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ABSTRACT

The presence of computers in almost every sphere of today’s human life creates the

need for bridging the gap between human and machine perception of the world. It is a

difficult task, given that the complexity and structure of human mind and the architecture of

computers are not in accordance. Since humans are mainly visual creatures, developing ways

to compare the similarity of images which would mimic human perception is an important

issue. It has been shown that the traditional metrics that are intrinsic to the computer

representation of images, such as point-by-point comparisons, do not perform well when

compared to human judgments of similarity. Therefore, there have been several attempts

to incorporate structural information in image comparisons, such as Structural Similarity

Metrics (SSIM). More recently, Complex-Wavelet SSIM (CWSSIM) and Structural Texture

SIM (ST-SIM) have been explored in this context. The drawbacks of these approaches are

that they only use the gray-scale aspect of images, and do not utilize the (usually strong)

correlations between information contained in different subband decompositions of an image.

In this work, an attempt is made to overcome these drawbacks and juxtapose the results to

human similarity judgments for the purpose of evaluation and comparison. The information

about the color composition of images is incorporated into the similarity metrics. Also,

measures that represent inter-subband correlations are added to provide results closer to

human evaluations.
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CHAPTER 1

Introduction

Computers and other electronic gadgets have become ubiquitous in the lives of people.

From already old-fashioned desktop computers, new speedy laptops, the mini-yet-powerful-

computers present in our iPhones and MP3 players, to ”smart” ovens, the need for meaningful

communication between people and devices is on the rise. Naturally, the desire for computers

to perceive better the needs of humans and to have higher mutual understanding arises from

this, sometimes overwhelming, presence of machines in almost every aspect of everyday life.

Humans are mainly visual creatures. Vision is the sense humans mostly rely upon for

leading their lives because it provides immediate information about threats and opportunities

in their surroundings. Therefore, it is important to find a way for machines to perceive the

world as similarly to humans as possible for making human-machine interaction easier and

more intuitive. The processing of information obtained from the sense of vision activates a

large part of the brain cortex [1], leading us to the conclusion that it is a rather complicated

mechanism. As of now, there hasn’t been a system built by humans that can successfully re-

produce the functioning of the human brain and perform the complex data processing innate

to living beings. Thus, an effort is being made attempting to use the existing capabilities of

computers and the operations they can perform well in order to simulate human perception

of the world.

Today’s computers perform various tasks and one of their main uses is visual communi-

cation among humans and between humans and machines. In particular, when humans are



11

the end-users for applications, it is very important for computers to understand how people

see and to act accordingly. For most of these applications providing human input on per-

formance is virtually impossible. For example, having people manually segmenting medical

images, or assigning similarity scores between millions of images for Content-Based Image

Retrieval (CBIR) would be extremely time consuming, expensive and inefficient. Whether

it is image sharing, video streaming or a simple web-site containing images compressed with

lossy techniques, it is crucial for the machine to have a built-in ability to assess the content

and/or quality of images and to understand what the user, i.e. human, wants. The goal is

to develop efficient and accurate techniques that would allow computers to, independently

of human input, perform this task at a satisfying level.

One of the obvious ways to analyze an image is to decompose it and understand its

parts. This task of parsing am image is performed by segmentation algorithms. There are

numerous segmentation techniques in use, for example the popular Mean-Shift Algorithm

[2] that relies on color only, or the Adaptive Clustering Algorithm (ACA) [3] that utilizes

both color and texture information. Different applications require different information,

thus the segmentation and information extraction techniques greatly depend on the field of

application and the type of images to be processed.

Various applications include CBIR systems, systems for processing medical images, fea-

ture extraction/detection algorithms and so on. In all cases, there are both color and texture

aspects that need to be addressed for the systems to have satisfactory performance. However,

given the different targets, the systems may have significant implementation differences.

There are various techniques used for determining image similarities. They exist both in

the spatial domain, and in the transform domain (wavelet transforms, DCT, Gabor filters,

Fourier transform etc.). However, since the goal is to acquire a system that would perform
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similarly to how people see, the best techniques are the ones that utilize the properties of

human vision. The methods that have proven to relate fairly well to characteristics of human

vision are Structure Similarity Metrics (SSIM) [4] and its variations for evaluating texture

similarity, and utilizing dominant colors for color representation and color comparisons [5].

In this work, an attempt is made to fuse the two techniques of extracting texture and

color information, consistent with human perception. Assessing the similarity of images is

based again on techniques that have also been shown to be in accordance with human visual

system (HVS). The contribution of this work is in improving the texture similarity metrics

by adding novel measurements, and combining the texture and color information in a way

that agrees most with human judgments and evaluations of visual similarity.

The thesis is organized as follows: the necessary background is presented in Chapter 2,

the proposed improvements are explained in Chapter 3, description of the experiments and

results are given in Chapter 4, and conclusions are drawn in Chapter 5.
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CHAPTER 2

Background

With the expansion of technology, we are facing two trends: growing amount of data

available to people, and growing need for diverse applications. Image analysis, segmentation,

quality and similarity assessment for the applications where humans are the end-users would

ideally be performed by - humans. However, this is unfeasible, thus we need techniques that

would be able to automatically and with little or no human input perform these operations.

For this task, we need to define what type of similarity metrics to use, and also which type

of information we will evaluate our metrics on. In the following sections, a brief description

of different types of metrics and features will be given.

2.1. Texture Description

We will note the most commonly used texture descriptors, and also give a more detailed

description of the method chosen for the purposes of this work.

2.1.1. Non-Perceptual Metrics

The simplest and most obvious techniques for image comparisons are the ones that comply

with computer architecture characteristics, that is, point-by-point comparisons. Those met-

rics (like MSE and PSNR) are not, however, in accordance with human perception of images

[6],[7]. This can be seen in Figure 2.1.1. Image 2.1(a) is the original image, image 2.1(b) is

the original image compressed with DCT, and image 2.1(c) is the original image with subtle
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lighting changes. In both cases, PSNR is the same, 28.7422dB, but it is obvious that image

2.1(c) looks much closer to the original than image 2.1(b).

(a) Original image

(b) DCT compressed image (c) Image with lighting changes

Figure 2.1. Illustration of inadequacy of PSNR metrics

2.1.2. Low-Level Human Perception Metrics

The non-perceptual metrics obviously fail at determining image similarity and quality. Some-

what better are low-level human perception models (e.g. Perceptual PSNR), that incorporate

low-level human vision characteristics. These models try to penalize errors according to how

visible they are. In Eckert and Bradley’s paper [8], the effect of incorporating contrast

sensitivity function (CSF), luminance masking and contrast masking is juxtaposed to the

traditional MSE metrics. The images are analyzed by multiscale frequency decomposition,
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and it is shown that additional functionalities that account for HVS characteristics improve

the results of point-by-point metrics. However, this type of analysis cannot accommodate

subtle structural changes, such as zooming, contrast and intensity changes. Thus, we need

metrics that would incorporate high-level HVS characteristics.

2.1.3. Perceptual Metrics

Today, there are numerous methods for describing textures and determining their similarity

that utilize the properties of HVS. The most commonly used feature extraction algorithms

are relying on processing images with Gabor filters. One of the pioneering works was done

by Clark et al. [9], and soon the Gabor filters became the most popular tool. 2D Gabor

filters are shown to be analogous to simple receptive fields (receptive fields of simple cells)

in the visual cortex of higher vertebrates [10],[11], which means they describe well the first

stages of image processing in humans. Gabor filters in effect use the actual characteristics

of HVS, thus they are adequate for use in perceptual meaningfulness sense. The frequency

domain covered by Gabor filters in 3 scales and 6 orientations is given in Figure 2.2.

Gabor features have found various applications, as in CBIR [12], steganography [13],

object detection [14], medical image segmentation [15], texture similarity and classification

[16], [17] and so on. The main idea is to filter the image with Gabor wavelets, and take the

mean and standard deviation of each subband as a feature. However, images can have very

similar energies in subbands, and yet not be very similar.

Also very popular are co-occurrence matrices, that have found application in CBIR sys-

tems [18], medical image analysis [19], as well as object detection applications [20]. Some

recent works even combine the two popular features, like [21] for CBIR applications. In

essence, co-occurrence matrices deploy relationships between adjacent pixels, like Haralicks’
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Figure 2.2. Gabor filter bank

features [22], calculating the differences in luminance values within a small neighborhood,

usually 2x2. This approach may easily fail when we have image distortions like salt-and-

pepper noise, zoom etc.

Texture description and analysis has also been employed in popular standards like MPEG7.

These techniques are developed in order to make video coding and retrieval more efficient.

The three variations of texture descriptors used in this standard - the Homogenous Texture

Descriptor, Texture Browsing Descriptor and Edge Histogram Descriptor - are described in

detail in the book [23]. Homogenous Texture Descriptor is again a vector of means and vari-

ances of Gabor filtered image, which addresses the aspect how HVS works. Texture Browsing

Descriptor characterizes the directionality and coarseness of the texture image, which is re-

lated to high-level human perception of images. Edge Histogram Descriptor partitions the

image into 16 blocks, applies edge detection algorithms and computes local edge histograms

for different edge directions, and this descriptor is said to work well in image similarity
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assessment, since the edges are descriptive clues for texture perception. The variations of

techniques used in MPEG7 exist in other applications like CBIR [24], where different edge

detectors are used.

Another approach that focuses on high-level properties of HVS without actually modeling

it (like e.g. Gabor filters) is the Structure Similarity Metric [4]. Although it is not relying

on explicit functions that describe HVS characteristics, like Perceptual PSNR does, it still

adapts to lighting changes and has masking capabilities. The idea is to analyze images

in sliding windows and compare their luminance, contrast and ”structure” in corresponding

windows. Luminance is characterized by the mean of intensities within the window (eq. 2.1),

contrast is characterized by the standard deviation (eq. 2.2) and structure is characterized

by the cross-correlation between two patches (eq. 2.3):

µx =
1

N

N
∑

i=1

xi (2.1)

σx =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − µx)2 (2.2)

σxy =
1

N − 1

N
∑

i=1

(xi − µx)(yi − µy) (2.3)

The luminance term is:

L(x, y) =
2µxµy + c0

µ2
x + µ2

y + c0

, (2.4)

the contrast term is:
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C(x, y) =
2σxσy + c1

σ2
x + σ2

y + c1

, (2.5)

and the structure term is:

S(x, y) =
σxy + c2

σxσy + c2

, (2.6)

where c0, c1 and c2 are small constants (to prevent divisions of type 0/0).

For each sliding window, we get a similarity value computed as:

SSIM(x, y) = L(x, y)αC(x, y)βS(x, y)γ. (2.7)

Usually, the parameters are set to be α = β = γ = 1 and c2 = c1/2 to get:

SSIM(x, y) =
(2µxµy + c0)(2σxy + c1)

(µ2
x + µ2

y + c0)(σ2
x + σ2

y + c1)
. (2.8)

The final SSIM metric is computed as the spatial average of the SSIM(x, y) computed

for each sliding window. The size of the window affects the metric in the sense that as it

becomes smaller, it becomes closer to the point-by-point comparisons, and as it grows, it

becomes more of a structural metric. However, it is highly sensitive to translation, scaling and

rotation of images, as shown in [25]. This can be remedied to some extent by implementing

the SSIM metric in complex wavelet domain.

An improvement to SSIM is Complex Wavelet Structure Similarity Metric (CW-SSIM).

To account for small spatial translation, we can utilize an overcomplete wavelet transform

such as the steerable pyramid [26]. The locations of subbands in the frequency plane are

given in Figure 2.3, for three scales and four orientations. CW-SSIM is invariant to luminance
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change, contrast change and spatial translation, as proven by Wang and Simoncelli [25].

The key is in the fact that these distortions lead to consistent magnitude and phase changes

of local wavelet coefficients. The structural information of local image features is mainly

contained in the relative phase patterns of the wavelet coefficients and consistent phase shift

of all coefficients does not change the structure of the local image feature [25].

HP

LP
S1S2S3

Figure 2.3. Steerable filter bank; the axes ranges are [−π, π] in both vertical
and horizontal direction

The images to be compared are decomposed into wavelet subbands, yielding having two

sets of complex coefficients for each subband. For each subband, the CW-SSIM term is

computed as (K is a small constant):

S̃(cx, cy) =
2|
∑N

i=1
cx,ic

∗

y,i| + K
∑N

i=1
|cx,i|2 +

∑N
i=1

|cy,i|2 + K
(2.9)

CW-SSIM is calculated in each subband by averaging over all spatial locations, and the

final CW-SSIM is calculated as the mean of the subband CW-SSIM coefficients (or a subset
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of subband CW-SSIM coefficients). In effect, CW-SSIM has all the terms like the regular

SSIM metric, only without the luminance term - since the means of subband decompositions

are zero (due to the band-pass filtering), the L-term would be 1 in all cases (apart from the

baseband images).

However, as shown by Brooks and Pappas [27], CW-SSIM is sensitive to low-frequency

spatial image distortions, in particular to luminance changes. Thus, they proposed a weighted

metric (WCWSSIM) that would compensate for this, and they show that it agrees more with

human perception. The idea is to weight different subbands according to the Contrast Sen-

sitivity Function (CSF) of HVS and the frequency responses of wavelet filters.

The advantage of SSIM, and, extended to complex wavelet domain, CW-SSIM, is that

it is not a point-by-point comparison, but more of a structural metric. On the other hand,

the structure term, from which it got its name, is indeed a point-by-point comparison [28].

Therefore, Zhao et al. propose using broader subband statistics to account for texture

characteristics. Even though the subbands are computed with different orientations, the

argument is that we can exploit directional information within each subband in order to

improve the performance of the metric. By removing the structure term and adding the

first order autocovariance in the horizontal and vertical directions, we get better statistics

computed in each subband.

The autocovariance term in horizontal direction is defined as:

ρx(0, 1) =
E{(xi,j − µx)(xi,j+1 − µx)}

σ2
x

(2.10)
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and analogous, vertical direction:

ρx(1, 0) =
E{(xi,j − µx)(xi+1,j − µx)}

σ2
x

(2.11)

The values for autocorrelation are bounded and lay in the interval [-1,1], and they are

compared for two images as:

C0,1(x, y) = 1 − 0.5|ρx(0, 1) − ρy(0, 1)| (2.12)

C1,0(x, y) = 1 − 0.5|ρx(1, 0) − ρy(1, 0)| (2.13)

For each sliding window in each subband, the previously defined L (Eq. 2.4) and C (Eq.

2.5) terms are combined with the new ones into the Structural Texture Similarity Metric

(STSIM) as:

STSIM(x, y) = L
1

4 (x, y)C
1

4 (x, y)C
1

4

0,1(x, y)C
1

4

1,0(x, y) (2.14)

Since each point in the subband image has its associated STSIM coefficient, the question

is how to combine them for all subbands. One approach is the so-called ”additive” where

the total resulting STSIM is calculated by first taking the mean over spatial locations in

each subband, and then taking the mean across frequencies. The other is ”multiplicative”

approach, where corresponding STSIM values for each spatial location get multiplied across

the subbands, and then the final metric is the spatial mean of these multiplied coefficients.

This is depicted in Figure 2.4: if we have N different subbands, at each location the corre-

sponding STSIM values are multiplied, then the N-th root is taken from each point (so that

the numbers do not become too small) and in the end they are spatially averaged.

The STSIM has shown to perform better, i.e. closer to human judgements of texture

similarity, than SSIM and CW-SSIM.
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Figure 2.4. Multiplicative computation of STSIM

To conclude the texture descriptors review, SSIM and its variations have shown to in-

corporate most of HSV properties in an implicit way, and we will see in Chapter 3 how they

can be further explored.

2.2. Color Description

Color is perhaps the most expressive of all the visual features and has been extensively

studied in the image retrieval research during the last decade [29]. For describing the color

composition of images, the simplest approach has been to use color histograms with static

color space [30], accompanied by simple Lp, histogram intersection metrics [30] or more

sophisticated color quadratic distance [31]. However, as shown in [29] and [32], human

vision system is not designed to distinguish well between similar colors, and also the studies

show that humans cannot simultaneously perceive a large number of colors present in one

image. People, in fact, see only few prominent colors from the image, and those are so-called

”dominant colors”. Thus, the color descriptors and comparing methods have moved away

from direct histogram acquisitions and comparisons to more sophisticated techniques that

should account better for the HVS properties.
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One approach to describing colors in an image has found its application in the popular

MPEG-7 standard. The color descriptors, developed by Manjunath et al. [29], are classified

in 3 sets: Histogram Descriptors (Scalable Color and Color Structure), Dominant Color

Descriptors and Color Layout Descriptors.

The histograms descriptors are based on quantized images, and an L-norm is used to

compute the distance. This is argued to be adequate for natural images, since they tend not

to have discrete color histograms and there is high redundancy between adjacent histogram

bins.

Dominant Color Descriptor extraction is explained in detail in [33]. First, image is

segmented using edgeflow algorithm [34], then colors are clustered within each segment

by using modified generalized Lloyd algorithm proposed in [35]. The clustering algorithm

consists of pre-processing of the images to remove noise and to smooth images, and iteratively

breaking up clusters and re-assigning their elements. Clustering is performed with respect

to the smoothness of the regions - colors are coarsely quantized in the detailed regions, since

the human eye is more sensitive to lighting changes in smooth regions. After clustering,

the Dominant Color Descriptor is constructed from the cluster centroids and the according

percentages of pixels belonging to the clusters. The distance between two descriptors is

similar to the quadratic color distance [31].

Finally, the Color Layout Descriptor is designed to capture the spatial distribution of

colors, which is adequate for scribble-based image retrieval. The feature extraction process

is done in two steps. First, the image is partitioned into 64 blocks (8x8) and the average

color for each block is computed. This results in an 8x8 matrix of local means. Then, 8x8

DCT is applied, and few low frequency coefficients are chosen by the zigzag method. This

descriptor is said to be compact yet efficient.
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Although these descriptors might be appropriate for compact and fast image and video

retrieval algorithms, histogram representation lack discriminatory power in retrieval of large

image databases and do not match human perception very well [32]. Mojsilovic et al. have

also shown that if two patterned images have similar Dominant Color Composition, they

shall be perceived as similar by humans even if their content, directionality, placements or

repetitions of structural elements are not the same [5]. This is the basis for extraction

algorithm of perceptually important colors, as developed by Mojsilovic et al. [32].

The chosen colorspace for use is L*a*b*. CIELAB (or L*a*b*) and CIELUV (L*u*v*)

colorspaces exhibit perceptual uniformity, meaning that the Euclidian distance separating

two similar colors is proportional to their visual difference [36]; however, the Euclidian

distances in these colorspaces are not linearly proportional to the visual judgement when the

colors are dissimilar. This is suitable for image retrieval applications, when we’re interested

in the proximity of the two color compositions, but it may not be helpful in assessing the

absolute similarity/dissimilarity.

The colors in the image are firstly quantized into m colors according to the developed

codebook. Given the non-linearity of the CIELAB space, this codebook is not a simple

uniform quantization of the colorspace, but rather uniform sampling of chromaticity planes

in the L*a*b* space. Then, the image is divided into NxN subimages (N typically being

20), and for each subimage, a Neighborhood Color Histogram (NCH) matrix is computed.

NCH matrix contains information about the relative occurrence of pixels of color cj within

a small DxD neighborhood of all the pixels of color ci. Depending on the ratio of occurrence

of the same color ci and the occurrence of the color that occurs most around ci (and being

different than ci), cr, all pixels of color ci are either kept as perceptually important, or they

are marked as speckle noise and remapped to cr. Finally, the remaining colors from all
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subimages are pooled together and each color that occupies more than a predefined area

percentage is determined to be a dominant color. Typically 3 − 10 dominant colors are

detected in each image.

This approach of extracting the perceptually important colors is somewhat similar to the

well-known Color Correlogram method [37]. It differs in the sense that correlogram captures

the information about frequency of color cj occurring at exactly distance k from color ci,

while NCH computes the probability of the color occurring within a neighborhood. NCH is

thus more suitable for removing speckle noise.

A newly proposed method by Birinci et al. [38] combines the dominant color approach

and correlogram calculations. They named their approach as Perceptual Color Correlogram,

since it extracts dominant colors, in accordance with human perception, and they utilize a

weighted metric of L-type to compare dominant colors and also correlograms of two images.

When the color information is extracted from the image, the next question is how to

compute the distances between two color signatures. Birinci et al. utilize a combination

of L1 and L2 metrics for determining similarity between dominant colors, and a modified

L1 norm for correlogram distances. Huang et al. [37] utilize simple L1 distance measure.

Manjunath et al. [29] are using quadratic color histogram to compute distances between

dominant colors. However, as shown in [39], the metric that has superior classification and

retrieval results with compact representation is the Earth Mover’s Distance.

The Earth Mover’s Distance [40] is based on the minimal cost that must be paid to

transform one distribution into the other. Informally speaking, the Earth Mover’s Distance

(EMD) measures how much work needs to be applied to move earth distributed in piles x

so that it turns into the piles y.
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This can be formalized as linear optimization problem: denote two images as X and

Y , and their representative color compositions CX , CY , as CX = {(cx1, px1), ...(cxm, pxm)}

and Cy = {(cy1, py1), ...(cyn, pyn)}, where c-elements denote the colors and p-elements their

respective percentages within the image. Colors and their percentages can be represented

either as simple histograms, or as dominant colors. If we denote by D = [di,j] the set of

distances between colors (cxi, cyj) (which is the L2 distance in this case) and by F = [fi,j]

the set of all possible flow mapping between colors (cxi, cyj) (how much of color cxi gets

”transported” to color cyj), the problem can be stated as:

min
F

∑

i,j di,jfi,j
∑

i,j fi,j
(2.15)

subject to:

fi,j ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n (2.16)

n
∑

j=1

fi,j ≤ pxi 1 ≤ i ≤ m (2.17)

m
∑

i=1

fi,j ≤ pyj 1 ≤ j ≤ n (2.18)

m
∑

i=1

n
∑

j=1

fi,j = min

(

m
∑

i=1

pxi,

n
∑

j=1

pyj

)

. (2.19)

These conditions can be explained if we look at the informal problem of earth transporta-

tion between centers CX and CY . Let’s assume that we want to move from each center cxi

at most pxi amount of earth, and we want to put in each center cyj at most pyj of earth.
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The condition given by Eq. 2.16 means we can’t have ”negative transportation”, i.e. trans-

portation between cxi and cyj can only go cxi → cyj . Condition in Eq. 2.17 means that we

can’t take out of cxi more than there’s inside; condition in Eq. 2.18 means that we can’t

put in cyj more than it can receive; the last condition (Eq. 2.19) means that the maximum

transportation cannot exceed the sending or receiving capacities.

Example 1. This is an example to illustrate how EMD works. The reference image is

given in Figure 2.5. Color composition of the first image (black bordered circles) is given as:

cX R G B pX

cx1 56 132 201 0.5

cx2 41 216 77 0.32

cx3 255 0 0 0.18

and of the second image (gray bordered circles):

cY R G B pY

cy1 49 57 208 0.64

cy2 221 36 193 0.36

The L2 distances between colors (normalized to have maximum distance 1) are given in

the following table:
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dXY cy1 cy2

cx1 0.0293 0.1871

cx2 0.2179 0.4012

cx3 0.4560 0.2035

The computed matching for EMD is given in the image; on the arrows between the

circles are noted the amounts transported and distances. We can see that EMD followed the

intuition of connecting blue with blue, and also that pink gets associated with blue and red,

instead of green. The total cost for the matching operations is EMD(CX , CY ) = 0.1494.

0.5

0.64

0.36

0.32

0.18
T = 0.18

T = 0.32

d = 0.1871

d = 0.2035

d = 0.0293

d = 0.2179

T = 0.18

T = 0.32

Image 1 Image 2

Figure 2.5. EMD example of color matching
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An approach that follows the same philosophy as EMD is Optimal Color Composition

Distance (OCCD) developed by Mojsilovic et al. [32]. In this case, the color composition

descriptors are the extracted dominant colors and their respective percentages. The dom-

inant color components of each image are quantized into a set of n color units, and each

color unit represents the same percentage p, i.e. n · p = 100; now, each image is represented

with n units, each unit is labeled with the color value; percentages are not needed anymore

since the number of units with the same color is proportional to its percentage. The problem

is now transformed into minimum cost graph matching problem - the bijective matching

between two sets of n units. Let the units from one image be denoted as CX = {cx1, ..., cxn}

and CY = {cy1, ..., cyn} and let mXY be a bijective function that maps set CX onto set CY ,

{mXY : CX → CY }; also denote the distance between two colors (cX , cY ) as d(cX , cY ). The

problem can be formalized as minimizing the sum of distances with respect to the mapping

function mXY :

min
mXY

n
∑

i=1

d(cxi, mXY (cxi)) (2.20)

Example 2. Using the same color compositions as for EMD example (Ex.1), we can

quantize the colors with e.g. 5% steps, yielding the following n = 20 units for each image:

• For CX : 10 units of cx1, 6 units of cx2, 4 units of cx3

• For CY : 13 units of cy1, 7 units of cy2

Now, OCCD tries to find the best match between the units s.t. the sum of distances is

minimized. The problem is depicted in Figure 2.6.

After applying the minimum cost matching algorithm, the solution is similar to the EMD

example in the sense that the association of colors between images stayed the same. However,

due to the quantization of percentages, the cost is not equal to the one in EMD example:
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... ...

Figure 2.6. OCCD problem statement

OCCD(CX, CY ) = 0.1444 (compared to EMD(CX , CY ) = 0.1494). On the other hand,

if we use 1% units, we will yield the same matching cost, which means that these metrics

are essentially the same. The difference is that for OCCD, by quantizing the percentages,

we turn the problem into the weighted graph matching that can be solved by deterministic

algorithms, unlike linear-programming based EMD calculation.

The final result for units matching is given in Figure 2.7.

Figure 2.7. OCCD problem solution

This analysis leads to the assumption that best results in color matching are obtained

if we utilize the dominant color descriptors, followed by the metric that incorporates in a

sophisticated way the properties of HSV, like EMD and OCCD do.
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2.3. Combining Texture and Color Information

In the previous sections, the emphasis was on extracting texture and color information

from images, and developing techniques for comparing them. Since we are interested in both

features, we need also to review possible ways of combining them.

One of the possible composite descriptors is presented in [41]. Park et al. define a simple

14-point vector (6 basic colors, 5 shades of gray, and 3 edge descriptors) as image feature, and

the distances are computed using histogram intersection measure. This approach, despite

being very memory and CPU time efficient, doesn’t apply any HSV properties and as such

may be highly inadequate for comparing two images on structural basis.

There has been more research in data fusion algorithms in text retrieval than in image

retrieval and comparison. Algorithms that combine multiple searches like CombMNZ [42]

are popular for their good performance, and they may be utilized for CBIR systems. On

the other hand, they cannot be applied in image similarity assessment context since the goal

is not to rank images but to determine similarity pair-by-pair, regardless of the remaining

images in the database.

A common approach is to linearly combine color and texture descriptors, i.e. their

distances, because of the simplicity of the algorithm. In some recent works, Lu et al. [24]

propose using the quadratic distance, which would in effect be linear combination of texture

and color distances. However, in most of the cases, the weights are tuned for each image

or set of images, as in the works of Guerin-Dugue et al. [43] or Markov et al. [44]. As

Markov and al. have shown [45], there are optimal weights for combining texture and color

information, but those optimal weights are unique for each image or group of images and they

need to be ”learned”, just like in [43]. This is not an acceptable solution, if the application
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in matter is similarity measurement, since we cannot assume we will have all possible images

at our disposal for training the system.

A more elaborate technique is presented in [5] by Mojsilovic et al. In their algorithm,

image similarity is determined according to the grammar rules, which are developed based on

human judgements. It is shown that people are strongly influenced by the pattern (texture)

similarity; if the pattern similarity is not very emphasized, next step is determining how

similar the dominant colors and directionalities of patterns are; third level is similarity of

directionality of textures, regardless of the color, and the last step is color similarity.

Thus, the methods for efficient combining of color and texture descriptors are to be more

explored in the future. Some possible solutions will be presented in Chapter 3.
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CHAPTER 3

Proposed Method

In the previous chapter, numerous possible solutions to the problem of image similarity

have been examined and described. In this work, the accent is on textures, and determining

texture similarity. This is an important step in both developing general image similar-

ity/quality assessment algorithms, as well as developing intuition about human perception

of images.

Since the proposed STSIM metric [28] has outperformed the basic SSIM and its ex-

tensions like CW-SSIM and WCW-SSIM, it will be used as the basis for improvements in

texture similarity measurements.

The proposed method for determining image similarity attempts to address all the aspects

of human perception, and also to fuse the best algorithms for determining texture and

color composition similarity of images. Its major contribution is in incorporating new and

effective additions to the texture similarity metric: exploiting the overcompleteness of wavelet

subband decompositions and calculating the correlations between subbands.

The method consists of three major steps:

(1) Determining texture similarity

(2) Determining color similarity

(3) Fusing the results.

They will each be discussed in detail in the following sections.
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3.1. New Texture Similarity Metric

For the simplicity, the following notation will be utilized throughout this section:

− size of images is NxN

− size of neighborhood is WxW, W being an odd number

− total number of scales is NS, while current scale number is nS ∈ {1 . . .NS}

− total number of orientations is NO, while current orientation number is nO ∈

{1 . . . NO}

− a filtered image, at scale nS and orientation nO, is denoted as InS ,nO

For developing texture similarity metrics, the choice was to use Steerable Filter Decom-

position on grayscale part of the images. They are, like Gabor filters, inspired by biological

visual processing, and also have nice properties, such as translation-invariance and rotation-

invariance, as claimed by Portilla and Simoncelli [46]. In this work, the 3-scales 4-orientations

decomposition is used, and the steerable pyramids’ Fourier spectra are given in Figure 3.1.

Note that, apart from 12 steerable subband filters, we also have a low-pass and a high-pass

subband.

The new texture similarity metric uses all the terms previously described by Equations

2.4, 2.5, 2.12 and 2.13 in Section 2.1. On top of that, we propose using the new terms

that would compare similarities of cross-correlation properties between subbands. This is

motivated by the work of Portilla and Simoncelli [46], where focus is on texture synthesis.

The reasoning is, if a statistic is good for texture generation, it would also be suitable as a

feature for texture comparisons.

Justification of using the cross-correlations between coefficients in different subbands lies

in the fact that the image representation by steerable filter decomposition is overcomplete
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Figure 3.1. Frequency responses of Steerable Filters in 3 scales and 4 orienta-
tions; the axes ranges are [−π, π] in both vertical and horizontal direction

and thus the coefficients will be correlated. This can easily be seen in Figure 3.1, where it is

clear that the subbands overlap. Another reason to use these statistics is that covariances of

subband coefficients can arise from spectral peaks (i.e., periodicity) in a texture [46], which

also can be a good comparison point.

It should be noted that the luminance, contrast and autocorrelation terms are calculated

on the raw subband coefficients. Since the subband decomposition (apart from the low-pass

filtering) does not include the origin of the frequency plane, the filtered images will be zero-

mean over the whole image; however, within small windows of size WxW, e.g. 7x7, this does
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not have to be true; thus, we need to compute the L-term for each sliding window, despite

the band-pass filtering. Variances describe the spectral power within the sliding window,

for given subband decomposition, and may be good descriptors for natural images. The

autocovariances give us more directionality information.

More importantly, the cross-correlation statistics are computed on magnitudes of subband

coefficients. The raw coefficients may be uncorrelated, since the phase information can lead

out to cancellations. As shown by Simoncelli [47], the wavelet coefficients magnitudes are not

statistically independent, and large magnitudes in natural images tend to occur at the same

spatial locations in subbands at adjacent scales and orientations. The intuitive explanation

may be that the ”visual” features of natural images do give rise to large local neighborhood

spatial correlations, as well as large scale and orientation correlations [46].

We propose computing the correlations between subbands at adjacent scales, for a given

orientation, and between all orientations, for a given scale. For the NS = 3, NO = 4 example,

we would have for each scale
(

4

2

)

= 6 coefficients, and for each orientation 2 correlation

coefficients, which gives total of 3 · 6 + 4 · 2 = 26 new terms. We will discuss in Chapter 4

the effects of utilizing all terms, or a subset of the 26 possible coefficients.

To compare two (grayscale) images IX and IY , the proposed algorithm can be summarized

in the following steps:

(1) filter the images with steerable pyramid bank of filters with NS scales and NO

orientations; this gives us two sets of NS · NO + 2 images;

(2) for each pair of corresponding subbands, InS ,nO

X and InS ,nO

Y , for each sliding window

of size WxW centered at (i0, j0), take W2 (complex) coefficients from InS ,nO

X , cx(i, j),

W2 coefficients from InS ,nO

Y , cy(i, j), and compute the local statistics:
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µx =
1

W 2

∑

i,j

cx(i, j) (3.1)

µy =
1

W 2

∑

i,j

cy(i, j) (3.2)

σx =

√

1

W 2 − 1

∑

i,j

|cx(i, j) − µx|2 (3.3)

σy =

√

1

W 2 − 1

∑

i,j

|cy(i, j) − µy|2 (3.4)

ρx(0, 1) =
E{(cx(i, j) − µx)(cx(i, j + 1) − µx)

∗}

σ2
x

(3.5)

ρy(0, 1) =
E{(cy(i, j) − µy)(cy(i, j + 1) − µy)

∗}

σ2
y

(3.6)

ρx(1, 0) =
E{(cx(i, j) − µx)(cx(i + 1, j) − µx)

∗}

σ2
x

(3.7)

ρy(1, 0) =
E{(cy(i, j) − µy)(cy(i + 1, j) − µy)

∗}

σ2
y

(3.8)

The expected values are computed by taking the empirical mean.

Now, calculate:

L(i0, j0) =
2|µx||µy| + c0

|µx|2 + |µy|2 + c0

(3.9)

C(i0, j0) =
2σxσy + c1

σ2
x + σ2

y + c1

(3.10)

C0,1(i0, j0) = 1 − 0.5|ρx(0, 1) − ρy(0, 1)| (3.11)

C1,0(i0, j0) = 1 − 0.5|ρx(1, 0) − ρy(1, 0)| (3.12)
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It is important to note that, for an NxN image, these calculations will lead to

matrices of size (N-W+1)x(N-W+1). This is because the only the ’valid’ values are

taken into account, i.e. the values computed entirely on the image coefficients.

This leads to having, for each subband, 4 matrices of local statistic similarities.

Since the values in matrices are bound to lay between [0,1], we can combine them

as follows and have one statistics matrix per subband (matrix multiplications done

on a point-by-point basis):

SnS ,nO = L
1/4 · C

1/4 · C
1/4

0,1 · C
1/4

1,0 (3.13)

The power scaling by 0.25 is necessary to avoid having values that are too small

- when multiplying values that are between 0 and 1, we risk to encounter errors due

to precision of representation of such small numbers.

(3) Let us denote by T = {(n1
S1, n

1
O1, n

1
S2, n

1
O2), ..., (n

M
S1, n

M
O1, n

M
S2, n

M
O2)} the set of all pos-

sible combinations of scales and orientations, such that it contains pairs of subbands

at adjacent scales, for a given orientation, and pairs of subbands at all orientations,

for a given scale. Then, for each combination t ∈ {1, ...M} in T, we take the sub-

band images’ magnitudes : |I
nt

S1
,nt

O1

X |, |I
nt

S2
,nt

O2

X |, |I
nt

S1
,nt

O1

Y |, |I
nt

S2
,nt

O2

Y |. Within each

sliding window centered at (i0, j0), we take the (real) coefficients, respectively, cx1
,

cx2
, cy1

, cy2
, and compute the following cross-correlation terms:
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µx1
=

1

W 2

∑

i,j

cx1
(i, j) (3.14)

µx2
=

1

W 2

∑

i,j

cx2
(i, j) (3.15)

µy1
=

1

W 2

∑

i,j

cy1
(i, j) (3.16)

µy2
=

1

W 2

∑

i,j

cy2
(i, j) (3.17)

σx11
=

√

1

W 2 − 1

∑

i,j

|cx1
(i, j) − µx1

|2 (3.18)

σx22
=

√

1

W 2 − 1

∑

i,j

|cx2
(i, j) − µx2

|2 (3.19)

σy11
=

√

1

W 2 − 1

∑

i,j

|cy1
(i, j) − µy1

|2 (3.20)

σy22
=

√

1

W 2 − 1

∑

i,j

|cy2
(i, j) − µy2

|2 (3.21)

ρx =
E{(cx1

(i, j) − µx1
)(cx2

(i, j) − µx2
)}

σx11
· σx22

(3.22)

ρy =
E{(cy1

(i, j) − µy1
)(cy2

(i, j) − µy2
)}

σy11
· σy22

(3.23)

Since ρx and ρy are cross correlations, their values are bounded by [-1,1], thus

we can combine them similarly to the autocovariance terms. The statistic that

describes the similarity between the cross-correlations at location (i0, j0) is given

by:

Ct
R(i0, j0) = 1 − 0.5|ρx − ρy| (3.24)
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For each combination t we get a (N-W+1)x(N-W+1) matrix of similarity mea-

surements, thus we have total of M of these matrices.

With this proposed method, we have NS ·NO+2 matrices of STSIM statistics, SnS ,nO , and

M matrices with new statistics, Ct
R. The next question is how to combine those computed

terms to obtain a single similarity measure value. Also, the question remains which new

statistics to use and which to discard.

For a set of chosen matrices, we can follow the ways proposed in [28]:

Additive approach: In this case, the overall similarity measurement is taken as the

average of all values in all matrices; the spatial averages are computed within each

matrix, so each matrix votes for a point, and the final statistic is the mean of the

voted points.

Multiplicative approach: This approach requires that all the matrices within the

chosen set are multiplied point-by-point, as depicted in Figure 2.4. Again, we need

power scaling by the inverse of number of matrices multiplied, to avoid dealing with

small numbers. Once we have a final similarity matrix, we take the mean value of

its elements as the final statistic.

Either of these approaches will produce one number, Tx, as a final texture similarity

measurement.

The issue of choosing the subset of matrices, and also different ways of combining them,

will be discussed in Chapter 4.

3.2. New Color Similarity Metric

From the given background in Chapter 2, we can make some conclusions about how to

develop a good similarity metric:
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• First of all, the image should be processed as to remove the noise and smooth the

color levels

• The colorspace in use should comply with HVS and human perception, to make the

Euclidean distances meaningful

• The image should be represented by a compact, yet descriptive feature

• The features should be compared in a way that agrees with human perception

Given these statements, the first step in extracting the color composition would be image

filtering. For this matter, we chose to segment the image using the ACA algorithm [3]. This

algorithm gives good segmentation results, but also gives us the ”local averages” image as

a by-product: that is, we get the smoothed image, where smoothing (spatial averaging) is

done within small local windows (typically 7x7). The good characteristic of this method

is that the averaging is performed only on pixels that belong to the same segment, which

avoids possible blurring along the borders of two segments. The importance of this step lies

in the fact that people don’t perceive a lot of different colors at the same time [5], and they

perform local averaging as opposed to noticing all the detailed variations of colors within

small segments. An example of Local Averages image is shown in Figure 3.2.

(a) Original image (b) Segmentation map (c) Image of local averages

Figure 3.2. Example of ACA segmentation results
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The next step is the choice of colorspace. Since CIELAB has perceptual uniformity [36],

the smoothed images are represented in L*a*b* values.

For determining color similarity between two images, Rubner et al. [39] have found that

the best results are obtained by using the multivariate histograms. Unfortunately, operating

on these histograms is extremely computationally exhaustive, and their representation is

not compact. That is why most of the approaches rely on dimensionality reduction, like

calculating dominant colors [32], [29], [38].

On the other hand, in texture similarity algorithm, we opted for measurements within

sliding windows that span a small local neighborhood. It would be reasonable to follow the

same logic for the color comparisons, and to calculate color similarity on a sliding window.

This works to our advantage, as now, since we are operating on a relatively small number of

pixels, we can use the complete information about the colors contained within the windows,

without having to worry about complexity.

As for the comparison method, Earth Mover’s Distance [40] and OCCD [32] are the

well-known procedures that perform in accordance with human judgements and perception.

We chose to use OCCD for two reasons: first, unlike EMD, it uses ”units” of colors; since

we are operating on small sliding windows, it is very easy to simply use each pixel within

the window as one color unit and to compute OCCD distance between two sets of W2 units;

second, OCCD problem be solved by a deterministic algorithm, and its implementation is

fairly straight-forward.

The color comparison algorithm between two (color) images IX and IY can be summarized

as follows:

(1) Segment the images and get the images of local averages, IX,lav and IY,lav
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(2) For each sliding window of size WxW centered at (i0, j0), take W2 pixels from

each local average image, make the sets of color units, CX = {cx1, ..., cxW 2}, CY =

{cy1, ..., cyW 2}, and compute:

OCCD(i0, j0) = min
mXY

n
∑

i=1

d(cxi, mXY (cxi)), (3.25)

where {mXY : CX → CY } is a previously defined bijection function that maps set

CX to set CY , and d(cX , cY ) is the Euclidean distance between two colors (cX , cY ).

Example 3. Here is an example of the proposed algorithm. Let’s take two images of

similar colors, like a leaf and patch of grass (Fig. 3.3). First, we need their local averages

images, as given in Figure 3.4.

Figure 3.3. OCCD Example: Original images

Figure 3.4. OCCD Example: Local Averages images
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Then, we compute OCCD on sliding windows. For example, for a window centered at

(164,113), the corresponding leaf and grass patches are given in Figure 3.5:

Figure 3.5. OCCD Example: Sliding window patches taken at location [164,113]

For this particular window, OCCD is 0.0753. In Figure 3.6, we are giving the result for

the color units matching, sorted by ascending distances. If we take an image with completely

different colors e.g. pink, as in Figure 3.7, take the window at the same location, and compare

it with the ”leaf” image window, we get OCCD equal to 0.5579.

Figure 3.6. OCCD Example: Matching units of color, sorted by ascending distances

Figure 3.7. OCCD Example: Original, Local Average and sliding window im-
age with different color composition
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The color similarity metrics are given in one (N-W+1)x(N-W+1) matrix that we shall

call OCCD matrix, and the range of values is [0,1]. Scaling the matching costs to be within

these boundaries is very important, since the texture similarity metrics are in this range,

therefore we need to have comparable units.

Since the OCCD computes the distance between two colors, their similarity can be rated

as 1 − distance. Thus, as a similarity measure, we use the matrix OCCDS = 1 − OCCD.

We can either calculate the mean of OCCDS matrix as the color similarity measurement Cl,

or we can combine the matrix in a different way with the texture similarity matrices. This

will be addressed in the following section.

3.3. Combining Texture and Color Similarity Matrices

After performing similarity calculations on sliding windows, we have in the end matrices

for texture similarities, SnS ,nO and Ct
R, as well as the color similarity matrix OCCDS. The

widely used solution is to linearly combine texture similarity measure, Tx, and color similarity

measure, Cl, with appropriate weights, wT and wC = 1 − wT :

SIMILARITY = wT · Tx + wC · Cl (3.26)

Another possible way is to combine the OCCDS matrix as if it was another texture

similarity matrix, i.e. to multiply it point-by-point with the texture similarity matrices. This

was explored in our experiments, however, the linear combination yielded better results.

We evaluated our method by comparing our results to human judgements. The experi-

ment set-up and discussion will be given in the following chapter.
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CHAPTER 4

Experiments and Results

The new texture image similarity assessment method was proposed in Chapter 3. It

combines what are believed to be the best features for texture aspect and color portion - the

metric utilizes the methods that incorporate human vision properties.

We conducted an informal subject test, where people were asked to rate similarity be-

tween two images. Then, we applied our method with varying parameters. In the end, the

results were compared to the human judgements, and the best method (among the proposed

ones) is found.

4.1. Experiment Set-up: The Informal Test

The informal test was conducted using Matlab GUI. We carefully picked 50 pairs from

a pool of 30 textures, extracted from Corbis online database [48]. Each human subject was

asked to grade 50 pairs of textures according to their similarity, with the lowest grade being

1 (”completely dissimilar”) and the highest grade being 10 (”identical/almost identical”).

A snapshot of the user interface is given in Figure 4.1, and the selected pairs are given in

Figure 4.2.

People were asked to rank similarity between two images as they perceive it, so there was

no guidance as for how they should rank textures that are of similar structure, similar color,

both or neither. This works both towards our advantage but also disadvantage: since there

were no strict rules, people were free to make judgements according to their own perception
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Figure 4.1. Snapshot of Matlab GUI for subjects test

and thinking, which we are trying to reach as an ultimate goal. On the other hand, people

cannot separate their visual stimuli from the context they associate with it; thus, e.g. pairs

of textures that both represent grass were automatically ranked as ”highly similar” even

though at the grayscale level they are quite different, while some pairs, like asphalt and

grass, are ranked very low, even though their grayscale representations appear to be very

similar, i.e. they have very similar structure pixel-wise.

The final score assigned to a pair of textures is the mean value of all the scores human

subjects assigned to it. Pairs, sorted according to the descending ranking of similarity, are

given in Figure 4.3.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

Figure 4.2. Texture pairs for testing the metric

4.1.1. Inter-Human Agreement on the Scores

To illustrate how people ranked the textures and how consistent they are among themselves,

we are giving a boxplot in Figure 4.4. For each pair, the horizontal red line is the median
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14 32 45 33 9

18 7 35 12 41

13 8 3 16 1

31 5 10 38 4

49 2 34 29 50

44 43 23 30 40

6 28 11 20 26

24 15 17 42 48

25 27 36 19 37

46 22 39 47 21

Figure 4.3. Texture pairs sorted in descending order according to human judge-
ments of similarity
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value, the blue boxes represent the limits of the upper and lower quartile range; ”whiskers”

extend to the most extreme values within 1.5 times the interquartile range from the ends of

the box; outliers are marked with red ”+” signs. We can see that humans agree fairly well

for the two extreme cases, when textures are very similar or very dissimilar, while for the

middle ground there is moderate disagreement.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
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Figure 4.4. Whisker plot for human grades

4.2. Computing the Texture Image Similarity Score

As noted earlier, for steerable pyramid subbands, we chose the 3-scales, 4-orientations

decomposition, which is given in Figures 2.3 and 3.1. The images are of size 128x128, and

the sliding windows are 7x7, which gives us similarity matrices of size 122x122.

To get the texture similarity scores, we have tried various approaches. They can be

divided in two major categories:
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Linear Combination: in this case, we used the linear combination of texture sim-

ilarity Tx and color similarity Cl with varying weights; here, we can apply both

Additive and Multiplicative approach for calculating Tx, as described in Section 3.1

Multiplicative Combination: in this case, we treat the OCCDS matrix as an equal

similarity measurement like the texture similarity matrices, thus we can only apply

the Multiplicative approach.

For each of these categories, we have varied the subset of the newly introduced Ct
R

matrices. If we label the subbands by numbers as given in Figure 4.5, we have tested the

following subsets:

(1) No new matrices used

(2) All of the new matrices used

(3) Using only correlations between scales for a given orientation, e.g. correlation be-

tween subbands 1 and 2, 2 and 3, 4 and 5 and so on

(4) Using only correlations between different orientations for a given scale, e.g. between

subbands 1 and 4, 1 and 7, 1 and 10, 2 and 5 and so on

(5) Using correlation between orthogonal bands at highest scale, i.e. 1 and 7, 4 and 10

(6) Using Using correlation between orthogonal bands at highest scale and between the

diagonal bands at lower scales, i.e. 1 and 7, 4 and 10, 5 and 11, 6 and 12

(7) Using only correlations between subbands with same orientation at highest and

medium scale, i.e. between subbands 1 and 2, 4 and 5, 7 and 8, 10 and 11

(8) Using only correlations between subbands with same orientation at medium and

lowest scale, i.e. between subbands 2 and 3, 5 and 6, 8 and 9, 11 and 12.
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Figure 4.5. Numbered subbands of steerable filter decomposition

These combination are not chosen randomly. Apart from the first four cases that are

self-explanatory, the latter four are chosen by examining properties of a large number of

textures. In this particular experiment we are using 30 images of textures, but we have

a database of over 300 textures, where most of them are grouped in duplets or triplets of

textures that are extracted from the same, bigger image. This leads to having over 100 of

sets of textures, where we know that the ones within the same set should be similar (since

they’re taken from the same image). Looking at the cross-correlations between subbands,

the attempt was to find features that will have low intra-set variances, and high inter-set

variances. That would suggest a feature is discriminative between different textures, but

also has similar values for (almost) identical textures.

For the Linear Combination approach, we varied the weights from 0 to 1 (for wT ; corre-

sponding values of wC are 1 to 0) with 0.1 steps.
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4.3. Performance Evaluation

Evaluating performance of similarity evaluation systems is difficult. Since we are using

a relatively small set of pairs, we are mostly interested in how does our ranking of textures,

based on similarity, compare to the human rankings (given in Fig 4.3).

For this purpose, we used two tests: Kendall tau rank correlation coefficient (developed

by Maurice Kendall) which is ”a non-parametric statistic used to measure the degree of corre-

spondence between two rankings and assessing the significance of this correspondence” (from

Wikipedia, [49]); and Spearman’s rank correlation coefficient, which is ”a non-parametric

measure of correlation that is, it assesses how well an arbitrary monotonic function could

describe the relationship between two variables, without making any assumptions about the

frequency distribution of the variables” (from Wikipedia, [50]).

In our case, these two tests are used to measure the performance of our metric, compared

to the human judgements. We submit the values assigned to the textures by our method,

along with the mean human evaluated grades. The tests give us two values, correlation coef-

ficient and significance. The correlation coefficient varies between [-1,1]: negative correlation

means we have opposite rankings, correlations around zero means that the rankings are un-

correlated, while coefficients close to 1 mean we have good agreement between rankings.

Significance value (p-value) describes how likely we would be to score that correlation coef-

ficient, if one of the rankings was assigned randomly. For example, result of one simulation

was ρ = 0.60053 and pval = 4.0191e− 06, which means that if we drew random rankings, we

would get this score about four times in a million trials.
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4.3.1. Linear Combination performance evaluation

Here are given the tables with Kendall tau and Spearman rank correlation coefficients and

p-values. The ”Bands” column corresponds to the previously numbered list of used subset

of correlation matrices. The weights for texture similarity are given by wT and for color

similarity by wC ; Kendall tau rank correlation coefficient and its p-value are denoted as ρK ,

pval,K , while Spearman’s rank correlation coefficient and its significance value are given by

ρS, pval,S . We tested two approaches, additive and multiplicative, and we have separate

tables for these two methods of combining texture information. To represent the results, we

will use multiple tables, grouped in two subset combinations.
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Table 4.1. Linear Combination, Additive Approach, Bands 1 and 2

Bands wT wC ρK pval,K ρS pval,S

1 1.0 0.0 0.4374 9.1090e-006 0.5962 4.9091e-006

1 0.9 0.1 0.4457 6.1539e-006 0.5984 4.4435e-006

1 0.8 0.2 0.4358 9.8443e-006 0.5874 7.3235e-006

1 0.7 0.3 0.4391 8.4264e-006 0.5902 6.4502e-006

1 0.6 0.4 0.4358 9.8443e-006 0.5855 7.9426e-006

1 0.5 0.5 0.4391 8.4264e-006 0.5918 6.0049e-006

1 0.4 0.6 0.4143 2.6353e-005 0.5681 1.6798e-005

1 0.3 0.7 0.3962 5.8521e-005 0.5450 4.2737e-005

1 0.2 0.8 0.3501 3.8545e-004 0.4899 3.0474e-004

1 0.1 0.9 0.3007 2.3075e-003 0.4137 2.8222e-003

1 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

2 1.0 0.0 0.4753 1.4182e-006 0.6385 6.0592e-007

2 0.9 0.1 0.4885 7.1815e-007 0.6543 2.5506e-007

2 0.8 0.2 0.4852 8.5270e-007 0.6568 2.2204e-007

2 0.7 0.3 0.4852 8.5270e-007 0.6584 2.0229e-007

2 0.6 0.4 0.4803 1.1010e-006 0.6587 1.9898e-007

2 0.5 0.5 0.4687 1.9800e-006 0.6379 6.2796e-007

2 0.4 0.6 0.4457 6.1539e-006 0.6036 3.4800e-006

2 0.3 0.7 0.3979 5.4500e-005 0.5399 5.1909e-005

2 0.2 0.8 0.3468 4.3751e-004 0.4863 3.4265e-004

2 0.1 0.9 0.2694 6.3457e-003 0.3759 7.1405e-003

2 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Table 4.2. Linear Combination, Additive Approach, Bands 3 and 4

Bands wT wC ρK pval,K ρS pval,S

3 1.0 0.0 0.4704 1.8222e-006 0.6261 1.1548e-006

3 0.9 0.1 0.4687 1.9800e-006 0.6272 1.0915e-006

3 0.8 0.2 0.4704 1.8222e-006 0.6240 1.2855e-006

3 0.7 0.3 0.4720 1.6766e-006 0.6269 1.1132e-006

3 0.6 0.4 0.4753 1.4182e-006 0.6212 1.4788e-006

3 0.5 0.5 0.4555 3.8098e-006 0.6061 3.0993e-006

3 0.4 0.6 0.4374 9.1090e-006 0.5967 4.8019e-006

3 0.3 0.7 0.4028 4.3949e-005 0.5515 3.3132e-005

3 0.2 0.8 0.3484 4.1071e-004 0.4759 4.7761e-004

3 0.1 0.9 0.2924 3.0388e-003 0.4095 3.1438e-003

3 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

4 1.0 0.0 0.4424 7.2049e-006 0.6084 2.7767e-006

4 0.9 0.1 0.4489 5.2505e-006 0.6144 2.0769e-006

4 0.8 0.2 0.4457 6.1539e-006 0.6142 2.0965e-006

4 0.7 0.3 0.4440 6.6596e-006 0.6087 2.7386e-006

4 0.6 0.4 0.4473 5.6850e-006 0.6120 2.3290e-006

4 0.5 0.5 0.4473 5.6850e-006 0.6102 2.5378e-006

4 0.4 0.6 0.4275 1.4454e-005 0.5926 5.7993e-006

4 0.3 0.7 0.3798 1.1752e-004 0.5186 1.1423e-004

4 0.2 0.8 0.3270 9.1504e-004 0.4590 7.9962e-004

4 0.1 0.9 0.2760 5.1685e-003 0.3812 6.3113e-003

4 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Table 4.3. Linear Combination, Additive Approach, Bands 5 and 6

Bands wT wC ρK pval,K ρS pval,S

5 1.0 0.0 0.4440 6.6596e-006 0.6060 3.1135e-006

5 0.9 0.1 0.4555 3.8098e-006 0.6109 2.4568e-006

5 0.8 0.2 0.4489 5.2505e-006 0.6043 3.3638e-006

5 0.7 0.3 0.4555 3.8098e-006 0.6075 2.8939e-006

5 0.6 0.4 0.4539 4.1295e-006 0.6085 2.7640e-006

5 0.5 0.5 0.4473 5.6850e-006 0.5983 4.4633e-006

5 0.4 0.6 0.4275 1.4454e-005 0.5824 9.1341e-006

5 0.3 0.7 0.4061 3.8025e-005 0.5588 2.4668e-005

5 0.2 0.8 0.3567 2.9824e-004 0.4909 2.9529e-004

5 0.1 0.9 0.3056 1.9500e-003 0.4258 2.0513e-003

5 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

6 1.0 0.0 0.4358 9.8443e-006 0.5990 4.3168e-006

6 0.9 0.1 0.4457 6.1539e-006 0.6054 3.1925e-006

6 0.8 0.2 0.4457 6.1539e-006 0.6084 2.7767e-006

6 0.7 0.3 0.4440 6.6596e-006 0.6054 3.1925e-006

6 0.6 0.4 0.4374 9.1090e-006 0.5987 4.3749e-006

6 0.5 0.5 0.4325 1.1488e-005 0.5942 5.3841e-006

6 0.4 0.6 0.4242 1.6823e-005 0.5913 6.1367e-006

6 0.3 0.7 0.3995 5.0742e-005 0.5581 2.5449e-005

6 0.2 0.8 0.3468 4.3751e-004 0.4818 3.9557e-004

6 0.1 0.9 0.2875 3.5734e-003 0.4030 3.7113e-003

6 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Table 4.4. Linear Combination, Additive Approach, Bands 7 and 8

Bands wT wC ρK pval,K ρS pval,S

7 1.0 0.0 0.4621 2.7525e-006 0.6128 2.2437e-006

7 0.9 0.1 0.4704 1.8222e-006 0.6186 1.6908e-006

7 0.8 0.2 0.4737 1.5422e-006 0.6220 1.4229e-006

7 0.7 0.3 0.4737 1.5422e-006 0.6235 1.3234e-006

7 0.6 0.4 0.4737 1.5422e-006 0.6206 1.5257e-006

7 0.5 0.5 0.4555 3.8098e-006 0.6025 3.6655e-006

7 0.4 0.6 0.4457 6.1539e-006 0.5907 6.3121e-006

7 0.3 0.7 0.4242 1.6823e-005 0.5740 1.3140e-005

7 0.2 0.8 0.3748 1.4410e-004 0.5012 2.0959e-004

7 0.1 0.9 0.2908 3.2083e-003 0.4090 3.1866e-003

7 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

8 1.0 0.0 0.4391 8.4264e-006 0.5925 5.8120e-006

8 0.9 0.1 0.4506 4.8479e-006 0.6014 3.8515e-006

8 0.8 0.2 0.4457 6.1539e-006 0.5931 5.6495e-006

8 0.7 0.3 0.4539 4.1295e-006 0.6016 3.8171e-006

8 0.6 0.4 0.4424 7.2049e-006 0.5936 5.5395e-006

8 0.5 0.5 0.4325 1.1488e-005 0.5843 8.3759e-006

8 0.4 0.6 0.4160 2.4470e-005 0.5704 1.5309e-005

8 0.3 0.7 0.3896 7.7593e-005 0.5459 4.1324e-005

8 0.2 0.8 0.3353 6.7597e-004 0.4629 7.1265e-004

8 0.1 0.9 0.2858 3.7698e-003 0.4015 3.8573e-003

8 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Highlighted are the two maximum values for different tests; we see that the Kendall tau

correlation coefficient is maximum for using all subband correlations, with weights wT = 0.9

and wC = 0.1, while the Spearman rank correlation coefficient is also maximal for using all

subband correlations, but different weights, wT = 0.6 and wC = 0.4. This is in agreement

with findings of Mojsilovic et al. [5], where the similarity of two textured images mainly

depends on the structure of images, and less on color.

In the following tables are the results for using Linear Combination, Multiplicative Ap-

proach.
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Table 4.5. Linear Combination, Multiplicative Approach, Bands 1 and 2

Bands wT wC ρK pval,K ρS pval,S

1 1.0 0.0 0.4341 1.0636e-005 0.5940 5.4434e-006

1 0.9 0.1 0.4407 7.7928e-006 0.5948 5.2442e-006

1 0.8 0.2 0.4358 9.8443e-006 0.5866 7.5785e-006

1 0.7 0.3 0.4407 7.7928e-006 0.5917 6.0179e-006

1 0.6 0.4 0.4407 7.7928e-006 0.5960 4.9635e-006

1 0.5 0.5 0.4391 8.4264e-006 0.5914 6.1234e-006

1 0.4 0.6 0.4209 1.9559e-005 0.5736 1.3329e-005

1 0.3 0.7 0.3979 5.4500e-005 0.5451 4.2578e-005

1 0.2 0.8 0.3435 4.9607e-004 0.4853 3.5455e-004

1 0.1 0.9 0.3023 2.1821e-003 0.4194 2.4296e-003

1 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

2 1.0 0.0 0.4770 1.3038e-006 0.6412 5.2476e-007

2 0.9 0.1 0.4835 9.2878e-007 0.6469 3.8683e-007

2 0.8 0.2 0.4885 7.1815e-007 0.6553 2.4226e-007

2 0.7 0.3 0.4704 1.8222e-006 0.6420 5.0351e-007

2 0.6 0.4 0.4770 1.3038e-006 0.6498 3.2827e-007

2 0.5 0.5 0.4654 2.3357e-006 0.6374 6.4416e-007

2 0.4 0.6 0.4424 7.2049e-006 0.6044 3.3562e-006

2 0.3 0.7 0.3929 6.7422e-005 0.5386 5.4542e-005

2 0.2 0.8 0.3468 4.3751e-004 0.4815 3.9984e-004

2 0.1 0.9 0.2776 4.9068e-003 0.3861 5.6186e-003

2 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Table 4.6. Linear Combination, Multiplicative Approach, Bands 3 and 4

Bands wT wC ρK pval,K ρS pval,S

3 1.0 0.0 0.4737 1.5422e-006 0.6281 1.0443e-006

3 0.9 0.1 0.4720 1.6766e-006 0.6279 1.0572e-006

3 0.8 0.2 0.4753 1.4182e-006 0.6238 1.3012e-006

3 0.7 0.3 0.4687 1.9800e-006 0.6218 1.4402e-006

3 0.6 0.4 0.4737 1.5422e-006 0.6257 1.1834e-006

3 0.5 0.5 0.4539 4.1295e-006 0.6043 3.3638e-006

3 0.4 0.6 0.4407 7.7928e-006 0.6047 3.3033e-006

3 0.3 0.7 0.4127 2.8374e-005 0.5687 1.6430e-005

3 0.2 0.8 0.3583 2.7953e-004 0.4869 3.3631e-004

3 0.1 0.9 0.2974 2.5781e-003 0.4150 2.7319e-003

3 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

4 1.0 0.0 0.4275 1.4454e-005 0.6014 3.8689e-006

4 0.9 0.1 0.4457 6.1539e-006 0.6151 2.0050e-006

4 0.8 0.2 0.4374 9.1090e-006 0.6052 3.2217e-006

4 0.7 0.3 0.4292 1.3393e-005 0.5970 4.7281e-006

4 0.6 0.4 0.4374 9.1090e-006 0.6028 3.6163e-006

4 0.5 0.5 0.4374 9.1090e-006 0.6018 3.7829e-006

4 0.4 0.6 0.4176 2.2716e-005 0.5878 7.1682e-006

4 0.3 0.7 0.3666 2.0137e-004 0.5114 1.4762e-004

4 0.2 0.8 0.3237 1.0310e-003 0.4604 7.6815e-004

4 0.1 0.9 0.2809 4.4192e-003 0.3910 4.9874e-003

4 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Table 4.7. Linear Combination, Multiplicative Approach, Bands 5 and 6

Bands wT wC ρK pval,K ρS pval,S

5 1.0 0.0 0.4473 5.6850e-006 0.6071 2.9541e-006

5 0.9 0.1 0.4522 4.4749e-006 0.6093 2.6517e-006

5 0.8 0.2 0.4506 4.8479e-006 0.6062 3.0782e-006

5 0.7 0.3 0.4555 3.8098e-006 0.6093 2.6517e-006

5 0.6 0.4 0.4588 3.2400e-006 0.6129 2.2333e-006

5 0.5 0.5 0.4489 5.2505e-006 0.5969 4.7596e-006

5 0.4 0.6 0.4308 1.2406e-005 0.5863 7.6927e-006

5 0.3 0.7 0.4045 4.0885e-005 0.5604 2.3126e-005

5 0.2 0.8 0.3567 2.9824e-004 0.4929 2.7587e-004

5 0.1 0.9 0.3040 2.0631e-003 0.4235 2.1823e-003

5 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

6 1.0 0.0 0.4358 9.8443e-006 0.5974 4.6451e-006

6 0.9 0.1 0.4424 7.2049e-006 0.6027 3.6245e-006

6 0.8 0.2 0.4424 7.2049e-006 0.6063 3.0572e-006

6 0.7 0.3 0.4424 7.2049e-006 0.6048 3.2883e-006

6 0.6 0.4 0.4391 8.4264e-006 0.6022 3.7238e-006

6 0.5 0.5 0.4275 1.4454e-005 0.5870 7.4500e-006

6 0.4 0.6 0.4176 2.2716e-005 0.5808 9.7900e-006

6 0.3 0.7 0.3995 5.0742e-005 0.5621 2.1588e-005

6 0.2 0.8 0.3468 4.3751e-004 0.4840 3.6910e-004

6 0.1 0.9 0.2957 2.7240e-003 0.4145 2.7629e-003

6 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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Table 4.8. Linear Combination, Multiplicative Approach, Bands 7 and 8

Bands wT wC ρK pval,K ρS pval,S

7 1.0 0.0 0.4654 2.3357e-006 0.6147 2.0479e-006

7 0.9 0.1 0.4687 1.9800e-006 0.6126 2.2595e-006

7 0.8 0.2 0.4687 1.9800e-006 0.6186 1.6908e-006

7 0.7 0.3 0.4704 1.8222e-006 0.6232 1.3428e-006

7 0.6 0.4 0.4671 2.1508e-006 0.6167 1.8548e-006

7 0.5 0.5 0.4638 2.5359e-006 0.6098 2.5912e-006

7 0.4 0.6 0.4440 6.6596e-006 0.5898 6.5769e-006

7 0.3 0.7 0.4242 1.6823e-005 0.5732 1.3549e-005

7 0.2 0.8 0.3732 1.5416e-004 0.5003 2.1616e-004

7 0.1 0.9 0.2941 2.8775e-003 0.4130 2.8719e-003

7 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001

8 1.0 0.0 0.4555 3.8098e-006 0.6061 3.0923e-006

8 0.9 0.1 0.4572 3.5138e-006 0.6047 3.3033e-006

8 0.8 0.2 0.4522 4.4749e-006 0.5988 4.3555e-006

8 0.7 0.3 0.4522 4.4749e-006 0.6020 3.7575e-006

8 0.6 0.4 0.4407 7.7928e-006 0.5922 5.9013e-006

8 0.5 0.5 0.4259 1.5596e-005 0.5786 1.0755e-005

8 0.4 0.6 0.4127 2.8374e-005 0.5686 1.6496e-005

8 0.3 0.7 0.3896 7.7593e-005 0.5447 4.3299e-005

8 0.2 0.8 0.3419 5.2802e-004 0.4663 6.4269e-004

8 0.1 0.9 0.2891 3.3864e-003 0.4060 3.4423e-003

8 0.0 1.0 0.1491 1.3181e-001 0.2193 1.2589e-001
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The best results are highlighted, and for both test they occur at wT = 0.8 and wC = 0.2.

We can see that, according to Kendall tau correlation coefficient, there is a tie between

the Additive approach with weights wT = 0.9 and wC = 0.1, and Multiplicative approach

with weights wT = 0.8 and wC = 0.2. However, according to Spearman rank correlation

coefficient, Additive approach is superior to the Multiplicative. We can also see that the

results are statistically significant, since the p-values are of the order 10−7 which means we

would randomly get these results in a few trials out of ten million.

Here, we are presenting the results for using the 8 different subsets of subbands with

color information embedded in a multiplicative manner.

Table 4.9. Multiplicative Combination

Bands ρK pval,K ρS pval,S

1 0.4407 7.7928e-006 0.5948 5.2442e-006

2 0.4786 1.1983e-006 0.6413 5.2206e-007

3 0.4704 1.8222e-006 0.6251 1.2155e-006

4 0.4308 1.2406e-005 0.6022 3.7238e-006

5 0.4489 5.2505e-006 0.6055 3.1780e-006

6 0.4391 8.4264e-006 0.6005 4.0192e-006

7 0.4687 1.9800e-006 0.6173 1.7986e-006

8 0.4572 3.5138e-006 0.6032 3.5436e-006

We can see again that the maximum values occur if we’re using all subband correlations.

However, this way of combining information performs worse than the Linear Combination.
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4.3.2. Evaluating the Significance of Tests

To evaluate the performance of our metric, we examined how well PSNR works, and the

coefficient of correlation for Spearman’s test was 0.283. Also, we examined how SSIM [4]

performs, with Matlab implementation downloaded from the website [51]. We used the same

varying weights, and the best result obtained was 0.5147. As can be seen from the tables

above, ST-SIM has best performance of 0.5984.

Since raw numbers like ρ = 0.65 are not very descriptive if we do not know what to

expect, we conducted the following experiment: let’s denote the number of human subjects

as Ns; for each one of the human subjects, we removed their judgements from the pool,

and computed the mean grades of the remaining Ns − 1 subjects. Then, we conducted the

Kendall tau and Spearman rank correlation tests, to see how well a human performs against

the humans; to be fair, we computed again the correlation coefficients between our best

performing method, and the same means of Ns − 1 subjects. In short, we are competing

with one human in being close to the judgements of other humans.

When we perform this test for the Linear Combination, Additive Approach with weights

wT = 0.8 and wC = 0.2, that correspond to the highest Spearman rank correlation, we get

that the mean value of correlations of human judgements against one human is 0.794151,

while mean value of correlations against our metric is 0.660734. This confirms the good

performance of our texture image similarity metric.

4.4. Discussion

We have shown that our texture image similarity algorithm performs well and agrees

with human perception. Our best performing ranking results are shown in Figure 4.6.
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7 32 45 23 33

12 44 8 9 13

14 39 50 1 38

3 41 35 30 11

18 40 16 15 34

26 4 5 43 29

22 19 20 25 2

28 27 36 24 31

37 46 48 49 6

47 10 21 17 42

Figure 4.6. Texture pairs sorted in descending similarity order according to our metric

It is apparent that in our approach, the texture information dominates the results. For the

number 1 ranked texture, pair number 7, our method feels so strongly about its similarity
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that even the different color compositions did not move it to a lower ranked spot. Some

points at which our method fails is for example texture pair number 23. Its color and gray-

scale versions are given in Figures 4.7 and 4.8. Our metric ranks it at the 4th place, while

humans put it at rank 28. We assume that this is due to the context association that humans

inevitably exhibit, since they know they are comparing two different materials. Also, these

two textures are very similar at lower scales, thus our metric ranks it high.

Figure 4.7. Point of failure: Texture pair no. 23

Figure 4.8. Point of failure: Texture pair no. 23, gray-level, at different scales

4.5. Additional Experiments

We also tested our metrics on other images and databases, and the experiments confirm

good performance of the new proposed metric.
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4.5.1. Evaluating the Leaf Example

In Section 2.1, we gave an example of three images of the same leaf, the original and two

distorted ones in Figure 2.1.1. We ran our algorithm and compared the original image (2.1(a))

with DCT compressed (2.1(b)) and with image with lighting changes (2.1(c)). We used the

method that was selected as the best in the previous experiment (all new similarity maps,

additive method for combining grayscale results, linear combination with weights wT = 0.6

and wC = 0.4 for combining structure and color similarity). We also compared the original

leaf image with an image of water. We can see that our metric ranked the images according

to human perception, giving it highest score for the image with luminance changes, then a

bit lower (but still high) score for the DCT compressed image, and a relatively low score for

the water image. The images and their respective scores are given in Figure 4.9.

4.5.2. Evaluating the Zhao Reyes Database

In [28], a database of 39 texture pairs was used; they are grayscale, thus we can’t include the

color information in this section. Again, we varied the subset of subband correlations, and

the results for both Additive and Multiplicative approach are given in Tables 4.10 and 4.11.

We can see that the performance now is better if we use the subset 3 (adjacent subbands

for a given orientation). If we plot this optimal combination of parameters against ST-SIM,

we can see in Figure 4.10 that with the new metric, there can be drawn a line in horizontal

direction (dash-dot line) that separates the values of the metric for the similar and dissimilar

pairs (separated by a vertical dashed line).
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(a) Original image (b) Lighting changes, score = 0.997

(c) DCT compressed, score = 0.926 (d) Water, score = 0.783

Figure 4.9. Leaf example similarity scores
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Figure 4.10. ST-SIM and new similarity metric for Zhao Reyes database
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Table 4.10. Zhao Reyes database, Additive Approach

Bands ρK pval,K ρS pval,S

1 0.4581 4.3260e-005 0.6450 9.3127e-006

2 0.4554 4.8003e-005 0.6462 8.8458e-006

3 0.4878 1.3276e-005 0.6881 1.2918e-006

4 0.4554 4.8003e-005 0.6389 1.2004e-005

5 0.4662 3.1556e-005 0.6612 4.6022e-006

6 0.4662 3.1556e-005 0.6689 3.2436e-006

7 0.4662 3.1556e-005 0.6687 3.2740e-006

8 0.4635 3.5075e-005 0.6636 4.1253e-006

Table 4.11. Zhao Reyes database, Multiplicative Approach

Bands ρK pval,K ρS pval,S

1 0.4527 5.3236e-005 0.6401 1.1415e-005

2 0.4689 2.8375e-005 0.6626 4.3182e-006

3 0.4716 2.5500e-005 0.6665 3.6264e-006

4 0.4500 5.9006e-005 0.6341 1.4649e-005

5 0.4608 3.8964e-005 0.6472 8.4732e-006

6 0.4608 3.8964e-005 0.6493 7.7707e-006

7 0.4527 5.3236e-005 0.6497 7.6367e-006

8 0.4554 4.8003e-005 0.6519 6.9372e-006
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CHAPTER 5

Conclusion and Future Work

In this thesis, a new method to determine texture image similarity is presented. It com-

bines the best features from the literature that are utilized for determining similarity of

gray-level textured regions, and for comparing color compositions of images. The contribu-

tion of this work is multifold:

• We have improved the existing texture similarity algorithms by adding terms de-

scribing the cross-correlations between subbands of images; this finds justification

in human perception and ”visual features” that tend to have spatial, scale and

orientation correlations;

• We have extended the existing OCCD color comparison method to sliding windows,

which leads to greater complexity but achieves better results

• We have explored new methods of combining texture and color information.

This work will be extended in near future to include more subjective testing, with better

systematically designed tests and with more examples. Also, the method can be extended

to general image comparison. We will explore image comparisons at different scales, since

we had encountered a few examples where the textures would be similar at one scale, but

dissimilar at another.
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