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Abstract—We investigate perceptual similarity metrics for the
content-based retrieval of natural textures. The goal is to find
perceptually similar textures that may have significant differences
on a point-by-point basis. The evaluation of such metrics typically
requires extensive and cumbersome subjective tests. The focus of
this paper is on the recovery of textures that are “identical”
to the query texture, in the sense that they are pieces of the
same texture. This is important in content-based image retrieval
(CBIR), where one may want to find images that contain a
particular texture, as well as in some near-threshold coding
applications. The advantage of evaluating metric performance in
the context of retrieving identical textures is that the ground truth
is known, and therefore no subjective tests are required. We can
thus compare the performance of different metrics on large sets of
textures, and derive meaningful statistical results. We evaluate the
performance of a recently proposed structural texture similarity
metric on grayscale textures, and compare it to that of PSNR, as
well as space domain and complex wavelet structural similarity
metrics. Experimental results with a database of 748 distinct
texture images, indicate that the new metric outperforms the
other metrics in the retrieval of identical textures, according to
a number of standard statistical measures.

I. INTRODUCTION

Unlike traditional image quality metrics that evaluate the

similarity between two images on a point-by-point basis, struc-

tural similarity metrics (SSIM) [1] can give high similarity

scores even to images with significant pixel-wise differences.

The goal is to assess the perceived similarity between two

images and to allow deviations that do not affect the structure

of the image. A number of applications can make use of such

metrics, and each application imposes different requirements

on metric performance. For example, in image compression

it is important to provide a monotonic relationship between

measured and perceived distortion, while in image retrieval

applications it may be sufficient to distinguish between similar

and dissimilar images, while the precise ordering may not

be important. In some cases, it is important to have an

absolute similarity scale, while in others a relative scale may

be adequate. The focus of this paper is on natural textures, and
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in particular, on the recovery of textures that are “identical” to

the query texture, in the sense that they are pieces of the same

texture. This is important in content-based image retrieval

(CBIR), where one may want to find images that contain a

particular texture, as well as in some near-threshold coding

applications. The problem of searching for (known) target

documents in a database is known in information retrieval

community as known-item search [2], and specific evaluation

measures have been developed to assess the performance of

such systems.

The evaluation of image similarity metrics, in general,

requires extensive subjective tests, with several human sub-

jects and a large number of image pairs. Depending on the

performance requirements, a number of traditional statistical

measures can be used for metric evaluation. For example, the

Spearman’s rank correlation coefficient and Kendall’s tau rank

correlation coefficient can be used when the relative perfor-

mance is important [3], while linear regression can be used

when absolute performance is needed. In [4], the performance

criterion was whether a metric can distinguish between similar

and dissimilar pairs, irrespective of the ordering within each

group. In such a case, the greater the gap in metric values

between similar and dissimilar pairs, the better the metric

performance.

The advantage of evaluating metric performance in the

context of retrieving identical textures is that the ground truth

is known, and therefore no subjective tests are required. Of

course, the ground truth is known to the extend that the texture

from which the “identical” pieces are obtained is perceptually

uniform. Common measures for this type of retrieval systems

include precision at one (measures in how many cases the

first retrieved document is relevant), mean reciprocal rank

(measures how far away from the first retrieved document is

the first relevant one), mean average precision and precision-

recall plots.

In evaluating the similarity of two textures, one has to

take into account both the color composition and the spatial

texture patterns. In [3] we proposed a new structural texture

similarity metric that separates the computation of similarity

in terms of grayscale texture and color composition, and then



combines them into a single metric. However, our subjective

tests indicate that the two attributes are quite separate and

that there are considerable inconsistencies in the weights that

human subjects give to the two components [3]. Thus, for

the present study, we focus only on grayscale textures, and

compare the performance of the grayscale component of the

metric proposed in [3] to that of PSNR, SSIM, complex

wavelet SSIM (CW-SSIM) [5]. Experimental results with a

database of 748 distinct texture images, extracted from 310

larger texture images, indicate that the new metric outperforms

the other metrics in the retrieval of identical textures, according

to all of the standard statistical measures we mentioned above.
The remainder of this paper is organized as follows. Section

II provides a brief overview of similarity metrics. The struc-

tural texture similarity metric is reviewed in Section III. The

experimental setup and results are given in Section IV, while

the final conclusions are drawn in V.

II. BACKGROUND

Traditional quality metrics range from simple MSE and

PSNR to more sophisticated metrics that incorporate low-

level models of human perception [6] and are typically aimed

at near-threshold applications such as perceptually lossless

image compression. The idea is to ensure that the original

and reconstructed images are perceptually indistinguishable.

Traditional metrics evaluate image fidelity on a point-by-point

basis. However, for supra-threshold applications, such as CBIR

and perceptually lossy compression, we need metrics that can

accommodate significant changes as long as the structure of

the image is preserved. This was the primary motivation in the

development of SSIMs [1], which allow non-structural contrast

and intensity changes, and the CWSSIM [5], which also allows

small translations, rotations, and scaling changes.
SSIM metrics, whether implemented in the space or wavelet

domain, compare two images or image patches (windows) x

and y by multiplicatively combining a number of terms. Here

we assume that the metric is computed in a window of each

subband. For the k-th subband, the luminance comparison term

is

lk(x,y) =
2µk

xµk
y + C1

(µk
x)2 + (µk

y)2 + C1

(1)

where µk
x and µk

y are the means of the two windows; the

contrast comparison term is

ck(x,y) =
2σk

xσk
y + C2

(σk
x)2 + (σk

y )2 + C2

(2)

where (σk
x)2 and (σk

y )2 are the variances of the two windows;

and the structure term is

sk(x,y) =
σk

xy + C3

σk
xσk

y + C3

(3)

where σk
xy is the covariance between the two windows and C1,

C2, and C3 are small constants. These terms are then combined

to give a composite measure of structural similarity:

Qk
ssim(x,y) = lk(x,y)αck(x,y)βsk(x,y)γ (4)

where α, β, and γ are positive weights, typically set to 1.

The SSIM is typically evaluated in a small sliding window

(e.g., 7 × 7), and the overall image similarity is obtained as

the average over all spatial locations and all subbands.

As we saw above, one of the main thrusts in the SSIM

approach is to move away from point-by-point comparisons,

and instead, to base the comparisons on region statistics. In

an attempt to fully embrace this philosophy, Zhao et al. [4]

replaced the structure term – which in spite of its name is in

fact a point-by-point comparison – with terms that depend on

region statistics. They introduced terms that compare the first

order correlation coefficients (autocovariance normalized by

the variance) in the horizontal ρk
x(0, 1) and vertical ρk

x(1, 0)
directions as follows:

ck
0,1(x,y) = 1 − 0.5

(

|ρk
x(0, 1) − ρk

y(0, 1)|
)p

(5)

The vertical term is defined similarly. Note that these compar-

ison terms take values in the interval [0, 1], are symmetrical

with respect to x and y, and have a unique maximum. An

additional advantage of eliminating the structure term is that

the metric takes only positive values. As in [3], we will assume

that p = 1.

To compute the overall value of the metric, the two images

are decomposed into subbands using a steerable pyramid

decomposition, and the statistics are computed, for each orien-

tation and scale, within a small sliding window. The different

terms are combined multiplicatively to obtain the similarity

coefficient at each location and subband

Qk
stsim(x,y)= lk(x,y)

1

4 ck(x,y)
1

4 ck
0,1(x,y)

1

4 ck
1,0(x,y)

1

4 (6)

Note that the exponents sum to one in order to normalize the

metric values, so that metrics with different numbers of terms

can be compared. The overall metric value is then calculated,

either additively by averaging over all subbands and spatial

locations, or multiplicatively by multiplying the coefficients

of all subband and then averaging over all spatial locations.

We refer to the metrics proposed by Zhao et al. in [4] as

structural texture similarity metrics (STSIM).

III. REVIEW OF STRUCTURAL TEXTURE SIMILARITY

The metric proposed in [3] extends the ideas of [4] by

including a broader set of local image statistics. We will refer

to this as STSIM-2, to distinguish it from the metrics in [4].

The motivation for these comes from the analysis/synthesis

literature, and in particular, the work of Portilla and Simoncelli

[7], who have shown that a broad class of textures can be syn-

thesized using a set of statistical parameters that characterize

the coefficients of a multiscale frequency decomposition.

As in [5], [4], STSIM-2 uses the complex-valued steerable

filter decomposition of the grayscale component of the two

images, which like Gabor filters, is inspired by biological

vision and has nice properties, such as translation and rotation

invariance. In the following, we use three scales (Ns = 3) and

four orientations (No = 4).



In addition to the terms in (6), STSIM-2 uses terms that

compare the cross-correlation between subbands. The lumi-

nance, contrast and autocorrelation terms in (1), (2), and (5)

are calculated on the raw subband coefficients, while the cross-

correlation statistics are computed on the magnitudes.

Note that all the subbands (except the low-frequency band)

are zero-mean over the whole image; however, within small

windows, e.g., 7 × 7, this is not necessarily true. Thus, the

average is computed for each sliding window and is used in

the variance calculation.

Portilla and Simoncelli [7] base the justification for the

use of coefficient correlations within subbands on the fact

that the steerable filter decomposition is overcomplete and the

existence of periodicities in the textures. They also argue that,

while raw coefficients may be uncorrelated, the coefficients

magnitudes are not statistically independent, and large mag-

nitudes in natural images tend to occur at the same spatial

locations in subbands at adjacent scales and orientations.

The STSIM-2 metric, for each orientation, computes the

cross-correlations between the magnitudes of subband coeffi-

cients at adjacent scales, and for each scale it computes the

cross-correlations between the subband magnitudes of all ori-

entations. Thus, for the 3-scale, 4-orientation decomposition,

we have
(

4

2

)

= 6 coefficients for each scale, and 2 coefficients

for each orientation, for a total of M = 3 · 6 + 4 · 2 = 26
new terms. In [3], it was found that the best performance is

obtained when all 26 coefficients are used.

The cross-correlations between the coefficient magnitudes at

subbands k and l are normalized by the variances of the two

subbands to obtain the cross-subband correlation coefficient

ρk,l
x (0, 0) =

E{(|xk,i,j | − µxk
)(|xl,i,j | − µxl

)}

σxk
σxl

(7)

where |xk,i,j | and |xl,i,j | are the magnitudes of the coefficients

of subbands k and l, respectively, and µxk
and µxl

are the

corresponding means of the magnitudes in the window. The

expected value is an empirical average over the window.

Since the cross-subband correlation coefficients take values

in the interval [−1, 1], they can be compared as in (5) to

obtain a statistic that describes the similarity between the

cross-correlations:

c
k,l
0,0(x,y) = 1 − 0.5

(

|ρk,l
x (0, 0) − ρk,l

y (0, 0)|
)p

(8)

Note that the c
k,l
0,0(x,y) values are in the interval [0, 1], just

like the STSIM terms.

For a steerable pyramid with Ns scales and No orientations,

we have a total of N = Ns ·No +2 subband images, including

the highpass and the lowpass subband. (In [3], the lowpass

was omitted.) For each of these subbands, we compute the

STSIM maps as in (6). We also compute M maps with the

new statistics, based on (8). The Nt = N + M matrices are

then be combined additively

Qt(x,y) =
1

Nt





∑

k

Qk
stsim(x,y) +

∑

k,l

c
k,l
0,0(x,y)



 (9)

(a) Original Image

(b) Subimage 1 (c) Subimage 2 (d) Subimage 3

Fig. 1. Extraction of images from an original texture image

to obtain a single similarity matrix. Finally, spatial summation

over the matrix values gives a single value for the similarity

metric.

IV. EXPERIMENTAL RESULTS

A. Database

To construct our database, we downloaded approximately

300 images with perceptually uniform texture from the Corbis

website [8]. From each image, we extracted between two and

five smaller subimages of size 128× 128. The size was small

enough to make it possible to extract at at least two subimages

from each original original image without significant overlap

between the subimages. At the same time, it was large enough

to be able to capture several scales of texture. The amount

of overlap between the subimages depends on the size of the

original image, but in any case, the average mean-squared error

(MSE) between two subimages from the same original texture

image is quite high (average PSNR is about 15dB). This is

illustrated in Figure 1, where we have the original image and

three subimages with partial overlap. In similar fashion, we

obtained a total of 748 texture images for this experiment.

From now on, the term “image” will refer to the subimage,

and “original image” to the original, larger image.

B. Experiment setup and Results Evaluation

For the experiment, we used all possible pairs of images,

which is slightly less than 280,000 combinations, and cal-

culated the metric values for PSNR, SSIM, CW-SSIM and

STSIM-2. This resulted in four 748× 748 tables of similarity

scores; note all metrics are symmetric. The image labels,

which reflect the lineage from an original image, constitutes

the ground truth for evaluation of our results.
To evaluate the performance of these metrics in the context

of retrieving identical textures, we can look at a number



of statistics. One informative measure of performance is the

number of times the first retrieved image has the same lineage

as the query, i.e., comes from the same original image. This

is commonly referred to as precision at one. For PSNR,

this happens only in 45 cases, or 6% of the textures. SSIM

has a slightly better performance, with 8% success rate or

60 images. CW-SSIM gives considerably better results with

63.6% success rate or 476 cases of correct first match. The

precision of the proposed metric is 77.2%, which corresponds

to 581 successful queries out of a total of 748.

Another way of assessing the performance of the various

metrics is to compute the mean reciprocal rank (MMR), i.e.,

the average value of the inverse rank of the first correctly

retrieved image [9]. Again, the PSNR and SSIM metrics

perform poorly, with MRRs of 0.1 and 0.11, respectively. The

MRR for CW-SSIM is 0.71 and for the STSIM-2 metric it is

0.83.

Note that, since in many cases we extracted more than two

patches from the original image, there is more than one correct

answer for each query. In such cases, the usual value to report

is mean average precision (MAP)[10]. The MAP is computed

as follows: for each query image i, we order the remaining 747
images according to (descending) similarity; then, we calculate

the precision for all possible numbers of retrieved documents:

the first one, the first two, etc., all the way to 747 images.

We then average the precisions of the sets of retrieved images

for which the last retrieved image was identical to the query.

Finally, we average these values across all images. If we define

the number of images that come from the same bigger image as

image i with ni (not including image i, i.e., ni is the maximum

number of possible correctly retrieved images for query i), and

if, for the ranked results we define the indicator function as

Ii(j) = 0 if the jth retrieved image does not come from the

same original, and Ii(j) = 1 if it does, and if we define pi(r)
the precision of retrieval if we make the cut-off for returning

results at the rth retrieved image, average precision is defined

as:

Pavg,i =
1

ni

747
∑

r=1

pi(r) · Ii(r) (10)

with precision at cut-off r being

pi(r) =

r
∑

j=1

Ii(j)

r
. (11)

Therefore, the mean average precision is:

MAP = mean
i

Pavg,i (12)

In this experiment, the MAP for PSNR was 0.095, for SSIM

0.06, for CW-SSIM 0.62 and for the STSIM-2 metric 0.75.

Finally, we generated the precision-recall plots, shown in

Figure 2. For the method of generating them, we refer the

readers to [11] for a comprehensive explanation.

Given these results, we can conclude that the performance of

PSNR and SSIM does not agree with human perception. This

should be just as expected because the point-by-point metric
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Fig. 2. Precision-recall plots

calculations do not match the statistical nature of the CBIR

problem. The CW-SSIM metric, on the other hand, performs

fairly well, mainly because it can tolerate small translations,

rotations, and scaling changes. However, the STSIM-2 metric

outperforms CW-SSIM by a significant margin in all of the

reported statistics, and therefore, we can safely claim that it

is the best metric for this task.

C. Points of Failure and Future Research

It is interesting to comment on the cases in which the

proposed metric failed. One of the most common cases in

which the metric assigns a high similarity value to two images

that come from different original textures is when the two

textures are quite similar except for the difference in mean gray

level. That’s because the gray level doesn’t count much in the

proposed metric, and the differences in the pattern outweigh

the differences in gray level. An example is shown in Figure

3. Note that the image on the right has the right gray level, but

the orientation of the lines seems to be more at odds with the

query image than that of the pattern in the middle. Indeed, we

consider there to be considerable perceptual similarity between

the query and best match in this example, so this type of failure

is understandable from a human perceptual point of view. If

mean gray value is important, the problem can be remedied

by introducing a new term that compares the local average

grayscale values directly in the image domain. This term could

be easily combined with the transform-based terms to produce

the desired result. However, the intention of the original SSIM

metrics, and the reason for (1), was to deemphasize differences

in average luminance.

Another group of failures comes from images with strong

texture elements, such as the tiled walls shown in Figure 4,

but with different colors. This could be explained by the large

variation of colors in the true match, thus bringing the more

uniformly colored texture as a closer match. Related to this

is the example shown in Figure 5, where it appears that the



two textures are similar enough to override differences due to

spatial shifts in the identical texture samples.

A large part of failures come from the fact that images in

our database have different scales. This can be seen in Figure

6, where the query image is a texture at a large scale and

the retrieved image at a smaller scale. Note that our metric

weights similarity equally across scales. In general, the metric

in its current form has difficulties handling textures of larger

scales. There are a number of possibilities for improvement,

e.g., by explicitly detecting the scale of each image.

Finally, the failure shown in Figure 7 is due to the fact that

the metric cannot adequately discriminate texture orientations,

while the failure in Figure 8 is due to the metrics inability to

identify periodic textures.

V. CONCLUSIONS

We examined the performance of a perceptual structural

similarity metric (STSIM-2) for the retrieval of images of

natural textures. The metric relies on subband decomposition

of grayscale images, and the local statistics computed on small

sliding windows. Our focus was on the recovery of textures

that are “identical” to the query texture, in the sense that they

are pieces of the same texture. This eliminates the need for

cumbersome subjective tests. We used a large database of 748

distinct texture images, and performed pair-wise calculations

for all possible pairs. We compared the performance of the

STSIM-2 metric to that of PSNR, SSIM and CW-SSIM on

all texture pairs, using standard statistical measures (precision

at one, mean reciprocal rank, mean average precision, and

precision-recall plots). We have shown that the STSIM-2

metric outperforms the other metrics in this experiment. The

remaining drawbacks of the metric include problems with the

mean gray value of the textures, texture periodicities, and

scale. These will be addressed in our future research.

Fig. 3. Failed example: query image (left), first best match (middle), first
“identical” match (right)

Fig. 4. Failed example: query image (left), first best match (middle), first
“identical” match (right)

Fig. 5. Failed example: query image (left), first best match (middle), first
“identical” match (right)

Fig. 6. Failed example: query image (left), first best match (middle), first
“identical” match (right)

Fig. 7. Failed example: query image (left), first best match (middle), first
“identical” match (right)

Fig. 8. Failed example: query image (left), first best match (middle), first
“identical” match (right)
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