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ABSTRACT 
 

Due to the mechanics of the Atomic Force Microscope (AFM), 

there is a curvature distortion (bowing effect) present in the ac-

quired images. At present, flattening such images requires human 

intervention to manually segment object data from the back-

ground, which is time consuming and highly inaccurate. In this 

paper, an automated algorithm to flatten lines from AFM images 

is presented. The proposed method classifies the data into objects 

and background, and fits convex lines in an iterative fashion. Re-

sults on real images from DNA wrapped carbon nanotubes (DNA-

CNTs) and synthetic experiments are presented, demonstrating the 

effectiveness of the proposed algorithm in increasing the resolu-

tion of the surface topography.  In addition a link between the 

flattening problem and MRI inhomogeneity (shading) is given and 

the proposed method is compared to an entropy based MRI inho-

mogeniety correction method. 

 

1. INTRODUCTION 
 

AFM functions by bringing a cantilever tip in physical contact 

with (or close proximity to) the sample, revealing nanometer scale 

topographical information [1]. Fig. 1 shows a block diagram of an 

AFM. The repulsive force from the surface applied to the tip 

bends the cantilever. The amount of bending is measured and fed 

back to control the vertical movement of the sample in order to 

keep the contact force constant. The vertical movement follows 

the surface profile and is recorded as the surface topography. 

AFM is used to capture images of cells, materials, biomolecules 

etc. An example of an AFM image of DNA-CNTs is shown in 

Fig. 2. 

Due to the mechanics of the AFM, there is a curvature distor-

tion (bowing effect) present in the acquired images. This can be 

observed in Fig. 2, where intensities are low in the middle of the 

image while they are high at the sides. The tip follows arc-like 

lines in the image, creating a spherical or parabolic shape, depend-

ing on the scanner [2]. To compensate for this (known as line 

flattening or plane fitting), objects in an AFM image are manually 

labeled to generate an exclusion mask, which usually is rigid (ei-

ther parallelogram or ellipse) and may not adequately represent 

the shape of the sought after object. The data of each row in the 

image outside the mask are fitted by a polynomial, which is sub-

sequently subtracted from all the data values of the line. 

With respect to the existing procedures, the processing of 

AFM images can be substantially improved for the following rea-

sons: 

(i) it is labor intensive and its automation is highly desirable; 

(ii) the manual labeling of the objects in the image is highly in-

accurate, since the objects are not easily distinguishable in 

the unflattened image and current software only allows for 

regular object shapes (i.e., circles, squares, etc); 

(iii) with the existing line flattening techniques, the fitted poly-

nomials are non-convex, in disagreement with the intrinsic 

physics, thus reducing the accuracy of the recovered surface 

topography. 

In this paper, a method to automatically detect and exclude ob-

ject points in a line and fit convex polynomials is presented. It is 

superior in comparison to the techniques used so far because it 

speeds up the process, uses less human resources, and produces 

more accurate results. In addition, a connection is made between 

the AFM problem and the shading (also referred to as MRI inho-

mogeneity, bias) correction encountered in magnetic resonance 

imaging [11].  

 
 

Fig. 1. AFM block diagram (WikiPedia Foundation). 
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Fig. 2. AFM image of DNA-CNTs (indicated with 3 arrows). 

 



This paper is organized as follows: Section 2 provides the 

problem formulation and discusses possible solutions; Section 3 

discusses the proposed algorithm in detail. Section 4 offers the 

results and discussion while Section 5 concludes with summary 

comments and possible future extensions. 

 

2. BACKGROUND AND PROBLEM FORMULATION  
 

To demonstrate the significance of convexity, an illustrative syn-

thetic example of a nanotube imaged by an AFM is shown in Fig. 

3. The dash-dot line represents the actual data recorded by the 

AFM, containing the bowing artifact, and the short-dashed line 

represents the recording if there were no curvature distortion. Due 

to tip convolution [1], there is blurring at the object boundaries. In 

an ideal scenario, the recorded height of the tube should be equal 

to the recorded width but due to the tip convolution problem the 

width is highly inaccurate. Therefore, the goal is to recover the 

height of the object while removing the bowing effect. The dashed 

line represents a non-convex polynomial least squares (LSQ) fit-

ted to the recorded curve. Subtracting this polynomial from the 

recorded line would completely exclude the object in the flattened 

image, and the information of its height would be lost. Enforcing 

convexity will ensure a better approximation (solid line) of the 

curvature distortion, and also will avoid possible exclusion of the 

object in the flattened image. An example of a line from the image 

in Fig. 2 is shown in Fig. 4. Notice the high curvature issue in this 

image.   

To the best of the authors’ knowledge there is no direct litera-

ture on the topic of automatic object detection in AFM images; 

however, principles from other application areas could be applied. 

For example, if object points are treated as outliers, then model-

fitting methods with outlier detection could be utilized. RANSAC 

(RANdom SAmples Consensus) [3] has the capability of dealing 

with a small number of outliers, but could easily fail when there 

are more object points (outliers) than background along the line. 

At the same time the method in [4], requires a priori knowledge of 

the expected maximum number of outliers, which implies know-

ledge of an object’s shape, information not always available. 

An apparent global 2D solution would be to fit parabolic sur-

faces on the whole image [5]. However, some artifacts in AFM 

images are intrinsic to the particular moment of operation (i.e. the 

scanning of each individual line), like vertical scanner drift, its 

internal non-linearities etc. Due to the presence of differing distor-

tions and noise properties on each individual scan line, the bowing 

effect cannot be accurately modeled with a single 2D parabolic 

surface. In [6] a Gaussian Mixture Model is employed to model a 

smooth, and distinguishable from the signal, background. In AFM, 

the background is neither smooth (the necessity of processing each 

line is stressed previously), nor can it be assumed that the back-

ground and foreground pixels are distinguishable only by their 

values (as can be seen in the original AFM image in Fig. 2). 
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Fig. 4.  Line 138 from the image in Fig. 2. 
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There is also an obvious relation to the MRI shading removal 

problem also known as MRI inhomogeneity [10],[11]. However, 

in [7], [8] either the noise is ignored, or a Gaussian signal distribu-

tion is assumed, and hence these methods are not applicable here. 

The algorithm presented in [9] can be applied to the 1D case (to 

accommodate the AFM problem), but histogram-based entropy 

estimation is not robust in the case of large object coverage, and 

the optimization routine does not enforce any convexity con-

straints. Nevertheless, in this paper the proposed method is com-

pared with the method in [9] that has been modified to accommo-

date the AFM 1D case. 

Each observed scan line can be modeled as: 

yi(x) = si(x) + pi(x) + ni(x), i=1,…, N,                (1) 

where yi(x), si(x), pi(x), ni(x) represent the raw data, signal, (con-

vex) polynomial, and noise, respectively; x is the horizontal coor-

dinate, i corresponds to the line number in the image, and N is the 

total number of lines. An example is shown in Fig. 4.  

The overall objective is to 

estimate si(x) given yi(x).                           (2) 

To find signal points in the line one could resort to image based 

object detection or segmentation. However, the presence of noise 

and the limited a priori knowledge of the object’s shape and size 

render both methods not applicable as general solutions.  

Since si(x) cannot be explicitly estimated, the problem can be 

best formulated as  

estimating pi(x) given yi (x),                        (3) 

where pi(x) is a convex polynomial.  

 

 
 

Fig. 3. Bowing effect illustration. 

 



3. PROPOSED APPROACH 
 

Each line in an AFM image is flattened iteratively in a two step 

process: (i) K-means based classification into object and back-

ground points, followed by (ii) convex polynomial fitting on the 

background points. In more detail the steps are: 

1. For x in Background, fit a convex polynomial ( ) ( )k

i
p x (k 

is the iteration number) and subtract it from the data  
( ) ( ) ( )( ) ( ) ( )k k k

i i i
z x y x p x= − ,                     (4) 

to get the vector )()( xz k

i
. Initially (1) ( ) ( )

i i
y x y x≡ , and 

all points are considered as background. 

2. Assuming a known noise variance 2

i
σ , decide if the line 

has objects based on: 
( ) 2var( ( ))k

i i
z x α σ> ⋅ ,                       (5) 

where α is a user given parameter and ))(var( )( xz k

i
 is 

the variance of )()( xz k

i
 from step 1. If Eq. 5 is satisfied 

continue, otherwise go to step 6. 

3. For all x, using the K-means algorithm, cluster the signal 
( ) ( )( ) ( ) ( )k k

i i i
c x y x p x= − ,                      (6)  

into Object and Background classes. 

4. Increase the iteration number k, and for x in Background 

)()(
)(

xyxy i
k

i = .                           (7) 

5. Repeat steps 1 to 4. 

6. No object data further detected, output the polynomial 

from the last iteration 
* ( )( ) ( )k

i i
p x p x= ,                          (8) 

and the x belonging to the final Object class. 

For 1+i  we could use )(* xp
i

as the initial polynomial thus 

skipping the fitting part of step 1, however we have witnessed 

cases where the polynomial coefficients differ significantly from 

line to line, thus this initialization could be rather destructive. This 

also strengthens our argument as to the need for 1D processing. 

In the following steps 1 and 3 are detailed, and noise variance 

estimation methods for step 2 are discussed. 

 

3.1. Fitting Convex Polynomials 

For fitting convex polynomials the following methods were tested: 

(a) Constrained optimization with Sequential Quadratic Program-

ming (SQP) [12], or sum-of-square (SoS) polynomials [13]; how-

ever, SQP might not converge if the initial guess is not close to the 

solution, and SoS is computationally very intensive. (b) Fitting 

ellipses [14] which are easy and fast to implement; however, they 

are restricted to only second degree curves and hence may not 

adequately fit the boundary points. (c) Direct least square fitting 

of convex polynomials as in [15]; this method, however, did not 

yield accurate results. The SQP method was finally chosen for its 

accuracy and computational efficiency. 

 

3.2. K-means clustering 
The variance test in step 2 is chosen since it can detect even small 

objects. The larger the object, the worse the first fit, the greater the 

variance, thus detection confidence grows with the object size, 

which is expected. The flattened line in Eq. 6 is clustered in Back-

ground and Object classes. This is a 1D rather than a 2D cluster-

ing procedure, given that the points are clustered only by their 
( ) ( )k

i
c x  value, not their x position. The background points should 

have lower values than the object points, and therefore the cluster 

with the smallest centroid is marked as “background”, while the 

one with the largest is labeled as “objects”. Since K-means clus-

tering is sensitive to initialization, the min and max of ( ) ( )k

i
c x  are 

chosen to be the initial centroids. The points marked as objects are 

excluded from the signal and a new polynomial is fitted.  

 

3.3. Noise estimation  

Estimation of the noise variance is of critical importance. In the 

current incarnation of the algorithm, the noise variance is esti-

mated on a per line basis. After the first fit, the polynomial is sub-

tracted from the original data, and local variances are found using 

a sliding window. The location of the peak in the local variances 

histogram is used as the estimated noise variance.  This method 

may not perform well if there is large object coverage in a line.  In 

the opposite case a global approach is utilized, where each line in 

an image is first fitted with a polynomial, then the variance of 

each line is measured, and the line with the minimum variance is 

used with the above procedure to find an estimate of the noise 

variance.  Alternatively, an approach similar to [16] can be used; 

however in this case difference operators are used to identify 

edges in images which are very susceptible to the noise in AFM 

images.  As a final option, the user can supply a variance estimate.  

 

4. RESULTS AND DISCUSSION 
 

To obtain the results the algorithm of section 3 was implemented 

in MATLAB (The Mathworks, Inc). The optimization toolbox and 

the function fmincon (which utilizes an SQP solver) were used to 

fit convex polynomials of degree two to five. Initially a polynomi-

al was LSQ fitted to the data.  If this polynomial was not convex 

the fmincon routine was used to find a convex polynomial with 

initial starting coefficients of the LSQ fitted polynomial.  The 

latter is used to ensure a good starting point, and improve the con-

vergence of the SQP algorithm. Parameter α was chosen to be 2 

(see section 4.2). In the subsequent sections, results on flattening 

Fig. 2 are first presented, followed by tests on synthetic raw line 

data to highlight the robustness of the algorithm. The proposed 

method is also compared with the mutual information method of 

[9] that has been modified.  The modifications are presented in 

section 4.2.  
 

 

4.1. Flattening of AFM images of DNA-CNTs 
The image of Fig. 2 was used as a test image. 3rd degree polyno-

mials were fitted to each line without any object detection (auto-

matic or manual) and subtracted from each line, as shown in Fig. 6 

(left). The height of the object at pixel location (139,390) 

(rightmost arrow) was 398 in the raw image while it was 413.8 in 

the flattened image. (Please notice in Figs. 2 and 6 that the mini-

mum values are negative.) In Fig. 6 (right) the result of applying 

the proposed algorithm, with 3rd degree polynomials is shown.  
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Fig. 6. Image in Fig. 2 (left) flattened with 3rd degree polynomials 

without any object detection; (right) flattened with 3rd degree 

polynomials using the proposed algorithm. 

 



The height of the object at (139,390) is 425. The dark patches 

around the object in the top image, Fig. 6, are an artifact of bad 

fitting and introduce a non-existent dent-like deviation of the 

background. On the bottom image, Fig. 7, it is shown that these 

dark patches have disappeared, due to the automated object detec-

tion, thus better preserving the (relative) object height. 

 

4.2. Flattening of synthetic AFM line data 
The entropy minimization in MRI imaging is usually performed 

using Powell’s multidimensional directional set method and 

Brent’s one-dimensional optimization algorithm [9]. Since it is 

important to process the images line-by-line, as stressed previous-

ly, this algorithm was adapted to fit the 1-D case. 

The objective function for minimization is the entropy of the 

line that resulted from subtracting the estimated polynomial from 

the original line. The optimization parameters are the coefficients 

of the polynomial. However, this method can determine the de-

sired parameters up to the additive constant, since entropy takes 

into account only the distribution of values, and not the values 

themselves. To overcome this, another constraint had to be im-

posed. After finding the optimal parameters, the estimated poly-

nomial is shifted so that the mean of the resulting line is positive, 

and the mean of absolute values of the resulting line is minimal. 

This ensures that the shifting constant is correct, even in the cases 

of large signal coverage. 

Raw AFM lines were synthesized following a similar con-

struct as in Fig. 5. The initial polynomials are of second degree, in 

accordance to the AFM physics [2]. Results obtained by the pro-

posed algorithm on a synthetic ( )y x  are shown in Fig. 8. In this 

figure it can be seen that: (i) 
*
( )p x  of 5th degree, calculated using 

only entropy minimization method (red solid curve) does not pro-

vide a very accurate estimate of the original p(x) (green solid); (ii) 

the convexity constraint is necessary, since the 5th degree uncon-

strained curve (dotted line) completely obfuscates the object; (iii) 

the polynomial 
*
( )p x  fitted by the proposed algorithm of 5th de-

gree with imposing convexity (dashed line) is relatively close to 

the original polynomial, and performing entropy minimization on 

that estimated polynomial gives a slightly better result (dash-dot 

line) and (iv) performing K-means classification after subtracting 

the estimated and adjusted polynomial (dash-dot) from the origi-

nal data (solid black) accurately detects the object (‘+’ markers). 

For more exhaustive experiments, various lines were gener-

ated with p(x) a binomial p(x)=ax2+bx+c, with (a, b, c) taking 

values from the set {(140.5, -0.5, -100), (60.5, -0.5, -50), (80.5, -

70.5, -50)}, and a pulse s(x) of height A {20, 75, 200, 400}, width 

w {10, 20, 100, 300} and delay L {50, 100, 200}. Gaussian ran-

dom noise of zero mean and variance σ2 {4, 16, 100, 400} was 

also added.  For a given noise variance, while the other parameters 

remained the same, the algorithm was run 20 times by fitting 2nd 

and 5th degree convex and 5th degree unconstrained polynomials, 

as well as polynomials obtained with entropy minimization algo-

rithm, initialized with LSQ fitted polynomial of 5th degree, and the 

2nd and 5th degree convex polynomials that resulted from the pro-

posed method. At each trial the height of the recovered signal 

defined as s*(x)= y(x)-p*(x) for x in Object, was estimated by its 

average A’=E{s*(x)}. The final estimate A* was the average of all 

20 trials A*=E{A’}.  Although the results are not shown the value 

of α=2 minimizes the ratio error and this value was used for all 

experiments.  

In Fig. 9 the ratio of estimated height and pulse height (A*/A) 

is shown as function of the ratio of pulse height and noise standard 

deviation (A/σ) fitted with the five polynomial types. It is evident 

that enforcing convexity is important since the unconstrained po-

lynomials fail to recover the signal and hence register large errors. 

Also, it should be noted that the polynomials obtained by the en-

tropy minimization method, when initialized with the resulting  

polynomial from our proposed method, perform better fitting in 

comparison to the proposed approach alone. However, this is not 

the case if the entropy minimization method is initialized by a less 

optimal solution.  

The entropy minimization method depends greatly on the in-

itialization parameters. Powell’s search method and Brent’s algo-

rithm are not converging to the global minimum, since the search 

for optimal parameters is conducted only within the vicinity of the 

initial parameters. It is very likely that this optimization algorithm 

will converge to one of the local minima, and this is illustrated in 

Fig. 10. The mean square error between the original polynomial 

and estimated one was used as a measure for comparison, as a 

function of the ratio of pulse height and noise standard deviation 

(A/σ). The solid line represents the ratio of MSE for the polyno-

mials found with entropy minimization, initialized with the result-

ing polynomial from our proposed method, and the MSE for poly-

nomial estimated by the proposed method (denoted as *kp  on 

the graph). The dashed line represents the ratio of MSE for the 

polynomial estimated by entropy minimization method, but initia-

lized with polynomial coefficients that are obtained by an LSQ 

polynomial fit, and MSE for *kp . It is apparent that the MSE 
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Fig. 7. (top), (bottom) detail of left and right image of Fig. 5 re-

spectively, to highlight the ability of the proposed algorithm to 

segment the data and eliminate negative contrast regions (ellipse). 
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Fig. 8. An example line fitted with various polynomials. 

 



depends on the initialization parameters and that in the case of bad 

initial guess, the procedure fails to yield satisfactory results. 

Another disadvantage of the entropy minimization method is 

that it does not enforce convexity of the fitted polynomials, and 

thus does not follow the intrinsic characteristic of AFM imaging. 

 

5. CONCLUSION 
 

In this paper a novel algorithm for the automatic line flattening of 

AFM images was presented. The algorithm offers distinct advan-

tages when compared to previous solutions, since it accommo-

dates convex polynomials thus increasing the accuracy of the fit, 

and can automatically detect the presence of objects and segment 

them using a K-means algorithm.  Results on real as well as syn-

thetic data were presented that showed the robustness of the pro-

posed method and its ability to resolve the relevant features of the 

objects. Line flattening is an integral part of AFM image analysis 

and precedes any other operation such as tip deconvolution, fea-

ture extraction, etc. Tests with more images will be performed in 

the future. In addition a new approach utilizing Bayesian estima-

tion theory is under investigation [17]. 
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Fig. 9. The ratio A*/A, for various polynomials, as a function of 

A/σ, fitted with 2nd and 5th degree convex, 5th degree unconstrained 

polynomials, and entropy minimization method initialized with 2nd 

and 5th degree convex polynomials 
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Fig. 10. The ratio A*/A, for various polynomials, as a function of 

A/σ, fitted with 2nd and 5th degree convex, and 5th degree uncon-

strained polynomials. 

 


