (∆; Γ ` e : τ). Several points are worthy of
note:

• The weakening rule, T-WEAK, allows discarding por-
tions of the context that are upper-bounded by A, which
means that all the values dropped are either affine or
unlimited.

• The rules for application and for unit and sum elimina-
tion, T-APP, T-LETUNIT, and T-CASE, split the con-
text to distribute assumptions to subterms. Note, however,

that both branches of a case expression share the same
context.

• Rule T-ABS selects a qualifier ξ for a function type based
on bounding the context, Γ. This means that the qualifier
of a function type must upper bound the qualifiers of the
types of the function’s free variables. As we will see in
§5, this property is key to our soundness theorem.

4. Generic Control Effects
Rather than add a specific control effect, such as exceptions
or delimited continuations, to λURAL, we aim to design a sub-
structural type system with a general notion of control effect.
Thus, in this section, we define a new calculus, λURAL(C),
parameterized by an unspecified control effect.

4.1 The Control Effect Parameter
In this subsection, we give the form of the parameter that
stands for a particular control effect. Our definition of
λURAL(C) relies only on this abstract specification of the
formal parameter. In §5, we specify several properties of the
parameter that are sufficient for a generic soundness theorem
to hold, and in §6 we give three examples of actual control
effect parameters.

Definition 4.1 (Control effect).
A control effect instance is a triple (C,⊥C,5) where C is
a set of control effects (c), ⊥C ∈ C is a distinguished pure
effect that denotes no actual control, and 5 : C × C ⇀ C

is an associative, partial, binary operation denoting effect
sequencing.

D C̀ i : k (kinding type-level terms)

C-K-BOT

D C̀ ⊥C : CTL

C-K-ARR
D C̀ t1 : ? D C̀ t2 : ? D C̀ c : CTL

D C̀ t1
c−(t2 : ?

C-K-ALL
D, α:k C̀ t : ? D C̀ c : CTL

D C̀ ∀cα:k.t : ?

Figure 7. λURAL(C) statics (i): updated kinding rules

For example, in §6.3 we add exception handling to
λURAL(C). An exception effect is the set of exceptions that
may be raised by an expression, the distinguished pure effect
⊥C is the empty set, and sequencing is set union. A non-
empty effect indicates that an expression may discard part
of its continuation, whereas the empty effect guarantees that
an expression treats its continuation linearly.

In simple cases, as with exceptions, effects form a join
semilattice where sequencing is the join, but this is not
necessarily true in general (§6.2).

4.2 Updated Syntax
In λURAL(C), control effects constitute a fourth kind of type-
level term, in addition to qualifiers, pretypes, and types. We
add a new kind, CTL, and include abstract control effects
(c ∈ C) among the type-level terms:

k ::= QUAL | ? | ? | CTL (kinds)
i ::= ξ | t | t | c (type-level terms)

Function and universal pretypes now have latent effects,
which record the effect that will happen when an abstraction
is applied. We update the definition of pretypes to include
these latent effects:

t ::= · · · | t1
c−(t2 | ∀cα:k.t (pretypes)

t ::= α | ξt (types)

The other pretype (t) productions remain unchanged.
For non-terminal symbols that differ between λURAL

and λURAL(C), we use red Roman letters (t, k, G, . . .)
for λURAL(C) to distinguish them from λURAL, where they
appeared in blue Greek (τ, κ, Γ, . . .).

4.3 Static Semantics of λURAL(C)

All type system judgments from λURAL are updated for
λURAL(C), and λURAL(C) adds two new judgments as well.
The kinding and expression typing judgments are the only
two to change significantly. The judgments for bounding
types (D C̀ t � ξ), bounding type contexts D C̀ G � ξ),

D C̀ c � ξ (qualifier bound for control effects)

C-B-PURE
D C̀ ξ : QUAL

D C̀ ⊥C � ξ

C-B-UNL
D C̀ c : CTL

D C̀ c � U

D C̀ c1 � c2 (control effect subsumption)

CSUB-REFL
D C̀ c : CTL

D C̀ c � c

CSUB-TRANS
D C̀ c1 � c′ D C̀ c

′ � c2
D C̀ c1 � c2

Figure 8. λURAL(C) statics (ii): control effect judgments

and splitting type contexts (D C̀ G G1 � G2) are
isomorphic to the λURAL versions of those judgments from
Figures 4 and 5. They are merely updated with new non-
terminals as appropriate (i.e., κ to k, τ to t, and τ to t).

Kinding. We identify control effects as the type-level
terms (i) that are assigned kind CTL by the kinding judg-
ment. Figure 7 shows one new kinding rule, C-K-BOT,
which assigns kind CTL to the pure effect ⊥C. We update
rules C-K-ARR and C-K-ALL to account for latent effects
in function and universal pretypes. The remaining kinding
rules are the same as for λURAL, with non-terminals mutatis
mutandis. Specific control effect instances (§6) must define
additional kinding rules for their particular effects.

Control effect judgments. The first new judgment for con-
trol effects (D C̀ c � ξ, Figure 8) relates control effects to
qualifiers. This gives the meaning of a control effect in terms
of a lower bound for how an expression with that effect may
treat its own continuation. For example, if an expression e
has some effect c such that D C̀ c � A, this indicates that
e may drop but not duplicate its continuation. We give two
rules here:

• Rule C-B-PURE says that the pure effect is bounded by
any qualifier, which means that a pure expression satisfies
any requirement for how it treats its continuation.

• Rule C-B-UNL says that all control effects are bounded
by U, which means that we may assume, conservatively,
that any expression might freely duplicate or drop its
continuation.

Specific instances of the control effect parameter will extend
this judgment to take into account the properties of a partic-
ular control effect.

The second judgment for control effects (D C̀ c1 �
c2) defines a subsumption order for control effects. This
means that an expression whose effect is c1 may be safely
considered to have effect c2. Only two rules for the judgment

D; G C̀ e : t ; c (typing expressions)

C-T-SUBSUME
D; G C̀ e : t ; c′ D C̀ c

′ � c
D; G C̀ e : t ; c

C-T-WEAK
D C̀ G G1 �G2 D; G1 C̀ e : t ; c D C̀ G2 � A

D; G C̀ e : t ; c

C-T-VAR
D C̀ t : ?

D; •, x:t C̀ x : t ;⊥C

C-T-ABS
D C̀ G � ξ

D; G, x:t1 C̀ e : t2 ; c

D; G C̀ λx.e : ξ(t1
c−(t2) ;⊥C

C-T-TABS
D C̀ G � ξ

D, α:k; G C̀ e : t ; c

D; G C̀ Λ.e : ξ∀cα:k.t ;⊥C

C-T-UNIT
D C̀ ξ : QUAL

D; • C̀ 〈〉 : ξ1 ;⊥C

C-T-INL
D C̀ t1 � ξ D C̀ t2 : ?

D; G C̀ v1 : t1 ;⊥C

D; G C̀ inl v1 : ξ(t1 ⊕ t2) ;⊥C

C-T-INR
D C̀ t1 : ? D C̀ t2 � ξ

D; G C̀ v2 : t2 ;⊥C

D; G C̀ inr v2 : ξ(t1 ⊕ t2) ;⊥C

C-T-APP

D; G1 C̀ e1 : ξ1(t1
c−(t2) ; c1 D; G2 C̀ e2 : t1 ; c2

D C̀ G2 � ξ2 D C̀ c1 � ξ2 D C̀ c2 � ξ1
D C̀ G G1 �G2 D C̀ c1 5 c2 5 c : CTL

D; G C̀ e1 e2 : t2 ; c1 5 c2 5 c

C-T-TAPP

D; G C̀ e : ξ∀c
′
α:k.t ; c

D C̀ i : k D C̀ c 5 c′ : CTL

D; G C̀ e : {i/α}t ; c 5 c′

C-T-LETUNIT

D; G1 C̀ e1 : ξ11 ; c1 D; G2 C̀ e2 : t ; c2
D C̀ G2 � ξ2 D C̀ c1 � ξ2

D C̀ G G1 �G2 D C̀ c1 5 c2 : CTL

D; G C̀ let 〈〉 = e1 in e2 : t ; c1 5 c2

C-T-CASE

D; G1 C̀ e : ξ1(t1 ⊕ t2) ; c
D; G2, x1:t1 C̀ e1 : t ; c′ D; G2, x2:t2 C̀ e2 : t ; c′

D C̀ G2 � ξ2 D C̀ c � ξ2 D C̀ c
′ � ξ1

D C̀ G G1 �G2 D C̀ c 5 c′ : CTL

D; G C̀ case e of inl x1 → e1; inr x2 → e2 : t ; c 5 c′

Figure 9. λURAL(C) statics (iii): typing

appear in Figure 8, which together ensure that control effect
subsumption is a preorder. As with control effect bounding,
specific control effect instances will extend this judgment.

Expression typing. The expression typing judgment for
λURAL(C) (Figure 9) assigns not only a type t but an effect
c to expressions: D; G C̀ e : t ; c. Having seven premises,
the rule for applications (C-T-APP) is unwieldy, but it likely
gives the most insight into how λURAL(C) works:

(1) D C̀ G G1 �G2

(2) D; G1 C̀ e1 : ξ1(t1
c−(t2) ; c1

(3) D; G2 C̀ e2 : t1 ; c2

(4) D C̀ c2 � ξ1
(5) D C̀ G2 � ξ2
(6) D C̀ c1 � ξ2
(7) D C̀ c1 5 c2 5 c : CTL

D; G C̀ e1 e2 : t2 ; c1 5 c2 5 c

We consider the premises in order:

(1) The first premise, as in λURAL, splits the type context G
into G1 for typing e1 and G2 for typing e2.

(2–3) As in λURAL, these premises assign types to expres-
sions e1 and e2, but they assign control effects c1 and c2
as well.

(4) This premise relates the type of e1 to the effect of e2

to ensure that e2’s effect does not violate e1’s invariants.
Because we fix a left-to-right evaluation order, by the
time e2 gets to run, e1 has reduced to a value of type
ξ1(t1

c−(t2), which thus may be treated according to qual-
ifier ξ1. Because that value is part of e2’s continuation,
we require that e2’s effect, c2, be lower-bounded by ξ1.
In other words, e2 will treat its continuation no more
liberally than ξ1 allows.

(5–6) These premises relate the free variables of e2 to the
effect of e1. Due to the evaluation order, e2 appears
unevaluated in e1’s continuation, which means that if
e1 drops or duplicates its continuation then e2 may be
evaluated never or more than once. Premise (5) says that
the type context for typing e2, and thus e2’s free variables,
are bounded above by some qualifier ξ2, and this qualifier

thus indicates how many times it is safe to evaluate e2.
Premise (6) lower bounds e1’s effect, c1, by ξ2, ensuring
that e1’s effect treats e2 properly.

(7) The net effect of the application expression is a sequence
of the effect of e1 (c1), then the effect of e2 (c2), and
finally the latent effect of the function to which e1 must
evaluate (c): c1 5 c2 5 c. This premise checks that those
three effects may be sequenced in that order according to
a particular control effect’s definition of sequencing and
the kinding judgment.

Rules C-T-LETUNIT and C-T-CASE (unit and sum elimi-
nation) are similar, since they need to safely sequence two
subexpressions. Both rules follow rule C-T-APP in relating
the effect of the first subexpression to the type context of the
second and effect of the second to the qualifier of the first.
Rule C-T-TAPP (type application), while dealing with only
one effectful subexpression, needs to sequence the effect of
evaluating the expression in a type application with the latent
effect of the resulting type abstraction value.

The subsumption rule C-T-SUBSUME implements con-
trol effect subsumption, whereby an expression of effect c
may also be considered to have effect c′ if c is less than c′

in the control effect subsumption order. C-T-WEAK, which
handles weakening, is unchanged from λURAL.

The remaining rules are for typing values, which always
have the pure effect ⊥C. Rules C-T-UNIT, C-T-INL, and
C-T-INR, for unit and sum introduction, are unchanged from
λURAL, except that each of them assigns the pure effect.
Rules C-T-ABS and C-T-TABS also assign the pure effect
to their values, but each records the effect of the abstraction
body as the latent effect in the resulting type.

5. The Generic Theory
To prove type safety for λURAL(C), we define a type-preserv-
ing translation to λURAL. Rather than provide a reduction
semantics for λURAL(C), we define its operational seman-
tics in terms of the translation and the reduction semantics
of λURAL (§3.1). Thus, if we can show that all well-typed
λURAL(C) programs translate to well-typed λURAL programs,
then λURAL’s type safety theorem applies to λURAL(C) as
well.

The translation is into what Danvy and Filinski (1989)
call continuation-composing style (henceforth “CCoS”). It is
similar to continuation-passing style, but unlike continuation-
passing style it still relies on the object language’s order of
evaluation.

In order to specify the translation and prove the proposi-
tions specified later in this section, we impose several more
requirements on the abstract control effect parameter. As the
semantics of λURAL(C) was parameterized by an abstract
control effect, so is the theory of λURAL(C) parameterized by
several definitions and properties that a control effect must
satisfy.

The development of this section is constrained by several
dependencies, so we provide an outline:

The Translation Parameter (§5.1). A control effect instance
must supply a few definitions to fully specify its particu-
lar CCoS translation.

The Translation (§5.2). The definition of the CCoS transla-
tion relies on the definitions supplied by the control effect
parameter.

Parameter Properties (§5.3). A control effect instance must
satisfy several properties on which the generic type safety
theorem relies.

Generic Type Safety (§5.4). The section culminates in a
generic proof of type safety for λURAL(C).

5.1 The Translation Parameter
Definition 5.1 (Translation parameter).
The definition of the generic CCoS translation relies on the
following effect-specific definitions:

• a metafunction (·)∗ from effects to qualifiers, such that
⊥C
∗ = L and α∗ = α;

• a value doneC, to use as the initial continuation for a
CCoSed program; and

• a pair of answer-type metafunctions 〈〈·, ·〉〉−c and 〈〈·, ·〉〉+c ,
each of which maps a λURAL type and a λURAL(C) effect
to a λURAL type.

Intuitively, we can understand metafunctions (·)∗, 〈〈·, ·〉〉−c ,
and 〈〈·, ·〉〉+c as relating the effect of a λURAL(C) expression
to the type of its translation into λURAL. Typically, the CPS
translation of an expression of some type τ yields a type like

(τ → Answer)→ Answer.

Given a λURAL(C) expression whose translated type is τ and
whose effect is c, our translation yields type

c∗(τ(〈〈τ0, c〉〉−C)(〈〈τ0, c〉〉+C

for some answer type τ0. That is, (·)∗ gives the qualifier of
the continuation, and the other two metafunctions give the
answer types, which may depend on the nature of the control
effect. Because they give the answer types in negative and
positive positions, respectively, we call 〈〈τ, c〉〉−

C
the negative

answer type and 〈〈τ, c〉〉+
C

the positive answer type.

5.2 The Translation
In this subsection, we specify the CCoS translation from
λURAL(C) to λURAL. In several places, we rely on the defi-
nitions of c∗, doneC, 〈〈τ, c〉〉−

C
, and 〈〈τ, c〉〉+

C
supplied by the

control effect parameter.
The translation for kinds and kind contexts appears in Fig-

ure 10. The control effect kind CTL translates to QUAL, and
the other three kinds translate to themselves. The translation
of a kind context merely translates each kind in its range.

QUAL∗ = QUAL (kinds)
?∗ = ?

?∗ = ?

CTL∗ = QUAL

•∗ = • (kind contexts)
(D, α:k)∗ = D∗, α:k∗

Figure 10. CCoS translation (i): kinds and kind contexts

α∗ = α (pretypes)
1∗ = 1

(t1 ⊕ t2)∗ = t1
∗ ⊕ t2∗

(t1
c−(t2)∗ =

∀α: ? .L(t1
∗(L(c

∗
(t2
∗(〈〈α, c〉〉−

C
)(〈〈α, c〉〉+

C
))

(∀cβ:k.t)∗ =

∀α: ? .L∀β:k∗.L(c
∗
(t∗(〈〈α, c〉〉−

C
)(〈〈α, c〉〉+

C
)

α∗ = α (types)
(ξt)∗ = ξt∗

•∗ = • (type contexts)
(G, x:t)∗ = G∗, x:t∗

Figure 11. CCoS translation (ii): type-level terms and con-
texts

Figure 11 presents the translation for pretypes, types, and
type contexts. Most of this translation is straightforward:
type variables and the unit pretype translate to themselves,
sum types translate both disjuncts, types composed of a qual-
ifier and a pretype translate the pretype, and type contexts
translate all the types in their range. The two interesting
cases are for function and universal pretypes. These follow
the usual CPS translation for function and universal types,
with several refinements:

• Each adds an extra universal quantifier in front of its
result, which is used to make (type) abstractions polymor-
phic in their answer types.

• Because the effect of an expression limits how it may
use its continuation, the translation c∗ of latent effect c
becomes the qualifier of the continuation.

• All other qualifiers of the translated pretype are L. (This is
because the translation never needs to duplicate partially-
applied continuations, so L is a sufficiently permissive
qualifier for those continuations. Furthermore, because
the type rules for abstractions always allow a qualifier
of L, using L wherever possible simplifies the proof.)

Translation of values and expressions is defined by mu-
tual induction in Figure 12. Value translation (v∗) is mostly
straightforward. Both value and type abstraction have an

additional type abstraction added to the front, which matches
the addition of the universal quantifier in the type translation,
and both translate the body according to the expression trans-
lation JeK

C
. The expression translation is standard except for

two unusual aspects of the translation of applications and
type applications:

• The result of evaluating e1, bound to x1, is in each case
instantiated by a type application, which compensates for
the new type abstraction in the translation of abstractions.
For the type application case, x1 is instantiated then
again, corresponding to the instantiation from the source
expression.

• Curiously, the continuation y is η-expanded to λx.y x.
While η-expanding a variable may seem useless, it is
actually necessary to obtain a type-preserving translation.

In particular, the reason for this η expansion is to handle
effect subsumption. Effects in λURAL(C) are translated to
qualifiers in λURAL, and while λURAL(C) supports effect sub-
sumption directly, there is no analogous qualifier subsump-
tion in λURAL. However, qualifier subsumption for function
types can be done explicitly using η expansion:

Lemma 5.2 (Dereliction).
If ∆; Γ ` v : ξ(τ1 (τ2) and ∆ ` ξ � ξ′ then ∆; Γ `
λx.v x : ξ

′
(τ1 (τ2).

The proof of Lemma 5.2 relies on another lemma:

Lemma 5.3 (Value strengthening).
Any qualifier that upper bounds the type of a value also
bounds the portion of the type context necessary for typing
that value. That is, if ∆; Γ ` v : τ and ∆ ` τ � ξ then there
exist some Γ1 and Γ2 such that

• ∆ ` Γ Γ1 � Γ2,
• ∆; Γ1 ` v : τ,
• ∆ ` Γ1 � ξ, and
• ∆ ` Γ2 � A.

Proof. By induction on the typing derivation for v.

Proof of Lemma 5.2. Choose type contexts Γ1 and Γ2 ac-
cording to Lemma 5.3. Then ∆; Γ1, x:τ1 ` v x : τ2 by
rule T-APP. By induction on the length of Γ1 and transitivity
of qualifier subsumption, we know that ∆ ` Γ1 � ξ′. Then
by rule T-ABS, ∆; Γ1 ` λx.v x : ξ′(τ1 (τ2), and we
change Γ1 to Γ by rule T-WEAK.

Operational semantics of λURAL(C). Having defined the
translation, we run a program e by applying the CCoS trans-
lation and passing it the initial continuation doneC. We de-
fine the operational semantics of λURAL(C) as a partial func-

x∗ = x (values)
(λx.e)∗ = Λ.λx. JeK

C

(Λ.e)∗ = Λ.Λ. JeK
C

(inl v)∗ = inl v∗

(inr v)∗ = inr v∗

〈〉∗ = 〈〉

JvK
C

= λy.y v∗ (expressions)
Je1 e2KC

= λy. Je1KC
(λx1. Je2KC

(λx2.x1 x2 (λx.y x)))

Je1 K
C

= λy. Je1KC
(λx1.x1 (λx.y x))

Jlet 〈〉 = e1 in e2KC

= λy. Je1KC
(λx1. let 〈〉 = x1 in Je2KC

y)

Jcase e of inl x1 → e1; inr x2 → e2KC

= λy. JeK
C

(λx. case x of inl x1 → Je1KC
y;

inr x2 → Je2KC
y)

Figure 12. CCoS translation (iii): values and expressions

tion eval : Expressions ⇀ Values ∪ {WRONG}:

eval(e) =

v if JeK

C
doneC

∗7−→ v;
WRONG if JeK

C
doneC

∗7−→ e′

such that e′ is not a value
and ¬∃e′′.e′ 7−→ e′′.

5.3 Parameter Properties
Having defined the CCoS translation, we are now ready to
state the additional properties that the abstract control effect
parameter must satisfy for the generic type safety theorem
(§5.4) to hold:

Parameter Property 1 (Answer types).

1. For all τ, 〈〈τ,⊥C〉〉−C = 〈〈τ,⊥C〉〉+C .
RATIONALE. For pure expressions, the negative and
positive answer types agree, because a pure expression
finishes by calling its continuation. Henceforth, we
are justified defining the pure answer type 〈〈τ〉〉C ,
〈〈τ,⊥C〉〉+C .

2. If D∗ ` τ : ? and D C̀ c : CTL then D∗ ` 〈〈τ, c〉〉−
C

: ?
and D∗ ` 〈〈τ, c〉〉+

C
: ?.

RATIONALE. For the translation to be well typed,
well-kinded types and effects must become well-
kinded answer types.

3. For all D, τ, c1 6= ⊥C, and c2 6= ⊥C such that D C̀

c1 5 c2 : CTL,
(a) 〈〈τ, c1 5 c2〉〉−C = 〈〈τ, c2〉〉−C ,
(b) 〈〈τ, c1 5 c2〉〉+C = 〈〈τ, c1〉〉+C , and
(c) 〈〈τ, c1〉〉−C = 〈〈τ, c2〉〉+C .

RATIONALE. Effect sequencing must maintain an-
swer types in order for the continuations of sequenced
expressions to compose.

4. If D C̀ c1 � c2, then for every type τ there exists some
type τ ′ such that 〈〈τ ′, c1〉〉−C = 〈〈τ, c2〉〉−C and 〈〈τ ′, c1〉〉+C =
〈〈τ, c2〉〉+C .

RATIONALE. For control effect subsumption to be
valid, related control effects must generate related
answer types.

Parameter Property 2 (Done).
If ∆ ` τ � A then ∆; • ` doneC : L(τ(〈〈τ〉〉C).

RATIONALE. The doneC value must be well typed for
the translation of a whole program to be well typed.

Parameter Property 3 (Effect sequencing).
If D C̀ c1 5 c2 : CTL then D∗ ` (c1 5 c2)∗ � c1

∗ and
D∗ ` (c1 5 c2)∗ � c2∗.

RATIONALE. Sequencing lowers the translation of
control effects in the qualifier order. This makes sense,
because if either of two sequenced expressions may
duplicate or discard their continuations, then the com-
pound expression may do the same.

Parameter Property 4 (Bottom and lifting).

1. c1 5 c2 = ⊥C if and only if c1 = c2 = ⊥C.
RATIONALE. Sequencing impure expressions should
not result in a pure expression.

2. If D C̀ c1 5 c2 : CTL and c1 5 c2 6= ⊥C, then there exist
some c′1 6= ⊥C and c′2 6= ⊥C such that
• D C̀ c1 � c′1,
• D C̀ c2 � c′2,
• c′1 5 c′2 = c1 5 c2, and
• D C̀ c

′
1 5 c′2 : CTL.

RATIONALE. This assumption is likely not necessary,
but it significantly simplifies the proof by allowing the
effects in a sequence to be considered either all pure
or all impure.

The final property concerns four lemmas that we state
and prove for the generic system in the next subsection. An
actual control effect instance needs to extend these lemmas
to cover any additional rules added to the relevant judgments:

Parameter Property 5 (New rules).

1. Lemma 5.4 (§5.4) must be extended, by induction on
derivations, for any rules added to the kinding judgment
D C̀ i : k.

2. Lemma 5.5 (§5.4) must be extended, by induction on
derivations, for any rules added to the control effect
bounding judgment D C̀ c � ξ.

3. Lemma 5.6 (§5.4) must be extended, by induction on
derivations, for any rules added to the control effect sub-
sumption judgment D C̀ c1 � c2.

4. Lemma 5.7 (§5.4) must be extended, by induction on
derivations, for any rules added to the expression typing
judgment D; G C̀ e : t ; c.

In §6, we give several example control effects and show
that they satisfy the above properties.

5.4 Generic Type Safety
Assuming that the above properties hold of the control
effect parameter, we can now prove a type safety theorem
for λURAL(C) that leaves the control effect abstract. We
sketch the proof here, but the full proof is available online at
www.ccs.neu.edu/∼tov/pubs/substructural-control.

We begin with a lemma that ensures that control effects
translate to well-formed qualifiers:

Lemma 5.4 (Translation of kinding).
For all D, i, and k, if D C̀ i : k then D∗ ` i∗ : k∗.

We continue with two lemmas concerning how the trans-
lation of control effects to qualifiers relates to qualifier sub-
sumption. The former ensures that the control effect bound
used by typing rules such as C-T-APP matches the qualifier
assigned to the type of a continuation by the CCoS trans-
lation. The latter shows that a larger control effect, which
indicates more liberal treatment of a continuation, maps to a
smaller qualifier, which indicates more liberal treatment of
any value.

Lemma 5.5 (Translation of effect bounds).
If D C̀ c � ξ then D∗ ` ξ � c∗.

Lemma 5.6 (Translation of effect subsumption).
If D C̀ c1 � c2 then D∗ ` c2∗ � c1∗.

Proofs of Lemmas 5.4, 5.5, and 5.6. By induction on deriva-
tions.

The most difficult lemma, and the heart of the proof,
is about typing translated expressions. Given a λURAL(C)
expression whose control effect is c, the translation of the
control effect, c∗, is the qualifier of the continuation of the
translated expression:

Lemma 5.7 (Translation of term typing).
If D; G C̀ e : t ; c then

D∗; G∗ ` JeK
C

: L(c
∗
(t∗(〈〈t∗, c〉〉−

C
)(〈〈t∗, c〉〉+

C
).

Proof. By induction on the typing derivation, generalizing
the induction hypothesis thus:

If D; G C̀ e : t ;c, then for all τ0 such that D∗ ` τ0 : ?,
and for all ξ0 such that D∗ ` ξ0 � c∗, we have
D∗; G∗ ` JeK

C
: L(ξ0(t∗(〈〈τ0, c〉〉−C)(〈〈τ0, c〉〉+C).

We consider two cases here:

Case
D; G C̀ e : t ; c′ D C̀ c

′ � c
D; G C̀ e : t ; c

.

By Property 5 (part 3), D∗ ` c∗ � c′∗, and thus by
Property 1 (part 4), there exists some type τ ′0 such that
〈〈τ ′0, c′〉〉−C = 〈〈τ0, c〉〉−C and 〈〈τ ′0, c′〉〉+C = 〈〈τ0, c〉〉+C . By

the lemma assumption, D∗ ` ξ0 � c∗, and by transitivity
of qualifier subsumption, D∗ ` ξ0 � c′∗. Thus, we can
apply the induction hypothesis at D; G C̀ e : t ; c′, using
the same ξ0 but with τ ′0 for τ0, yielding

D∗; G∗ ` JeKC : L(ξ0(t∗(〈〈τ ′0, c′〉〉−C)(〈〈τ ′0, c′〉〉+C).

Then it suffices to substitute 〈〈τ0, c〉〉−C for 〈〈τ ′0, c′〉〉−C and
〈〈τ0, c〉〉+C for 〈〈τ ′0, c′〉〉+C , which we know to be equal by
Property 1 (part 4).

Case

D C̀ G G1 �G2 D C̀ G2 � ξ2
D; G1 C̀ e1 : ξ1(t1

c−(t2) ; c1 D C̀ c1 � ξ2
D; G2 C̀ e2 : t1 ; c2 D C̀ c2 � ξ1

D C̀ c1 5 c2 5 c : CTL

D; G C̀ e1 e2 : t2 ; c1 5 c2 5 c
.

For rule C-T-APP, we want to show that Je1 e2KC
has

type
L(ξ0 (t2

∗ (〈〈τ0, c1 5 c2 5 c〉〉−C) (〈〈τ0, c1 5 c2 5 c〉〉+C).

Consider the translation of e1 e2,

λy.Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x))).

The type derivation is too large to show here in detail, but
it hinges on giving the right qualifiers to the types of con-
tinuations. We will consider the continuation passed to
the whole expression and the continuations constructed
for e1, e2, and the function application itself, in turn.

First we consider y, the continuation of the whole appli-
cation expression. Given the type that we need to derive
for the whole expression, the qualifier of y’s type must be
ξ0. Furthermore, from the assumptions of the lemma, we
know that D∗ ` ξ0 � (c1 5c2 5c)∗. By Property 3, each
of c1∗, c2∗, and c∗ is greater than (c1 5 c2 5 c)∗, so by
transitivity, ξ0 is less than each of these.

Expression e1 has effect c1, so by the induction hypothe-
sis, its continuation may have qualifier c1∗. The continu-
ation passed to Je1KC

is

λx1.Je2KC (λx2.x1 x2 (λx.y x)),

whose free variables are {y} ∪ fv(e2). Thus, the quali-
fier of this function must upper bound both ξ0 and the
qualifiers of the types in G2 (the type context for e2).
We have D∗ ` ξ0 � c1

∗ from the previous paragraph.
Furthermore, looking at the premises of rule T-APP, we
see that ξ2 upper bounds the types in G2 and is less than
c1
∗ (by Property 5 (part 2)), so by transitivity, D∗ `

G2
∗ � c1∗, as desired.

Expression e2 has effect c2, so similarly, its continuation
should have qualifier c2∗. The free variables of e2’s con-
tinuation are only y and x1, which is the value of e1. We
handle y as before. The type of x1 is ξ1((t1

c−(t2)∗), so
it remains to show that D∗ ` ξ1 � c2

∗, by Property 5
(part 2) applied to the premise D C̀ c2 � ξ1.

http://www.ccs.neu.edu/home/tov/pubs/substructural-control/

Finally, given that x1 has type ξ1((t1
c−(t2)∗), it expects

a continuation whose qualifier is c∗. The type of y has
qualifier ξ0, which is less than c∗. Then by Lemma 5.2
(Dereliction), the type of the η expansion λx.y x may be
given qualifier c∗.

Corollary 5.8 (Translation of program typing).
If D; G C̀ e : t ;⊥C where D C̀ t � A, then

D∗; G∗ ` JeKC doneC : 〈〈t∗〉〉C.

Proof. By Lemma 5.4, Lemma 5.7, Property 2, and rules
QSUB-REFL and T-APP.

Lemma 5.9 (λURAL safety).
If •; • ` e1 : τ and e1

∗7−→ e2, then either ∃v2.e2 ≡ v2 or
∃e3.e2 7−→ e3.

Proof. See the proof in Ahmed et al. (2005).

Theorem 5.10 (λURAL(C) safety).
If •; • C̀ e : t ;⊥C, and • C̀ t � A then eval(e) 6= WRONG.

Proof. By Corollary 5.8, •; • ` JeK
C
doneC : 〈〈t∗〉〉C. Then

by Lemma 5.9, either JeK
C
doneC reduces to a value v, in

which case eval(e) = v, or JeK
C
doneC diverges, in which

case eval(e) is undefined.

6. Example Control Effects
In the previous section, we proved type safety for λURAL(C),
a substructural λ calculus parameterized by abstract control
effects. In this section, we give three instances of control
effects as described by Definition 4.1 and show that they sat-
isfy the properties on which the generic type safety theorem
depends.

6.1 Shift and Reset
We define here a control effect instance for delimited con-
tinuations. In this example, we restrict answer types to the
unit type U1 in order to keep the effects simple. In §6.2, we
show how to define a more general control effect instance
that allows answer-type modification.

We add shift and reset to λURAL(C) as follows. First, we
extend the syntax:

e ::= · · · | shiftx in e | reset e (expressions)

We give the dynamics of the new expressions by defining
their CCoS translations, which are standard:

Jreset eK
D

= λy.y (JeK
D

(λx.x))

Jshiftx in eK
D

= λy.(λx. JeK
D

(λx′.x′))

(Λ.λx.λy′.y′ (y x))

To type shift and reset, we define delimited continuation
effects d as the dual lattice of the qualifier lattice ξ with a
new point ⊥D:

d ::= ⊥D (no effect)
| α (an effect variable)
| ξ (treats continuation like ξ)
| d1 t d2 (effect join)

Let D be the set of delimited continuation effects (d) quo-
tiented by the following equivalences:

L t ξ = ξ t L = ξ;

d t ⊥D = ⊥D t d = d t d = d.

(The quotient simplifies defining other functions and rela-
tions on delimited continuation effects.) Then we define
delimited continuation effects as the triple (D,⊥D,t).

We extend the type system of λURAL(C) with the new
rules in Figure 13. The new kinding rules say that qualifiers-
as-effects (ξ) and joins (d1 t d2) are well-kinded if their
components are. The new control effect bound rules say that
a control effect ξ′ is bounded by all qualifiers ξ that are less
than ξ′ and that any bound of both effects in a join bounds
the join as well. The rules added for effect subsumption ef-
fectively axiomatize the delimited continuation effect lattice.
Finally, we add two rules for typing shift and reset. To type
an expression reset e, subexpression e may have any effect
whatsoever, but must return type U1. (We lift this restriction
in §6.2.) Then reset e is pure and also has type U1. To
type shiftx in e, we give x type ξ(t

⊥D−−(U1) for checking
e, where ξ is joined with the effect of e to get the effect of
the whole shift expression. That is, because shift captures its
continuation and gives the reified continuation qualifier ξ, its
effect must be at least ξ, since that qualifier determines how
it might treat its captured continuation.

Type safety. To prove type safety for λURAL(C) extended
with delimited continuation effects, we need to give the
translation parameter as described by Definition 5.1. We
define the translation parameter as follows:

〈〈τ, d〉〉−
D

= 〈〈τ, d〉〉+
D

= U1

doneD = λx.〈〉

d∗ =

L if d = ⊥D

α if d = α

ξ if d = ξ

U otherwise

Then, we must show that this definition satisfies the prop-
erties of §5.3:

Theorem 6.1 (Delimited continuation properties).
Delimited continuation effects (D,⊥D,t) satisfy Proper-
ties 1–5.

Proof.

Property 1 (Answer types). We must show several equal-
ities on answer types, such as 〈〈τ, d1〉〉−D = 〈〈τ, d2〉〉+D,

D D̀ i : k (kinding delimited control effects)

D-K-QUAL

D D̀ ξ : QUAL

D D̀ ξ : CTL

D-K-JOIN
D D̀ d1 : CTL D D̀ d2 : CTL

D D̀ d1 t d2 : CTL

D D̀ d � ξ (qualifier bound for delimited control effects)

D-B-QUAL

D D̀ ξ � ξ′

D D̀ ξ′ � ξ

D-B-JOIN
D D̀ d1 � ξ D D̀ d2 � ξ

D D̀ d1 t d2 � ξ

D D̀ d1 � d2 (delimited control effect subsumption)

DSUB-BOT
D D̀ d : CTL

D D̀ ⊥D � d

DSUB-LIN
D D̀ ξ : QUAL

D D̀ L � ξ

DSUB-TOP
D D̀ d : CTL

D D̀ d � U

DSUB-JOIN
D D̀ d1 � d′1 D D̀ d2 � d′2

D D̀ d1 t d2 : CTL D D̀ d′1 t d′2 : CTL

D D̀ d1 t d2 � d′1 t d′2

D; G D̀ e : t ; d (delimited control expression typing)

D-T-RESET

D; G D̀ e : U1 ; d

D; G D̀ reset e : U1 ;⊥D

D-T-SHIFT

D; G, x:ξ(t
⊥D−−(U1) D̀ e : U1 ; d

D; G D̀ shiftx in e : t ; d t ξ

Figure 13. Statics for delimited continuation effects

hold whenever d1td2 is well formed. All of the equalities
are trivial because 〈〈τ, d〉〉−

D
= 〈〈τ, d〉〉+

D
= U1.

Property 2 (Done). We need to show that ∆; • `
doneD : L(τ(〈〈τ〉〉D). Given the definition of doneD,
we can show ∆; • ` λx.〈〉 : L(τ(〈〈τ〉〉D) by a
straightforward type derivation.
Property 3 (Effect sequencing). We need to show that
D D̀ d1 t d2 : CTL implies that D∗ ` (d1 t d2)∗ � d1

∗

and D∗ ` (d1 t d2)∗ � d2
∗. By symmetry, it suffices to

show the former:

(1) D D̀ d1 � d1 by CSUB-REFL

(2) D D̀ ⊥D � d2 by DSUB-BOT

(3) D D̀ d1 t ⊥D � d1 t d2 by (1–2), DSUB-JOIN

(4) D D̀ d1 � d1 t d2 by (3), d1 t ⊥D = d1

(5) D∗ ` (d1 t d2)∗ � d1
∗ by (4), Lemma 5.6.

Property 4 (Bottom and lifting).
1. To show that d1td2 = ⊥D if and only if d1 = d2 =
⊥D, we consider the quotienting of D.

2. We must also show that if D D̀ d1 t d2 : CTL and
d1 t d2 6= ⊥D, then there exist some d′1 6= ⊥D

and d′2 6= ⊥D with particular properties. For each
di

(i∈{1,2}), if di = ⊥D then let d′i = L; otherwise,
let d′i = di . This ensures that 1–2) each D D̀ di � d′i ,
3) d1 t d2 = d′1 t d′2, and 4) d′1 t d′2 is well formed.

Property 5 (New rules).
1. We show that D D̀ d � ξ implies that D∗ ` ξ � d∗,

by induction on the derivation. The only new cases
to consider are for rules D-B-QUAL and D-B-JOIN.

These require a lemma about the translation of quali-
fier subsumption derivations.

2. We show that D D̀ d1 � d2 implies that D∗ ` d2
∗ �

d1
∗, again by induction on the derivation. The only

nontrivial case is when

D D̀ d1 � d′1 D D̀ d2 � d′2
D D̀ d1 t d2 : CTL D D̀ d′1 t d′2 : CTL

D D̀ d1 t d2 � d′1 t d′2
.

We show that D∗ ` (d′1 t d′2)∗ � (d1 t d2)∗ by
exhaustively enumerating the possibilities for d1, d2,
d′1, and d′2 such that the premises hold.

3. For translation of kinding, we show that D C̀ d : CTL
implies that D∗ ` d∗ : QUAL. We proceed, as usual,
by a simple induction on the derivation, considering
the two new kinding rules for delimited continuation
effects.

4. For translation of typing, we use the generalized in-
duction hypothesis as in the proof of Lemma 5.7.
There are two cases, for shift and reset, each of which
requires a large type derivation.

6.2 Shift and Reset with Answer-Type Modification
The type-and-effect system for shift and reset described in
§6.1 requires that all answer types—the type of all reset
expressions—be U1. Our second example adds answer-type
modification (à la Danvy and Filinski 1989), which allows
shift to capture and compose continuations of differing types
and allows the answer delivered by reset to have any type.
Both the syntax and CCoS translation are as in §6.1, but

D À i : k (kinding answer-type effects)

A-K-EFFECT
D À ξ1 : QUAL · · · D À ξk : QUAL

D À t1 : ? D À t2 : ?

D À
ξ1,...,ξk (t1 � t2) : CTL

D À a � ξ (qualifier bound for answer-type effects)

A-B-QUAL

D À ξ � ξ1 · · · D À ξ � ξj
D À t1 : ? D À t2 : ?

D À
ξ1,...,ξj (t1 � t2) � ξ

D À a1 � a2 (answer-type effect subsumption)

ASUB-BOT

D À
Ξ(t� t) : CTL

D À ⊥A � Ξ(t� t)

ASUB-L
D À

Ξ(t1 � t2) : CTL

D À
L(t1 � t2) � Ξ(t1 � t2)

ASUB-TOP

D À
Ξ(t1 � t2) : CTL

D À
Ξ(t1 � t2) � U(t1 � t2)

ASUB-JOIN

D À
Ξ1(t1 � t2) � Ξ′1(t1 � t2)

D À
Ξ2(t1 � t2) � Ξ′2(t1 � t2)

D À
Ξ1,Ξ2(t1 � t2) � Ξ′1,Ξ

′
2(t1 � t2)

D; G À e : t ; a (answer-type effect expression typing)

A-T-RESET

D; G À e : t0 ; Ξ(t0 � t)

D; G À reset e : t ;⊥A

A-T-SHIFT

D; G, x:ξ(t1
⊥A−−(t2) À e : t0 ; Ξ(t0 � t)

D; G À shiftx in e : t1 ; Ξ,ξ(t2 � t)

Figure 14. Statics for answer-type effects

we change the definition of control effects as follows. An
answer-type control effect a is either the pure effect ⊥A or
a collection of qualifiers ξ1, . . . , ξj along with old and new
answer types t1 and t2:

a ::= ⊥A (pure)
| Ξ(t1 � t2) (a control effect)

where Ξ ::= ξ1, . . . , ξj

A type derivation D; G À e : t ; ξ1,...,ξj (t1 � t2) may be
understood as follows:

• The collection of qualifiers ξ1, . . . , ξj keeps track of all
the ways that expression e may treat its context; expres-
sion e may be considered to treat its context according
to any qualifier ξ that lower bounds all of ξ1, . . . , ξj . We
need a collection of qualifiers because qualifiers do not,
in the presence of qualifier variables, have greatest lower
bounds.

• Evaluated in a context expecting type t whose original
answer type was t1, expression e changes the answer
type to t2. This means that our type-and-effect judgment,
disregarding substructural considerations, is equivalent
to the type judgment that Danvy and Filinski write as
Γ, t1 ` e : t, t2.

For answer-type modification effects, we define the par-
tial sequencing operation as follows:

⊥A ◦ a = a

a ◦ ⊥A = a

Ξ(t′� t2) ◦ Ξ′(t1 � t′) = Ξ,Ξ′(t1 � t2).

Any other cases are undefined. Then we define answer-type
modification effects as the triple (A,⊥A, ◦).

The new type rules for answer-type effects appear in
Figure 14. For the most part, these rules treat the collection
of qualifiers ξ1, . . . , ξj similarly to the delimited continua-
tion effect ξ1 t · · · t ξj from §6.1. However, there is some
subtlety to the definition of answer-type effect subsumption:
the only non-bottom effects related by subsumption are those
whose before and after answer types match, pairwise, but
the pure effect ⊥A is less than any effect whose before and
after answer types match each other (rule ASUB-BOT). This
makes sense, as pure expressions do not change the answer
type.

The rules for typing shift and reset expressions are a
hybrid of the rules from §6.1, which they follow for the
qualifier portion, and the rules from Danvy and Filinski
(1989), which they follow for maintaining answer types.

Type safety. To prove type safety for λURAL(C) extended
with answer-type modification, we define the translation pa-
rameter as follows:

〈〈τ,⊥A〉〉−A = τ

〈〈τ, Ξ(t1 � t2)〉〉−
A

= t1
∗

〈〈τ,⊥A〉〉+A = τ

〈〈τ, Ξ(t1 � t2)〉〉+
A

= t2
∗

doneA = λx.x

a∗ =

L if a = ⊥A

ξ if a = ξ(t1 � t2)

U otherwise

Theorem 6.2 (Answer-type effect properties).
Answer-type modification effects (A,⊥A, ◦) satisfy Proper-
ties 1–5.

6.3 Exceptions
We add exceptions to λURAL(C) as follows. We assume a
set Exn of exception names ψ and extend the syntax of
expressions:

ψ ∈ Exn (exceptions)
e ::= · · · | raise ψ | e1 handle ψ → e2 (expressions)

While these exceptions are simple tags, it would not be
difficult to have exceptions carry values. As in the previous
example, we define the dynamics by the CCoS translation.
However, because the CCoS translation for exceptions is
type directed, we show how the type system is extended first.

To type exceptions, we instantiate λURAL(C) as follows.
Exception effects, Ψ, are sets of primitive exception names
ψ:

Ψ ::= ∅ (pure)
| α (an effect variable)
| {ψ} (a single exception)
| Ψ1 ∪Ψ2 (exception set union)

Let X be the set of exception effect sets (Ψ). Then we
define exception effects as the triple (X,∅,∪). We consider
exception effects as true sets, not merely as the free algebra
generated by the syntax. Thus, the subsumption order is set
containment:

D X̀ Ψ1 � Ψ2 (exception effect subsumption)

XSUB-SUBSET
Ψ1 ⊆ Ψ2 D X̀ Ψ1 : CTL D X̀ Ψ2 : CTL

D X̀ Ψ1 � Ψ2

The other new type rules for exception effects appear in
Figure 15. Note that rule X-B-RAISE says that all exception
effects are bounded below by A; this is because exceptions
allow an expression to discard its context but not duplicate

D X̀ i : k (kinding exception effects)

X-K-SING

D X̀ {ψ} : CTL

X-K-UNION
D X̀ Ψ1 : CTL D X̀ Ψ2 : CTL

D X̀ Ψ1 ∪Ψ2 : CTL

D X̀ Ψ � ξ (qualifier bound for exception effects)

X-B-RAISE
D X̀ Ψ : CTL

D X̀ Ψ � A

D; G X̀ e : t ; Ψ (exception effect expression typing)

X-T-RAISE
D X̀ t : ?

D; • X̀ raise ψ : t ; {ψ}

X-T-HANDLE
D X̀ G G1 �G2

D; G1 X̀ e1 : t ; {ψ} ∪Ψ
D; G2 X̀ e2 : t ; Ψ D X̀ G2 � A

D; G X̀ e1 handle ψ → e2 : t ; Ψ

Figure 15. Statics for exception effects

it. (Of course, the empty exception set ∅ is bounded by L by
rule C-B-PURE.)

To define the CCoS translation, we assume a run-time
representation of exceptions and exception sets as follows:

• There is an exception pretype exn such that ∆ ` exn : ?.
• Each exception ψ is represented by a λURAL value ψ∗,

such that ∆; • ` ψ∗ : Uexn.
• For each exception ψ and pair of λURAL values v1 and v2,

there is a λURAL value [v1, v2]ψ such that

[v1, v2]ψ ψ
∗ 7−→ v1 ψ

∗
ψ 6= ψ′

[v1, v2]ψ ψ
′∗ 7−→ v2 ψ

′∗ .

∆; Γ ` v1 : ξ1(Uexn(τ) ∆ ` ξ1 � ξ
∆; Γ ` v2 : ξ2(Uexn(τ) ∆ ` ξ2 � ξ

∆; Γ ` [v1, v2]ψ : ξ(Uexn(τ)

Intuitively, [v1, v2]ψ performs case analysis on exception
values: when applied to exception ψ, it passes the exception
to v1, and when applied to any other exception, it passes the
exception to v2.

For exception effects, we use a typed CCoS translation
that takes an extra parameter: the exception effect of the ex-
pression to be translated. We assume that the generic CCoS
has been updated to translate type derivations as well in order

to propagate control effects correctly. Then we can give the
CCoS translation for exceptions:

Jraise ψKΨ
X

= λ . inl ψ∗

Je1 handle ψ → e2KΨ
X

= λy. [v, y] (Je1K
{ψ}∪Ψ
X (λx. inr x))

where v =

{
λ .Je2K∅X y if Ψ = ∅;
[λ .Je2KΨ

X y, λx. inl x]ψ if Ψ 6= ∅.

Example. The first Scala example from §1 may be recast
in λURAL (with references, pairs, and integer division) as
follows:

λz1 z2.pair (ref (z1 / z2)) (ref (z2 / z1))

Let us assume the following (monomorphic, for brevity)
types for the operations:

· / · : U(Uint ∅−(U(Uint {DivBy0}−−−−−(Uint))

ref : U(Uint ∅−(Lintref)

pair : U(Lintref ∅−(L(Lintref ∅−(L(Lintref⊗ Lintref)))

To type the application of term pair (ref (z1 / z2)) to term
ref (z2 / z1), according to premise (6) of rule C-T-APP, the
effect of the operator must be bounded by the qualifier
of the type of the operand. The effect of the operator,
pair (ref (z1 / z2)), is {DivBy0}, based on the type of /;
the type of the operand, ref (z2 / z1), is Lintref. But • X̀

{DivBy0} � L is not derivable—a term that can raise an
exception does not necessarily treat it context linearly—so
the original code has a type error in λURAL(C).

We can repair the example, as we did in §1, by explicitly
ordering the effects so that both divisions happen before any
references are allocated:

λz1 z2.(λx1 x2.pair (refx1) (refx2)) (z1 / z2) (z2 / z1)

Term λx1 x2.pair (refx1) (refx2) has an unlimited type:

U(Uint ∅−(U(Uint ∅−(L(Lintref⊗ Lintref)))

Thus, it does not matter that its argument, z1 / z2, has non-
trivial effect. Similarly, because the codomain of that type is
unlimited, it is permissible that the second argument, z2 / z1,
has non-trivial effect as well. Thus, the repaired example is
typeable in λURAL(C).

Type safety. To prove type safety for λURAL(C) extended
with exceptions, we define the translation parameter as fol-
lows:

〈〈τ,Ψ〉〉−
X

= 〈〈τ,Ψ〉〉+
X

= L(Uexn⊕ τ)

doneX = λx. inr x

Ψ∗ =

{
L if Ψ = ∅
A if Ψ 6= ∅

Theorem 6.3 (Exception effect properties).
Exception effects (X,∅,∪) satisfy Properties 1–5.

The proofs of theorems in this section appear in the ex-
tended version of this paper, available at www.ccs.neu.edu/
∼tov/pubs/substructural-control.

7. Conclusion
We began this study with the desire to add linear types to
Alms, a general-purpose programming language with affine
types and exceptions. The treatment of exceptions in §6.3
points the way toward that goal. One question that remains,
however, concerns the pragmatics of checked exceptions in a
higher-order language such as Alms, where latent exception
effects are likely to appear on many function arrows. We
believe that with appropriate defaults most function arrows
will not require annotation, but more research is required in
that direction.

Another potential direction for future research is to con-
sider how other control effects fit into our general framework.
We suspect that some control operators common to impera-
tive languages, such as return, break, and goto, absent first-
class labels, would be straightforward. More exotic forms
of control may be harder. Some control operators, such as
shift0, are very difficult to type even in a simpler setting
(Kiselyov and Shan 2007), which is why have not considered
them. Others, such as Felleisen’s prompt and control (1988)
are probably tractable with a more expressive version of our
generic type system, because effects need to reflect not only
how an expression treats its continuation, but how a continu-
ation, if captured and reinvoked, treats its new continuation.

For the cases we consider, however, λURAL(C) provides
a simple and generic framework for integrating substruc-
tural types and control effects. We have shown that our type
system for λURAL(C) is sound provided that the particular
instantiation of control effects meets several criteria, and we
have exhibited three instances of control effects that meet
these criteria. We contend that this provides a solid ground-
ing for the extension of realistic substructural programming
languages with control effects.

Acknowledgments
We wish to thank Vincent St-Amour, Sam Tobin-Hochstadt,
Aaron Turon, and the anonymous referees for their helpful
comments, discussion, and corrections. This research was
supported in part by AFOSR grant FA9550-09-1-0110.

References
A. Ahmed, M. Fluet, and G. Morrisett. A step-indexed

model of substructural state. In Proc. 10th ACM SIG-
PLAN International Conference on Functional Program-
ming (ICFP’05), pages 78–91, Tallinn, Estonia, Septem-
ber 2005.

http://www.ccs.neu.edu/home/tov/pubs/substructural-control/
http://www.ccs.neu.edu/home/tov/pubs/substructural-control/
http://dx.doi.org/10.1145/1086365.1086376
http://dx.doi.org/10.1145/1086365.1086376

J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-
oriented programming. In Proc. Onward!, pages 1015–
1022, Orlando, FL, USA, October 2009.

K. Asai and Y. Kameyama. Polymorphic delimited continu-
ations. In Programming Languages and Systems, volume
4807 of Lecture Notes in Computer Science, pages 239–
254. Springer, 2007.

A. Barber. Dual intuitionistic linear logic. Technical Report
ECS-LFCS-960347, Laboratory for Foundations of Com-
puter Science, University of Edinburgh, September 1996.

G. M. Bierman. On Intuitionistic Linear Logic. PhD thesis,
University of Cambridge, August 1993.

W. Clinger, ed. The revised revised report on Scheme or
an UnCommon Lisp. AI Memo No. 848, MIT AI Lab,
Cambridge, MA, USA, August 1985.

O. Danvy and A. Filinski. A functional abstraction of typed
contexts. Technical Report DIKU Rapport 89/12, Com-
puter Science Department, University of Copenhagen,
Denmark, 1989.

M. Felleisen. The theory and practice of first-class prompts.
In J. Ferrante and P. Mager, editors, Proc. 15th An-

nual ACM Symposium on Principles of Programming
Languages (POPL’88), pages 180–190, San Diego, CA,
USA, January 1988.

J.-Y. Girard. Linear logic. Theoretical Computer Science,
50(1):1–102, 1987.

J. B. Goodenough. Structured exception handling. In
Proc. 2th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL’75), pages 204–224, Palo
Alto, CA, USA, January 1975.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison Wesley, 1996.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney. Region-based memory management in
Cyclone. In Proc. 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI’02), pages 282–293, Berlin, Germany, June 2002.

O. Kiselyov and C. Shan. A substructural type system
for delimited continuations. In Proc. 8th International
Conference on Typed Lambda Calculi and Applications
(TLCA’07), pages 223–239, Paris, France, June 2007.

P. J. Landin. A generalization of jumps and labels. Technical
report, UNIVAC Systems Programming Research, 1965.

J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In J. Ferrante and P. Mager, editors, Proc. 15th
Annual ACM Symposium on Principles of Programming
Languages (POPL’88), pages 47–57, San Diego, CA,
USA, January 1988.

K. Mazurak and S. Zdancewic. Lolliproc: to concurrency
from classical linear logic via Curry-Howard and control.
In Proc. 15th ACM SIGPLAN International Conference

on Functional Programming (ICFP’10), pages 39–50,
Baltimore, MD, USA, September 2010.

G. Morrisett, A. Ahmed, and M. Fluet. L3: A linear language
with locations. In Proc. 7th International Conference
on Typed Lambda Calculi and Applications (TLCA’05),
pages 293–307, Nara, Japan, April 2005.

M. Odersky and M. Zenger. Scalable component ab-
stractions. In Proc 20th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA’05), pages 41–57, San Diego, CA,
USA, October 2005.

J. C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In Proc. ACM Annual Conference,
volume 2, pages 717–470, Boston, MA, USA, August
1972.

N. Swamy, J. Chen, and R. Chugh. Enforcing stateful
authorization and information flow policies in Fine. In
A. D. Gordon, editor, Proc. 19th European Symposium on
Programming (ESOP’10), volume 6012 of Lecture Notes
in Computer Science, pages 529–549, Paphos, Cyprus,
March 2010.

H. Thielecke. From control effects to typed continuation
passing. In Proc. 30th Annual ACM Symposium on
Principles of Programming Languages (POPL’03), pages
139–149, New Orleans, LA, USA, January 2003.

J. A. Tov and R. Pucella. Practical affine types. In Proc. 38th
Annual ACM Symposium on Principles of Programming
Languages (POPL’11), pages 447–458, Austin, TX, USA,
January 2011.

P. Wadler. There’s no substitute for linear logic. In
Proc. 8th International Workshop on the Mathematical
Foundations of Programming Semantics (MFPS’92), Ox-
ford, UK, April 1992.

D. Walker. Substructural type systems. In B. C. Pierce,
editor, Advanced Topics in Types and Programming Lan-
guages, pages 3–44. MIT Press, Cambridge, 2005.

http://dx.doi.org/10.1145/1639950.1640073
http://dx.doi.org/10.1145/1639950.1640073
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.9907
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.9907
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
http://research.microsoft.com/en-us/um/people/gmb/papers/thesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1891
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1891
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4822
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4822
http://dx.doi.org/10.1145/73560.73576
http://dx.doi.org/10.1145/73560.73576
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1145/512976.512997
http://java.sun.com/docs/books/jls/
http://java.sun.com/docs/books/jls/
http://dx.doi.org/10.1145/512529.512563
http://dx.doi.org/10.1145/512529.512563
http://okmij.org/ftp/continuations/index.html#delimcc-type
http://okmij.org/ftp/continuations/index.html#delimcc-type
http://dx.doi.org/10.1023/A:1010068630801
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1007/11417170_22
http://dx.doi.org/10.1007/11417170_22
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1007/978-3-642-11957-6_28
http://dx.doi.org/10.1007/978-3-642-11957-6_28
http://dx.doi.org/10.1145/604131.604144
http://dx.doi.org/10.1145/604131.604144
http://www.ccs.neu.edu/home/tov/pubs/alms/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7472

	Substructural Types and Control
	Related Work and Comparison
	Syntax and Semantics of λ-URAL
	Operational Semantics
	Static Semantics

	Generic Control Effects
	The Control Effect Parameter
	Updated Syntax
	Static Semantics of λ-URAL(C)

	The Generic Theory
	The Translation Parameter
	The Translation
	Parameter Properties
	Generic Type Safety

	Example Control Effects
	Shift and Reset
	Shift and Reset with Answer-Type Modification
	Exceptions

	Conclusion

