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ABSTRACT
We argue that a key to further advances in the fields of image analysis and compression is a better understanding of texture.
We review a number of applications that critically depend on texture analysis, including image and video compression,
content-based retrieval, visual to tactile image conversion, and multimodal interfaces. We introduce the idea of “structurally
lossless” compression of visual data that allows significant differences between the original and decoded images, which
may be perceptible when they are viewed side-by-side, but do not affect the overall quality of the image. We then discuss
the development of objective texture similarity metrics, which allow substantial point-by-point deviations between textures
that according to human judgment are essentially identical.

Keywords: Image quality, human visual perception, structurally lossless compression, structural texture similarity, domi-
nant colors, image segmentation, semantic analysis.

1. INTRODUCTION
The fields of image analysis and compression have made significant advances during the last two decades, incorporating
sophisticated signal processing techniques and models of human perception. One of the keys to further advances is a
better understanding of texture. Even though the importance of texture for image quality and semantic analysis is obvious,
it is surprising that it has received relatively little attention. For example, image compression techniques have relied on
point-by-point comparisons – whether in the original image domain or in a transform domain – that cannot adequately
exploit the stochastic nature of texture.1 Similarly, computer vision has mostly focused on object detection rather than the
perception of materials, which is critically dependent on texture.2 A variety of other fields rely on texture analysis, such
as graphics, multimodal interfaces, and we will see, sense substitution. In this paper, we review a number of applications
that critically depend on texture analysis, and then focus on the importance of compact texture representations and texture
similarity metrics. Our primary focus will be on natural textures.

We first look at image/video compression. In order to achieve high compression ratios while maintaining image quality,
image compression algorithms must eliminate all redundant and irrelevant information. The state of the art is dominated by
transform-based techniques, including subband and wavelet decompositions. Such techniques work well in smooth regions
of the image, where all the energy is concentrated in the low frequency coefficients, but are not very efficient in textured
and transition (i.e, containing edges) regions, where there is a lot of energy in the high frequencies. The key to overcoming
this problem is better prediction. In fact, better prediction has been the key to the success of video compression algorithms,
which use sophisticated motion compensation techniques. This has worked well for transition regions, but the benefits of
prediction in textured regions have been limited due to the inability of existing quality metrics to predict perceptual texture
similarity.

Another application that critically depends on texture analysis is image classification and retrieval. Most existing
approaches3, 4 rely on the extraction of low-level features, such as color, texture, and shape. Ideally such features must be
linked to objects in the scene. However, since the detection of objects is quite difficult, an alternative approach is to rely
on image segments or fixed-size blocks. Fixed-size blocks are the simplest but may lead to misclassification, as they may
not follow object boundaries. The success of this approach thus depends on the availability of semantically meaningful
segmentations.5 A recently proposed approach6 is based on spatially adaptive color and spatial texture features, and
combines an understanding of image characteristics with perceptual models to segment natural scenes into perceptually
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uniform regions. A third alternative relies on Lempel-Ziv incremental parsing to decompose an image into variable-
size rectangular patches, which provide an asymptotically optimal representation for image compression and retrieval
applications.7, 8 In all of these cases, the content of the regions – as well as their context within an image – must be
analyzed to obtain semantic information. For example, in Refs. 9–13, the extraction of region-wide color and texture
features and segment location were used for segment classification. Segment size, boundary shape, and properties of
neighboring segments can be used to further improve classification accuracy. Another approach for segment classification
is the direct comparison of the segment textures with reference textures. This depends on the existence of texture similarity
metrics, which is one of the main focus points of this paper. We will discuss the importance of structural texture similarity
metrics in the retrieval of perceptually equivalent textures.

Image segmentation into perceptually uniform regions, combined with texture analysis of the resulting segments is
also the basis of a new approach for converting images into tactile patterns. This can help provide greater accessibility
to the handicapped (visually impaired) segment of the population. In Ref. 14, Pappas et al. proposed a segmentation-
based approach for transforming visual to tactile information. The main idea is to map each image segment into a distinct
tactile pattern that conveys the same information. The mapping is not obvious because, while for some attributes of visual
textures (e.g., directionality, regularity) there are straightforward tactile analogs, for others (e.g., color) there is no obvious
correspondence. It is thus necessary to assign an arbitrary mapping from visual concept (e.g., green grass, blue mountains)
to tactile pattern. Pappas et al. refer to these as indirect semantic mappings in contrast to direct mappings, which are also
based on semantics. Of course, both can be used, but in either case, texture analysis is key to the mapping. Finally, acoustic
signals can be used to enhance or modify the perception of the tactile patterns.

The last observation leads to the importance of multimodal interfaces, whereby the joint perception of visual, acoustic,
and tactile textures is considered. Such interfaces are important for the next generation of interactive environments, which
will enable telepresence and natural interfaces for communication, commerce, entertainment, education, and medicine,
and of course, provide greater accessibility to the handicapped segment of the population (visually impaired or hearing
impaired). Initial results in this direction have been reported in Ref. 15. Again, texture analysis and similarity metrics are
key here, not only for visual textures, but also for tactile and acoustic, as well as multimodal textures.

The development of texture similarity metrics has been inspired in part by recent research in the area of texture analysis
and synthesis. Several authors have presented models for texture analysis/synthesis using multiscale frequency decompo-
sitions.16–23 The most complete results were presented by Portilla and Simoncelli,23 who developed a elaborate statistical
model for texture images that is consistent with human perception. The model is based on the “steerable filter” decompo-
sition24, 25 and captures a very wide class of textures. A related problem is that of generating a texture based on a small
sample. Efros and Freeman proposed a technique for stitching together patches from an existing texture to generate a
bigger texture.26 The key to their approach is to ensure continuity between block boundaries. Even though in such cases
the similarity is implied by the way the texture is constructed, and verified by perceptual evaluations, it is nevertheless
important to have objective similarity metrics for evaluating the quality of the resulting textures.”

The development of objective metrics for texture similarity is considerably more challenging than that of traditional
image quality metrics because there can be substantial point-by-point deviations between textures that according to human
judgment are essentially identical. Such metrics are important not only for image analysis and retrieval applications, but
also for image coding applications in which significant changes in the image are permissible, as long as the perceived
image quality is unaffected, even though in a side-by-side comparison there may be clearly perceptible differences.

The impetus to develop metrics that deviate from traditional point-by-point fidelity was initiated by the introduction
of a broad class of new metrics, the structural similarity metrics (SSIM),27 which attempt to incorporate “structural”
information in image comparisons. Unlike traditional metrics, SSIMs can give high similarity scores even to images with
significant pixel-wise differences. The goal is allow deviations that do not affect the structure of the image, which should
be what ensures perceptual similarity. Wang et al. have proposed a number of different metrics, both in the space domain
(SSIM)27 and in the complex wavelet domain (CWSSIM).28 However, as we will argue below, these metrics still rely
on cross-correlations between the two images, and are thus too constrained to capture the perceptual similarity of two
textures. In order to overcome such limitations, Zhao et al.29 proposed a structural texture similarity metric (STSIM) that
relies entirely on local image statistics, and is thus completely decoupled from point-by-point comparisons. Zujovic et
al. further developed this idea in Ref. 30, and applied it to the problem of “known-item search”31 with very encouraging
results.32



As we saw above, a variety of applications can make use of structural texture similarity metrics. Each application
imposes its own requirements on metric performance. Thus, in image compression it is important to ensure a monotonic
relationship between measured and perceived distortion, while in image retrieval it may be sufficient to distinguish between
similar and dissimilar textures, or to retrieve only textures that are perceptually “identical” to the query texture, as would
have been the case if they were different pieces of the same perceptually uniform texture. When relative similarity is
important, one should distinguish between the cases when an absolute similarity scale is important, from those where a
relative scale may be adequate.

In the remainder of this paper, Section 2 introduces the idea of “structurally lossless” compression. Section 3 discusses
content-based retrieval applications of texture similarity. A review of structural texture similarity metrics is presented in
Section 4, while Section 5 discusses color similarity metrics.

2. STRUCTURALLY LOSSLESS IMAGE COMPRESSION
Even though storage capacity and transmission bandwidth have been growing, the rapidly increasing amount of visual
data and the demand for higher quality and resolution are expected to far outweigh the gains in storage and bandwidth,
thus making it imperative to seek higher degrees of compression. On the other hand, the state of the art in image and
video compression is quite advanced, reaching the limit of what is possible with conventional approaches, and making it
increasingly difficult to further squeeze the bit rate. However, image and video compression is still far from approaching
the efficiency of the human brain in storing visual information. Thus, any further gains in compression efficiency will have
to come from a better understanding of human perception.

Depending on the application (i.e., quality and bandwidth constraints), image compression ranges from lossless com-
pression, to mathematically lossy but perceptually lossless compression, to visually lossy compression. By perceptually
lossless, we mean that the compressed image is visually indistinguishable from the original image in a side-by-side com-
parison. The development of perceptually lossless compression techniques and associated perceptual similarity metrics33, 34

was a significant advance over previous techniques that made only implicit use of the HVS characteristics. They are based
on the notion of just noticeable distortion (JND), and typically require extensive subjective tests to establish the associated
thresholds and metric parameters.34

However, in many applications severe bandwidth limitations dictate the need for further compression. With present
methods, this can be done at the expense of severe compression artifacts or a significant reduction in image resolution. For
example, Ref. 35 discusses spatial resolution and quantization noise tradeoffs for scalable image compression. Hemami
et al. conducted systematic studies to quantify perceptual distortion in suprathreshold (visible artifacts) applications.36–39

However, rather than allowing the encoder to produce the bit rate by introducing distortions that result in significant
reductions in visual quality, an alternative is to ask the encoder to produce a reduced bit representation with essentially
the same visual quality as the original, by allowing the encoder to make substantial point-by-point changes that do not
change the visual quality of the image. Such changes may be perceptible when the original and decoded images are viewed
side-by-side, but are not noticeable when the reproduction is viewed by itself. In fact, the quality of the two images should
be comparable, so that and it should not be obvious which image is the original.

We refer to this new image compression goal as structurally lossless compression, and it is motivated from human per-
ception. In order to achieve high compression efficiency, the human brain makes significant compromises. For example,
rather than storing a point-by-point accurate matrix of image intensities, as conventional imaging systems and compres-
sion algorithms do, it is well known that the human brain stores images in symbolic form,40 thus allowing substantial
modifications in an image before they are detectable by the eye.

One approach to achieving structurally lossless compression is by allowing significant point-by-point variations in
textured areas. This can result in significant compression gains by utilizing spatial and temporal prediction of texture,
which would not be allowed by conventional metrics, which typically result in high point-by-point prediction errors for
perceptually indistinguishable textures, due to the stochastic nature of texture variations. In addition to the availability of
a good texture similarity metrics, the success of this approach depends on texture blending techniques26 that can eliminate
image stitching artifacts. To illustrate the potential success of texture prediction, Fig. 1 shows the image “Baboon,” which
has a lot of texture, and shows it again with 24% of its pixels replaced by blocks of similar texture. One can see that it is
very hard to distinguish the two images, unless they are magnified or are shown in quick temporal succession.



Figure 1. A 288 × 512 section of original “Baboon” image (left) and texture synthesized version (right) with 24% of the pixels between
rows 65 and 288 replaced by pixels from previous blocks.

As we discussed in the introduction, prediction is the key to the success of video compression algorithms, which use
sophisticated motion compensation techniques. Indeed, it is primarily improvements in motion-compensated prediction,
rather than transform coding of the residual (which has been considerably simplified) that have enabled the substantial
gains in compression efficiency offered by the new H264 video compression standard41 relative to the earlier standards
such as H26342 and MPEG-2.43, 44 The development of texture similarity metrics, in combination with texture blending
techniques, may lead to a dramatic increase in spatial and temporal predictions, thus resulting in significant gains in
compression efficiency.

3. CONTENT-BASED RETRIEVAL
As we discussed in the introduction, image classification and retrieval is critically dependent on texture analysis of image
segments or patches in order to classify them into semantic categories or to compare them with query textures. Depalov
et al.,9–13 proposed region-wide color and texture features and classification techniques for obtaining semantic labels for
each segment. An alternative approach for segment classification is the direct comparison of the segment textures with
reference textures. This relies on texture similarity metrics, which is the main focus of this paper.

As we mentioned in the introduction, different applications impose different requirements on metric performance.
There are several cases to consider in the context of content-based retrieval. For example, it may be important to retrieve
all similar images, and to discard the dissimilar ones. In such a case, the precise ordering of the textures is not important,
as long as there is a clear distinction between similar and dissimilar textures. Thus, Zhao et al.29 judge a metric by its
ability to discriminate between similar and dissimilar texture pairs. Thus, they consider a metric to be good if the values it
assigns to similar pairs of textures are consistently above the values it assigns to dissimilar textures. In other words, there
is an interval such that metric values above the higher edge of the interval indicate similarity and below its lower edge
indicate dissimilarity. The wider the interval the better the metric. Zhao et al.29 showed that STSIM, using the proposed
performance metric, outperforms CW-SSIM and a few of its variants. They reported also that SSIM and PSNR performed
poorly compared to their proposed metric.

Another more commonly used approach is to correlate the metric predictions with subjective assessments. This is of
course better suited for visually lossy compression applications, where it is important to quantify the amount of distortion.
In this case, it is suitable to use a linear correlation coefficient, since it captures how well the distances between human
judgments are preserved in the metric values. If, on the other hand, we are only interested in ranking the results and not in
the absolute scale, we may use the Spearman’s rank or Kendall’s tau correlation coefficient that capture how well the results
are ordered. In30 we found that this type of analysis does not yield very meaningful results when the test data includes a lot
of dissimilar texture pairs. In such cases, it is difficult even for humans to quantify texture similarity. If quantitative data
of this type is necessary, then it makes sense to limit it to comparisons between similar textures, and to ignore variations
in metric predictions and human comparisons below a certain threshold. The results of such analysis are reported in the
work of Zujovic et al.,30 where it is shown that including a broader set of statistics in the similarity metrics improves the
correlation coefficients, both linear and rank ones, even though the overall metric (as well as human) performance is not
satisfactory in consistently ordering pairs of texture patches on the basis of their similarity.

As we discussed, another type of search is the “known-item” search,31 whereby one is interested only in exact matches,
that is, samples of the same texture. One advantage of this approach is that the ground truth is known, and therefore
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Figure 2. Illustration of inadequacy of PSNR metrics

no subjective tests are required. Of course, this is true to the extent that the texture from which the “identical” pieces
are obtained is perceptually uniform. For the known-item search, a number of statistical measures have been developed
by the text retrieval community. Precision-at-one measures in how many cases the first retrieved document is relevant.
Mean reciprocal rank measures how far away from the first retrieved document is the first relevant one.45 Mean average
precision46 and precision-recall plots47 are also commonly used. Zujovic et al.32 performed extensive experiments for
this type of application, using nearly 280,000 pairs of texture images, to assess the performance of their metric to the well
known SSIM and CW-SSIM metrics, and demonstrated that it offers considerable advantages.

Finally, in evaluating the similarity of two textures, one has to take into account both the color composition and
the spatial texture patterns. In Ref. 30, Zujovic et al. proposed separate metrics for grayscale texture similarity and
color composition, and then combined them into a single metric. However, their subjective tests indicate that the two
attributes are quite separate and that there are considerable inconsistencies in the weights that human subjects give to the
two components.

In the next section, we review structural similarity metrics and their adaptations for texture analysis that were proposed
in Refs. 29, 30, and 32 in more detail.

4. REVIEW OF STRUCTURAL SIMILARITY METRICS
The Structural Similarity Metric (SSIM)27 introduced a new approach for assessing image similarity that focuses on high-
level properties of the human visual system (HVS). In contrast to utilizing explicit models of HVS characteristics, as
traditional perceptual quality metrics do,34 it captures the HVS properties implicitly. Multiscale frequency decompositions
like Gabor filters can be incorporated, and result in significant performance improvements. The inadequacy of point-by-
point metrics, like PSNR, is illustrated in Figure 2.



The idea is to compare statistics of images in a way that would adapt to luminance changes, performs contrast masking
and takes into account other high-level HVS characteristics. The images can be analyzed as a whole or on a sliding windows
basis, in which case the statistics are compared in corresponding windows. In the remainder of the paper, we will assume
that the analysis is done in sliding windows. Also, the analysis can be performed in the image domain or in the transform
domain. When complex wavelets are used as transform bases, the Complex Wavelet Structural Similarity Metric (CW-
SSIM)28 is obtained. Like Gabor filters, steerable pyramid filters are inspired by biological visual processing, and have
nice properties, such as translation and rotation invariance.48 In all cases, the idea is to compare the luminance, contrast,
and “structure” of image patches (windows), in the image or transform domain, in order to obtain a unique similarity score
based on these terms. Luminance is characterized by the mean of intensities within each window, contrast is characterized
by the standard deviation, and structure is characterized by the cross-correlation between corresponding windows in the
two images being compared.

Let us first introduce notation that will be used throughout the paper:

• x and y are images we want to compare.
• i, j are the spatial indices of the pixel values (or coefficients, in transform domain)
• k, l denote the subband indices, when subband analysis is used.
• For the various variables, the superscript denotes the subband and the subscript denotes the image.
• For images or subbands, the subband index is indicated in the subscript, followed by the spatial indices.
• All variables with names of the form Cn are small constants.
• N is the number of pixels in the window under consideration.
• E{·} denotes empirical average.

Assuming we are working in subband domain, the following equations describe necessary computations:
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The luminance term is defined as:
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the contrast term is defined as:
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and the structure term is defined as:
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For each position of the sliding window, a similarity value is computed as:

Qk
SSIM (x,y) = lk(x,y)αck(x,y)βsk(x,y)γ . (7)

Usually, the parameters are set to be α = β = γ = 1 and C2 = C1/2 to get:
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Typically, SSIM is evaluated in small sliding windows (e.g., 7 × 7), and the final SSIM metric is computed as the
average of Qk

SSIM (x, y) over all spatial locations and all subbands.
The main advantage of SSIM, and when extended to complex wavelet domain, the CW-SSIM, is that it moves away

from point-by-point comparisons, attempting to capture structural differences. On the other hand, the structure term, from
which the metric takes its name, is actually a point-by-point comparison.29 Therefore, Zhao et al.29 proposed removing
the structure term s in (6), and adding other subband statistics to account for texture characteristics, namely, the first-order
autocorrelation coefficients of transform coefficients in the horizontal and vertical directions. Even directional information
is implicitly accounted for when the statistics of the different orientation subbands are computed, the argument is that
directional information within each subband can be exploited in order to improve the performance of the metric.

The first-order autocorrelation term in the horizontal direction is defined as:

ρk
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x)}
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x)2

(9)

and in an analogous manner, in the vertical direction:
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x)}
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x)2

(10)

The values for the autocorrelation are bounded and lie in the interval [−1, 1]. To compare the autocorrelations of a particular
subband in the two windows and obtain values in the [0, 1] range, with 1 representing the best possible match, it was found
that the following works well:

ck
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y(0, 1)| (11)

ck
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x(1, 0) − ρk
y(1, 0)| (12)

For each sliding window in each subband, the previously defined l in (4) and c (5) terms are combined with the new
ones into the Structural Texture Similarity Metric (STSIM) as:
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Zhao et al. proposed two approaches for combining the results obtained for each window and each subband. One
approach is “additive,” whereby the total STSIM is calculated in the same manner as SSIM, taking the mean over spatial
locations in each subband, and then taking the mean across frequencies. The other approach is “multiplicative,” whereby
corresponding STSIM values for each spatial location get multiplied across the subbands, and then the final metric is the
spatial mean of these multiplied coefficients.

Zujovic et al.30 extended the ideas of Ref. 29 by including terms that compare cross-correlation terms between subbands
(STSIM-2). This was also motivated by the work of Portilla and Simoncelli,23 who base the justification for the use of
coefficient correlations within subbands on the fact that the steerable filter decomposition is overcomplete and on the
existence of periodicities in the textures.

They also argued that, while raw coefficients may be uncorrelated, the coefficients magnitudes are not statistically
independent, and large magnitudes in natural images tend to occur at the same spatial locations in subbands at adjacent
scales and orientations. The intuitive explanation may be that the “visual” features of natural images do give rise to
large local neighborhood spatial correlations, as well as large scale and orientation correlations.48 Therefore, while the
luminance, contrast and autocorrelation terms in (4), (5), (11) and (12) are calculated on the raw subband coefficients, the
cross-correlation statistics are computed on the magnitudes.

In STSIM-2, for a fixed orientation, the cross-correlations are computed between the magnitudes of subband coeffi-
cients at adjacent scales, and for a fixed scale, the cross-correlations are computed between the subband magnitudes of all
possible orientations.

The covariances between the coefficient magnitudes at subbands k and l are normalized by the variances of the two
subbands to obtain the cross-subband correlation coefficient:
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where |xk,i,j | and |xl,i,j | are the magnitudes of the coefficients of subbands k and l, respectively, and µk
x and µl

x are the
corresponding means of the magnitudes in the window. The expected value is an empirical average over the window.

Since the cross-subband correlation coefficients take values in the interval [−1, 1], they are compared as in (11) to
obtain a statistic that describes the similarity between the cross-correlations:
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Typically, p = 1. Note that the ck,l
0,0(x,y) values are in the interval [0, 1], just like the STSIM terms.

For a steerable pyramid with Ns scales and No orientations, we have a total of Ni = Ns · No + 1 subband images
(including the highpass but not the lowpass). For each of these subbands, the STSIM maps are computed as in (13). We
also have M maps with the new statistics, based on (15). The Nt = Ni + M matrices are then combined additively
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or multiplicatively to obtain a single similarity matrix. Finally, spatial summation over the matrix values gives a single
value for the similarity metric.

We have tested our most recently proposed metric (STSIM-2) in two of the aforementioned settings: comparing to
subjective tests and in the known-item search scenario. For the first case, our results were reported in Ref. 30; here, we
briefly discuss the Spearman rank correlation coefficients. The Spearman’s rank correlation coefficient for PSNR was
0.283, while SSIM performed considerably better, with 0.515; the CW-SSIM and STSIM metrics achieved even better
results with 0.579 and 0.598, respectively. STSIM-2 had the best overall performance with 0.659. This was obtained with
weights wt = 0.6 and wc = 0.4. However, as found by Markov et al.,49 these optimal weights vary for different datasets
and cannot be universally chosen.

To give intuitive meaning to these correlation coefficients, we also tested how humans performed against humans: for
each of the human subjects, we removed their judgments from the pool, and computed the mean grades of the remaining
subjects; then, we conducted the Spearman rank correlation tests, and, to be fair, we recalculated the correlation coefficients
between STSIM-2, and the same mean grades of the remaining subjects. The mean value of the correlations of human
judgments against one human was 0.794, as compared to the value of 0.661 for STSIM-2. As mentioned earlier, this
subjective test has shown that humans are inconsistent with grading similarity on the given dataset, and we would need to
redesign the tests to achieve better benchmark subjective ratings.

For the known-item search, comprehensive results are reported in Ref. 32. The conclusion was that STSIM-2 performs
best, with 77.2% success in retrieving the correct document as the first returned result (precision at one), whereas for PSNR
this happens only for 6% of the images. SSIM has a slightly better performance, with 8% success rate, while CW-SSIM
gives considerably better results with 63.6%. Mean average precision results also show a clear advantage for STSIM-2
(MAP = 0.75) over PSNR (0.095) ad SSIM (0.06), and a definite improvement over CW-SSIM, whose MAP is equal to
0.62.

5. COLOR SIMILARITY METRICS
Color is perhaps the most expressive of all the visual features and has been extensively studied in the image retrieval
research during the last decade.50 Determining color similarity or quality of color images is application-dependent, and
different objectives call for different approaches. In image compression applications, a straightforward approach for ex-
tending an image quality metric to color is to apply the grayscale metric to each of three color components in a trichromatic
space. This approach is suitable for lossless and visually lossy compression algorithms; for perceptually and structurally
lossless coding applications, the methods and metrics must be adjusted for the way humans perceive color, which may
be different from methods applicable in grayscale image analysis. An alternative approach that may be more effective in
image retrieval applications and perceptually and structurally lossless coding, is to use separate metrics for comparing the



grayscale textures and the color composition of an image, and then to use them separately or to combine them in order to
obtain one number. We will adopt this approach, since it is arguably more appropriate for our target applications.

The simplest approach for describing and comparing the color composition of images is to use color histograms and
simple histogram intersection metrics51 or a more sophisticated color quadratic distance.52 However, as shown in Refs. 50,
53, the human visual system cannot simultaneously perceive a large number of colors. People, in fact, see only a few
prominent colors in a given image, which are typically referred to as dominant colors. Thus, the color descriptors have
moved away from direct histogram acquisitions to more compact color descriptors, as in Refs. 6, 54, 55.

In addition, comparing the dominant colors of two images has to be trusted to more sophisticated techniques that
account better for the HVS properties. One of the best known techniques is the earth mover’s distance (EMD).56 EMD is
based on the minimal cost that must be paid to transform one color distribution into the other; informally speaking, EMD
measures how much work needs to be applied to move earth distributed in piles px so that it turns into the piles py.

An approach that follows the same philosophy as EMD is Optimal Color Composition Distance (OCCD) developed by
Mojsilovic et al.53 In this case, the color composition descriptors are the extracted dominant colors and their respective
percentages. OCCD is an approximation of EMD in the sense that it quantizes color percentages into units, thus transform-
ing the linear optimization problem of EMD into the weighted graph matching problem, which is solvable by deterministic
algorithms. The chosen color space is CIELAB (or L*a*b*), since it exhibits approximate perceptual uniformity, in the
sense that the Euclidean distance separating two similar colors is proportional to their visual difference.57

Since the appearance of an image is best described by the spatial distribution of features, rather than by individual
feature vectors,58 we are utilizing a sliding windows approach to assess color similarity, just like we did for texture. Given
the fact that, as we stated earlier, people don’t perceive a lot of different colors at the same time, and they perform local
averaging (as opposed to noticing all the detailed variations of colors), the first step in extracting the color composition is
image filtering. For this, we choose the adaptive clustering algorithm (ACA),59 which accounts for spatial variations in
the textures to segment the image into areas of uniform color. ACA can be used to perform local spatial averaging (using
a small window, typically 7 × 7) within regions while preserving region boundaries. This is important because blurring
across boundaries can create new colors that are not present in the image.

Since the OCCD computes the distance between two colors, their similarity can be rated as 1 − distance. Thus, as a
similarity measure, we use the map Qc(x,y) = 1 − OCCD. The mean of Qc(x,y) map is taken as the color similarity
measurement Qc. The color texture similarity is determined on a sliding windows basis, thus producing a color similarity
map, similar to those obtained for the grayscale texture.

As widely done in the literature,60, 61 we can then linearly combine the texture (Qt) and color (Qc) similarity measures
with appropriate weights, , wt and wc = 1− wt, to obtain a final similarity metric:

Qtotal = wt · Qt + wc · Qc (17)

However, as we discussed above and as reported in Refs. 30 and 49, it is difficult to find the right weights for such a
combined metric, as humans are not consistent in how they combine color and spatial texture information. Thus, in many
applications it is best to keep the two metrics separate.
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