Solution of Hw 1, 4(e)

January 21, 2010

1 Problem 4(e)

Assume the sequence in part (c) was generated by the following process: first, a fair coin generates the first flip. Thereafter, each flip i is the same as the previous flip with probability gamma, and is otherwise the opposite. NOTE: the gamma parameter has a very different role in generating a sequence of flips than does the theta parameter from the lecture notes, so be aware.
1.1 Is there a setting of gamma that corresponds to using a fair coin for the entire sequence?

Yes, $\gamma=0.5$.
1.2 What is the maximum likelihood estimate of gamma for the sequence in part (c)?

$$
\begin{aligned}
\hat{\gamma} & =\frac{\# \text { of same-as-previous flip }}{\# \text { of flip }} \\
& =\frac{111}{299} \\
& =0.371
\end{aligned}
$$

1.3 Assume the gamma parameter was chosen for the sequence in part (c) to be 0.6 with probability 0.01 , or to be 0.4 with probability 0.99 . What's the MAP estimate of gamma given the sequence in part (c) and this prior knowledge?

$$
\begin{aligned}
p(\gamma \mid \text { sequence }) & \propto p(\text { sequence } \mid \gamma) p(\gamma)=\gamma^{111}(1-\gamma)^{188} p(\gamma), \\
p(\text { sequence } \mid \gamma & =0.6) p(\gamma=0.6)=0.6^{111} \times 0.4^{188} \times 0.01, \\
p(\text { sequence } \mid \gamma & =0.4) p(\gamma=0.4)=0.4^{111} \times 0.6^{188} \times 0.99
\end{aligned}
$$

As

$$
0.6^{111} \times 0.4^{188}<0.4^{111} \times 0.6^{188}
$$

and

$$
0.01<0.99
$$

we obtain

$$
p(\gamma=0.6 \mid \text { sequence })<p(\gamma=0.4 \mid \text { sequence }) .
$$

Therefore, the MAP estimate of γ is 0.4.
1.4 Assume the gamma parameter is Beta(3,3) distributed. What is the MAP estimate for gamma given the sequence in part (c) and this prior knowledge?

$$
\gamma_{\mathrm{MAP}}=\frac{111+3-1}{111+3-1+188+3-1}=0.373
$$

1.5 Now the fun part. One might hypothesize that a person's mental randomness is less like a fair coin than it is like the process described above, with a gamma value slightly lower than 0.5 . What does this hypothesis mean, in a single sentence of plain English?

A person's mental randomness is less likely to repeat the same coin orientation than a fair coin is.
1.6 To test the above hypothesis, compute the likelihood of your sequence from part (a) under the process with gamma=0.45. Is this higher or lower than that of a fair coin (i.e. $(1 / 2)^{50}$)? Do your results support or contradict the hypothesis?

From the data of the homework, every student's sequence supports the hypothesis.

