
1

Engineering Over-Clocking: Reliability-Performance
Trade-Offs for High-Performance Register Files

Gokhan Memik1, Masud H. Chowdhury2, Arindam Mallik1, Yehea I. Ismail1

1 Dept of Electrical and Computer Engineering
Northwestern University

{memik, arindam, ismail}@ece.northwestern.edu

2 College of Engineering,
University of Illinois at Chicago

masud@ece.uic.edu

ABSTRACT
Register files are in the critical path of most high-performance
processors and their latency is one of the most important
factors that limit their size. Our goal is to develop error
correction mechanisms at the architecture level. Utilizing this
increased robustness, the clock frequencies of the circuits are
pushed beyond the point of allowing full voltage swing. This
increases the errors observed due to noise and other external
factors. The resulting errors are then corrected through the
error correction mechanisms. We first develop a realistic
model for error probability in register files for a given clock
frequency. Then, we present the overall architecture, which
allows the error detection computation to be overlapped with
other computation in the pipeline. We develop novel techniques
that utilize the fact that at a given instance many physical
registers are not used in superscalar processors. These
underutilized registers are used to store the values of active
registers. Our simulation results show that for a fixed
architecture the access times to the registers can be reduced by
as much as 80% while increasing the number of execution
cycles by 0.12%. On the other hand, by reducing the register
file access pipeline stages by 75%, the average number of
execution cycles of SPEC applications can be reduced by
11.5%.

Keywords: Reliability, Fault-Tolerant Computing,
Adaptive Systems.

1. INTRODUCTION
Over the last decade, in spite of the complexities of new
manufacturing technologies and increasingly complicated
architectures, designers have been able to steadily increase
the performance of high-end microprocessors. This
improvement is achieved through optimizations at the
architecture level (such as aggressive pipelining strategies)
and at the circuit level (such as smaller feature sizes). As
we move into deeper sub-micron technologies, the
complexity of pushing the circuit performance further
becomes an important obstacle. To achieve better
performance, there is an increasing need for collaboration
of higher level (e.g. microarchitecture-level) and circuit-
level optimizations. In this work, we present such a
collaborative optimization. Particularly, we provide
architectural structures to increase the robustness of the
register files in high-end processors, thereby allowing the

designers to push the operating frequencies further1. The
reduced delay times usually result in an increase in the
number of errors observed due to noise and other external
effects. However, the architectural structures proposed
allow the processor to recover from these errors efficiently.
Our goal in this paper is to investigate this trade off
between the register file access delay and its reliability and
allow architects to find the optimal operation frequency.
Specifically, in this paper we make the following
contributions:

We present a realistic model that determines the
probability of an error for a given cycle time of a
register,
We present simulation results showing that a significant
fraction of the registers are not utilized for a
representative processor architecture,
We propose a novel error recovery scheme that exploits
these underutilized registers,
We study how different error recovery mechanisms can
be employed by a high-performance microprocessor,
We present simulation results investigating an optimal
point for trading off the reliability for reducing cycle
time of a register file in a representative architecture.

High-performance processors are aggressive: they try to
fetch and execute multiple instructions per cycle, are
speculative. In such processors, there are two important
hardware loops that affect performance: Branch Loop and
Memory Loop [1]. The Branch Loop includes the stages
between when a prediction for the outcome of a branch
instruction is made and when the outcome of the branch
instruction is found. The Memory Loop includes stages
between a load operation is scheduled and the cache access
is made. The lengths of these loops are arguably the most
essential components in the overall performance of a
processor [7]. The longer the loop, the longer it will take to
recognize a misprediction and recover from it. For all high-
performance microprocessors, register file access stage(s)
are in both of these loops. Hence, the access latency to a

1 Note that, we do not vary the supply voltage (Vdd). We change
the input clock frequency.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

2

0
0.2
0.4

0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relat ive cylce time (Cr)

re
la

ti
v

e
v

o
lt

ag
e

sw
in

g
 (V

sr
)

register file is likely to have a significant impact on the
overall performance. Our proposed schemes aim to achieve
reduced access latency for the register file. Particularly, in
Section 5, we show that the number of register file access
pipeline stages can be reduced by as much as 75%, thereby
reducing the average number of execution cycles of SPEC
applications by 11.5% on average. By allowing the register
file to operate at higher frequencies, we will allow larger
register files to be implemented.

In the next section, we present a study investigating the
relation between the cycle time and error probability in
register file. Section 3 gives an overview of how the errors
are detected and corrected. In Section 4, we discuss our
novel error correction schemes. Section 5 presents the
experimental results. In Section 6, we overview the related
work and Section 7 concludes the paper with a summary.

2. FREQUENCY VS. RELIABILITY
We present an analytical framework, which relates
reliability with overclocking scheme used in the register
file. This section discusses the model that we have used in
our work.

Figure 1. Voltage at a circuit node at two different frequencies

Figure 2. Decrease of voltage swing with increase of frequency

Injection of noise into a circuit node causes a signal
deviation at that node. This signal deviation will affect the
operation of the circuit or circuit block driven by the victim
net. A functional failure is possible when induced noise is
propagated and wrongly evaluated at the primary output.
The parameters that determine if there will be a logic error
are (i) the amplitude and the duration of the noise pulse,
(ii) the type of the victim node and the circuit connected to
the victim node, and (iii) the signal condition on the
affected node. It is important to note that with increasing

clock frequencies, a circuit node may suffer from reduced
voltage swing, since there is not enough time to fully
charge or discharge the load capacitance. Cfs in Figure 1 is
the clock cycle time required to obtain the full voltage
swing (Vfs) from zero to Vdd. Note that the supply voltage
is kept constant at Vdd.

Figure 10 illustrates the decrease of voltage swing (Vs)
with the decrease of clock cycle time (C). The clock cycle
time and the voltage swing are normalized against the
clock cycle at full swing (Cfs) and the full swing voltage
(Vfs), respectively. The relative voltage swing is defined as
Vsr = Vs/Vfs and the relative cycle time Cr = C/Cfs. If the
voltage swing changes, all the signals become faster by the
same ratio independent of the capacitive load at a circuit
node. Note that the change of voltage swing slows down at
longer clock cycle time. This shape correctly maps the
change of actual signals on-chip with time. Any signal at a
circuit node rises quickly at the beginning and as the signal
reaches close to the full swing value it takes longer time for
a certain change. The curve in Figure 1 has been produced
by simulating a chain of gates driven by an inverter at
different frequencies with constant supply voltage Vdd.

Figure 3. A simple D Flip-Flop

Figure 4. Noise immunity curves of a D flip-flop at various voltage
swings

With a reduced signal level, a circuit node is more likely to
suffer from logic failure due to a certain level of noise.
Therefore, increasing frequency leads to higher probability
of logic failure at a circuit node due to reduced voltage
swing. The main advantage of static logic over dynamic
logic is its robustness under the influence of noise. But
static logic may suffer from logic failure if there is a
feedback loop. A static D flip-flop (as in Figure 3), which

D ____
CLK

Q Q

CLK

CLK CLK

at Cfsat 0.3Cfs

Vfs
0.89Vfs

0.78Vfs 0.67Vfs

0.56Vfs
0.39Vfs 0.61Vfs0.50Vfs

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

3

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative voltage swing (Vrs)

pr
o

ba
b

il
it

y
of

 e
rr

or
 (P

E
)

1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0 0.2 0.4 0.6 0.8 1
relative cycle time (Cr)

pr
ob

ab
ili

ty
 o

f
er

ro
r

(P
E

)

Dat a

Formula

is common in registers, has a feedback loop that cannot
recover from noise-induced errors. In these types of
circuits there are three possible points where noise can be
injected: the input, the clock and the feedback loop. The
feedback loop is the most sensitive to noise. Even a small
noise pulse on the feedback loop when the clock is falling
or inactive will be propagated repeatedly through the loop
and may ultimately destroy the logic information stored in
the flip-flop. A set of noise immunity curves for the D flip-
flop in Figure 3 is presented in Figure 4, which plots the
relative noise duration (Dr) against the relative noise
amplitude (Ar) at various voltage swings. Noise pulses of
various amplitudes and durations have been injected into
the feedback loop of a D flip-flop at different voltage
swings, while keeping Vdd constant. SPICE simulations
were used to determine the set of noise amplitudes and
durations that cause a logic failure for different voltage
swing levels. The area above each curve in Figure 4
represents the amplitudes and durations of a noise pulse
that can cause logic failure. Hence, the lower the voltage
swing the larger the area of noise amplitudes and durations
that can cause an error. The relative noise amplitude is
defined as Ar = A/Vfs, where A is the amplitude of the
noise pulse, and the relative duration of noise Dr = D/Cfs,
where D is the duration of the noise pulse. The highest
curve is for the full voltage swing Vfs (swing from zero to
Vdd). The lower curves illustrate noise immunity at voltage
swings smaller than the full swing. It is important to note
that the noise amplitudes and durations are not equally
probable. The probability of smaller noise amplitudes and
noise durations are higher than larger amplitude pulses
with longer duration.

Figure 5. Noise amplitude at various switching combination of
neighboring lines of a victim line

Consider a victim line, which has n neighbors significantly
coupling to it. For noise injection into the victim line the
total number of switching combinations of the neighboring
lines is 22n. Only one switching combination results in the
worst-case noise amplitude, which occurs when all the
neighboring lines switch in the same direction. However,
the number of cases where the effects of most of the
neighboring lines cancel each other resulting in small
amplitude of noise is large. We have found the number of
switching cases between these two limiting cases, which
result in a certain noise amplitude range. The results are

plotted in Figure 5. This distribution can be approximated
by an exponential as in (1).

Number of cases =
AKeK 21 (1)

The exact constants K1 and K2 depend on the number of
lines (n) coupling to the victim line. For large n (greater
than 16) this curve saturates to continuous probability
distribution of the form

rAerAP 8.28*8.28)(where rA0 (2)

10)(rDP for 1.00 rD

0)(rDP for rD1.0
(3)

The probability distribution of noise duration can be given
by (3). The reason why Dr is uniformly distributed between
0 and 0.1 is that this is the range of rise time on chip as a
ratio of the cycle time. Note that the noise duration is
limited by these rise times, since noise occurs due to
capacitive and/or inductive coupling of switching line to a
victim line.

Once an aggressor signal settles, the noise pulse ends.
Using equation (2) and (3), the probabilities (PE) of logic
failure for a D flip-flop at different voltage swings have
been obtained by the integration of the probabilities of
noise pulse above each curve of Figure 6. Figure 6 plots
the probabilities of logic failure against the relative voltage
swings (Vrs). The probability number at full voltage swing
are consistent with industrial and test data [23].

Figure 6. Probability of error at different cycle time

Figure 7. Probability of error at various voltage swings

(1)
number of cases

0.05*22n

0

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

4

Register
File

Function

Units

Error
Detection &
Correction

w
ri

te ch
ec

k

error detected

The probability of error versus cycle time in Figure 7 has
been obtained by the voltage swing variable from the two
relations: cycle time versus voltage swing (Figure 2) and
probability of error versus voltage swing (Figure 6). The
relative cycle time Cr is always less than 1 for lower
voltage swings. Similarly we can define relative frequency
Fr = f/ffs = 1/Cr, where f is the frequency and ffs is the
frequency at full voltage swing. PE is a single bit
probability of error and is a function of how fast a circuit is
driven by allowing the voltage swing to decrease. The
formula below shows the relation between PE and Cr and
Fr.

6

2

*710*2
2*6

1

*710*2

rF

erCeEP
(4)

These formulae have been found by curve fitting for the
data of the above curves. The curves in Figure 7, showing
the data and the curve fitted formula, illustrate the accuracy
of the formula. Note that if the circuit is pushed enough not
to allow any voltage swing, the error probability will be 1.
However, the circuit is never pushed to these limits. Note
that, this particular fault model is applicable for a specific
circuit element, register file in current work. The other
parts of the circuit won’t follow the same fault model.
However, using similar procedure, it is possible to come up
with accurate fault models for other parts of the processor.
In our earlier studies we have developed a fault model
which predicts the fault occurrence probability in the data
cache [11].

The overclocking of the register file can be implemented
either statically or dynamically. For static implementation,
the clock rate would be decided at the design time. This
will be performed by setting the clock period higher than
the estimated delay. This scheme won’t require a separate
clock for the register file. Dynamic implementation, on the
other hand, would adjust the clock of the system to a
higher (lower) value as the amount of error is below
(above) a predetermined threshold value. However, this
dynamic adjustment has a high hardware overhead. Hence,
in our work we utilize a static overclocking scheme.

Figure 8. System overview of error detection and correction.
Straddled area and dotted lines indicate the enhancements.

3. ERROR TYPES AND DETECTION
Since we are going to change the voltage swing (i.e.
overclock the register file), errors can occur during the

writing of a register value or during the reading. In either
case, the error(s) should be detected. So, all of the schemes
we will discuss requires a detection mechanism. Figure 8
presents the register file and function unit segment of the
architecture enhanced with the error detection and
correction. The Error Detection & Correction (EDC)
hardware stores the extra data bits and logic needed to
perform the error detection and correction. During reading,
the value from the register file is provided to the function
units before it is checked. While the function units are
operating, the error detection is performed. If an error is
detected, the output of the function unit is omitted, the
instruction is marked as corrupted and it is “replayed”.
Since the output of this instruction will not be written to
the register file, all the dependent instructions will be
replayed automatically. The original instruction that caused
the error itself will be checked at the flags stage of the
pipeline and replayed, because of the “corrupted” mark.
Replay mechanisms have become an essential part of
deeply-pipelined processors. In this scheme, the re-
execution is initiated by the replay mechanism, which
detects the instructions that do not receive correct input
values (incorrect value can be caused by a cache miss) and
re-executes them by informing the issue queue. As
described above, we utilize the same hardware structures to
re-execute the instructions that receive incorrect input
values due to read or write errors. This way we can overlap
the error detection with function unit computation and
therefore push the detection circuit out of the critical path
of the processor. Note that several processor architectures
employ error detection and recovery schemes in their
register files, e.g. IBM G5 uses an ECC-based scheme
[20]. Therefore, the error detection required in our scheme
would not incur an additional penalty.

An error detected during the reading will initiate an error
check for the register value, because a read error might be
caused by a write error (i.e. if the value written is
incorrectly). During writes, we have to generate the
detection bits in the EDC circuit. If the same register is
accessed in the next cycle after write, we do not start the
detection until the value is placed into the output. This
gives us a one-cycle window after the write is completed.
Therefore, the generation of the detection bits can be
performed on the background in two cycles. However, the
detection should be done in a single cycle (there can be
single-cycle function units). Particularly, the detection
should be done in the time the slowest function unit
operation completes. Although this overlapping allows us
to use EDC mechanisms off the critical path, we still
cannot implement very complicated EDC mechanisms.

The errors during writes will be detected during reads as
explained above. If an error is detected and can be
corrected, the instruction will be replayed. If the error
cannot be corrected, we use check-pointing techniques to
restore the state of the processor to a correct one. We must,

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

5

however, note that in the experiments in Section 5, the
probability of a rollback when the error correction schemes
were utilized was always less than the probability of a
rollback with the base architecture that do not utilize error
recovery but allows full voltage swing. Hence, in practice
we reduce the probability of system failures and rollbacks
due to errors even if we increase the frequency.

4. ERROR CORRECTION SCHEMES
We propose different error correction schemes to be used
to increase the reliability of register files in the processors.
First, we discuss the applicability of existing error
correction/detection techniques in Section 4.1. Then, we
propose redundancy-based schemes. We present a
replication-based scheme (RP) in Section 4.3.

4.1 ECC-BASED SCHEMES
There is a large space of possible implementations for error
correction. Our framework can utilize any of these
techniques. However, these techniques (such as Reed-
Solomon or Hamming codes [6]) are usually
computationally complex. Hence, they would not be able to
capture the errors in the required time. As we have
discussed in the last section, errors should be detected in a
single processor cycle. For a 4 GHz processor, this
corresponds to 0.25ns. To our best knowledge, none of the
existing ECC techniques would be able to meet this time
constraint. In the cases where the errors occur randomly,
Hamming codes have been shown to be efficient to recover
from the errors. Therefore, we consider them as an
alternative error correction scheme. In our simulations, we
use a code for detecting 2-bit errors and correcting single-
bit errors. Since we simulate 64-bit registers, this requires 8
additional bits for each register.

Parity and ECC are two common alternatives for protecting
register files against transient errors. Although a parity-
based protection is not expensive to accommodate (from
both performance and energy perspectives), it is limited
since no error correction is provided. ECC schemes, on the
other hand, can correct single or multiple bit errors.
However, they incur high power consumption and latency
overheads. Even a simple ECC scheme can take up to three
times the delay of a simple ALU operation [25]. More
importantly, the energy consumption of an ECC-based
scheme can be as high as an order of magnitude larger than
the energy consumed during a register access [15].
Therefore, a scheme that provides correction with small
energy and delay overhead is desirable.

4.2 REDUNDANCY-BASED SCHEMES
High performance processors aim to execute multiple
instructions per cycle. One important obstacle to achieve
this is the dependencies between instructions. Although
RAW (reading a value after it has written) dependencies
cannot be eliminated, register renaming is used to eliminate
WAW (write after write) and WAR (write after read)

dependencies. To perform register renaming, processors
implement more physical registers than architectural
registers. For example, Pentium 4 has 128 integer registers
for 8 architectural (i.e. logical) registers [8]. Similarly,
Alpha 21264 has 80 integer physical registers for 32
architectural register [10]. Then, for practically each
destination register, register renaming maps the
architectural destination register to one of the available
physical registers. Thereby, if two instructions write to the
same architectural register, they can still be executed in
parallel because they will write their results to different
physical registers. Regardless of the implementation for
each instruction two tasks have to be performed to
complete renaming. First a new register has to be allocated
for destination register(s). Second, the source register(s)
should be renamed such that they will be mapped to the
correct physical registers. Figure 9 presents the register
renaming implementation that is used in our experiments.

Figure 9. Physical structures associated with register renaming.
Mapping table stores the architectural to physical register

mappings.

The renaming scheme in our research is similar to the one
used in Alpha and Pentium 4 (earlier Pentium architectures
were implementing a Reorder Buffer). In this
implementation, a mapping table keeps track of the
physical registers that correspond to architectural registers.
For example, if the architectural register r1 is mapped to
physical register p5, the entry in mapping table that
corresponds to r1 contains the number 5. In addition,
mapping table keeps track of the states of the physical
registers. During the renaming stage, only physical
registers that are “free” should be allocated.

Figure 10. The fraction of active registers over the simulation of
the 123.applu application.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

0 50 100 150 200 250 300
Executed Instructions [M]

F
ra

ct
io

n
 o

f
ac

ti
ve

 r
eg

is
te

rs
 [

%
]

Decoded

OC

Mapping
Table

Rs1’ Rs2’ Merged
Register File

Rd state change

Rd’

Rd’, Rs1’, Rs2’

Reservation
Station (RS)

Rd, Rs1, Rs2

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

6

A physical register can be in one of the three states:
available (AV) state, which indicates that they are not
used; architectural register (AR) state, which indicates that
the register is mapped to an architectural register;
allocated, but not valid (AL) state, which indicates that the
physical register is mapped to an architectural register,
however the instruction that is generating the value is not
completed yet. Once the instruction completes, the state is
changed to AR. The registers in the AV state are free and
can be mapped to architectural registers. In our techniques,
we utilize these registers for copying the values of the
active register (the ones in the AR and AL states).

4.2.1 OPPORTUNITY

Due to the nature of the applications and the limits on the
Instruction-level parallelism (ILP) achieved, some of the
physical registers may remain in the AV state for long
periods of the execution. Our goal is to capture such
periods and use these physical registers to store the copies
of the active registers. Then, if an error is captured on the
active register, we will use this copy value to restore the
state of the processor. We first studied different
applications for register usage, i.e. we studied the fraction
of registers that are active during time epochs of execution
of representative applications. The detailed simulation
environment is explained in Section 5.1. Figure 10 presents
the fraction of active registers over the simulation of a
representative application. During several long periods of
the simulation, more than half of the registers are not used.
This indicates that a redundancy-based scheme can
efficiently use these registers to store copies of active
registers. We must note that the results presented here are
for a representative application. Although a large fraction
of the physical registers are not used during the execution
of this application, the register file needs to be kept large
enough for other applications, which might need all the
available registers.

4.2.2 REDUNDANCY-BASE SCHEME (RB)
Redundancy-based (RB) scheme tries to allocate the free
registers for copying the values of the active registers.
Then, if an error is detected in the original value, this copy
is used to restore the correct value. If the copy value is also
corrupted, the error cannot be recovered. In RB, this
allocation is performed during the register renaming stage.
Specifically, during the register renaming, the register
renaming logic additionally allocates a register that will be
used for copying the register value. The copy register name
is placed into the RUU (or the Reservation Station) along
with the operation code and source and destination
registers. At the completion of the instruction (i.e., when
the value is written to the register file), the copy register is
written.

We have to make three modifications to the traditional
register renaming structures (depicted in Figure 9) to
implement the RB. First, the mapping table is enhanced to

select a copy register and store the selected copy register
name. In addition to that, each physical register can be in
an additional state called copy, which indicates that it is
used as a copy register. Second, the Reservation Station (or
RUU) is enhanced to store the name of this copy register to
enforce the copy operation during the execution of the
instruction. Therefore, the path between the register file
and the Reservation Station should be modified to contain
this information. Finally, we need to make a modification
to the register file as well. It should be enhanced to
perform the copy operation. Among the possible
implementations, the simplest is to add a “copy” port for
each write port in the register file. We only need to input
the name of the copy register. The value of the copy
register will be read from the corresponding data input for
the write port and be written into the register name given in
the copy port. Addition of the copy ports in the register file
is likely to increase the latency of the register file.
However, the copy port is easier to implement than a write
port, because it does not require any additional data input.

During certain periods of the execution, the fraction of the
active registers goes above 50%. This means that some
registers will have no copies. If during the allocation of a
copy register, there are no free registers (all the registers
are in AR, AL, or copy states), the RB randomly selects
one copy register and overwrites it with the new copy
value. If there are no copy registers (all registers are in AR
and AL states), the replication fails, i.e. no copy will be
generated for the current destination register.

4.2.3 REDUNDANCY-ENHANCED SCHEME (RE)
The RB scheme has a significant drawback. In many cases,
it might happen that a register can lose its copy before it is
read. If there was an error during the write operation, the
value cannot be recovered if the copy is overwritten. To
address this shortcoming of RB, we implemented the
Redundancy-Enhanced (RE) scheme.

RE scheme guarantees that if a copy value is overwritten,
the corresponding active register does not have an error. To
achieve this, the register renaming circuit introduces a
dummy instruction to the pipeline that reads the value from
the active register. For example, assume register p9 is
storing the copy of the active register p3. Assume that p9
will be used to store copy of another register. The register
renaming circuit puts a dummy instruction that reads the
value of p3 into the pipeline. If during this dummy read
operation an error is detected, the error detection and
correction will be performed as usual. Hence, if there was
an error during the write of p3, the error will be corrected.
As we will show in Section 5, RE improves the
performance of RB significantly. However, it can still not
achieve 100% recovery because of failed copy attempts
(~2%). Although this seems to be a small fraction, we have
seen that it can have a significant impact on the recovery
success.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

7

4.3 REPLICATION-BASED SCHEME (RP)
The last alternative we consider is called replication-based
scheme (RP). In this scheme, we employ a second register
file which snoops the writes to the primary register file and
replicates all the values written to the primary register file.
Specifically, the replica register file will store a value
whenever a write operation to the primary register file
occurs. Then, if during an access to a register, an error is
detected, the replica register file will be accessed to
retrieve the correct value. This correct value will be stored
in the primary register file for further accesses to the data.
The replica register file has a corresponding write port for
each write port in the primary register file. On the other
hand, the read ports of the replica file are only accessed
when an error is captured in the primary register file.
Hence, in our experiments we set the number of read ports
in the replica file to 2. Note that, the area of the register file
is dictated by the number of ports in it. Since in the replica
file, the number of read ports is going to be smaller, the
size of the replica register file will be smaller than the
original register file. We believe that the overall
complexity is tolerable because the register files usually
consume a small fraction of the overall chip area. Note that
the reads from the replica register file can be performed in
multiple cycles. Therefore, the error rates during reads can
be reduced. However, writes to the replica register file has
to be completed in the same duration as the writes to the
primary register file. Therefore, the probability of write
errors remains the same for the replica file. This can be
improved by having multiple replica files. However, such
schemes are out of the scope of this paper.

We must note that an alternative scheme where we double
the width of the register and write two copies at the same
time can also provide a solution to the problem discussed
in this paper. Then instead of using ECC or Parity, errors
can be captured by comparing the two values. However,
this requires a change in the main register file, which might
degrade the overall performance. In the RP scheme, on the
other hand, the duplicate register file occupies less space
because of the smaller number of ports.

4.4 ALTERNATIVE IMPLEMENTATIONS
In our detection scheme, we assumed that any error is
detected before the result of the operation is written back to
the register file. If we allow the result to be written and
“terminate” the instruction at a later stage in the pipeline
(such as flags stage), we can utilize even more complicated
schemes for detection. However, in such schemes, the
rollback policy must be complicated to detect the
instructions that have used this incorrect value, which will
require significant modifications to the overall datapath
design. Alternatively, the pipeline can be flushed to rid of
all possible dependant instructions. However, in many
configurations, the number of errors can be fairly high and

flushing reduces the performance. Therefore, we do not
consider such schemes.

One can imagine a scheme where only the values of the
architectural registers are stored. Then, when an error is
detected, the processor state is restored using this
architectural register file. Similar to flushing, this
technique has large impact on the performance and hence
is not considered in this work.

5. EXPERIMENTS

5.1 EXPERIMENTAL SETUP
The SimpleScalar [4] version 3.0 simulator is used to
evaluate the proposed techniques. The necessary
modifications have been implemented to perform register
renaming, error probabilities during read and write
operations, and the proposed error correction strategies.
We use parity detection for RB, RE, and RP schemes. As
we have discussed in previous sections, the techniques
make use the selective replay capabilities that exist in
modern microprocessors. Therefore, we have made
changes to SimpleScalar to simulate a realistically sized
issue queue, to model the events in the issue queue in
detail, and to simulate a realistic scheduler under selective
replay.

Table 1. Simulated applications and important statistic: the
number of write errors and read errors occurred when the cycle
time is reduced to 20% of full voltage swing.

Appln cycle
[M]

DL1
acc.
[M]

Reg.
reads
[M]

Reg.
writes
[M]

Write
Errors

[K]

Read
Errors

[K]

168.wupwise 260.1 93.4 550.82 284.55 40.9 43.7
171.swim 837.5 97.5 344.10 127.46 52.4 116.2
172.mgrid 492.9 109.8 285.96 48.28 58.8 62.3
173.applu 661.9 114.2 284.64 41.53 87.1 93.5
177.mesa 147.8 109.8 339.7 192.92 10.2 21.9
179.art 1845.7 102.8 309.8 125.65 87.1 218.4
183.equake 1407.6 127.2 436.50 183.93 145.7 189.3
188.ammp 762.8 116.2 501.86 195.35 37.8 91.7
189.lucas 567.2 72.0 338.17 154.46 60.7 78.3
301.apsi 308.6 111.8 571.27 230.48 34.2 41.1
FP. Average 729.2 105.5 396.28 158.46 61.5 95.6
164.gzip 200.8 71.8 480.1 309.7 27.3 44.5
175.vpr 682.3 118.8 428.2 248.9 72.8 99.4
176.gcc 376.0 126.7 459.7 270.5 17.4 43.9
181.mcf 2151.6 20.3 260.4 185.3 92.7 316.6
186.crafty 308.8 119.5 450.8 280.5 15.8 35.2
197.parser 576.8 89.2 498.1 289.8 38.1 73.2
253.perlbmk 261.5 108.3 419.3 240.4 19.4 41.0
254.gap 230.4 115.1 459.4 297.9 19.4 36.0
255.vortex 314.2 124.8 317.9 185.1 25.5 51.1
300.twolf 802.7 100.1 518.2 300.5 79.8 132.5
Int. Average 590.5 99.5 429.2 260.9 40.8 87.3
Average 659.9 102.5 329.9 178.0 51.2 91.5

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

8

0.001

0.01

0.1

1

10

0.8 0.6 0.4 0.2

Relative cycle time

In
c

re
a

s
e
 i

n
 e

x
e

c
u

ti
o

n
c

y
c
le

s
 [

%
]

ECC RB RE RP

0

1

2

3

4

5

6

7

8

9

10

3 2 1
Register file access latency

R
e

d
u

c
ti

o
n

 i
n

 e
x

e
c

u
ti

o
n

 c
y

c
le

s
[%

]

ECC RB RE RP

0

1

2

3

4

5

6

7

8

9

10

11

100% 75% 50% 25%

Relative Clock Period

R
el

at
iv

e
FI

T
Va

lu
e

Parity

ECC

We simulate an 8-way processor with a 16K, 4-way
associative level 1 data cache, 16K, 2-way associative level
1 instruction cache, and 256K, 4-way associative level 2
cache. Level 1 caches have 2 cycle latencies and level 2
cache has 18 cycle latency. We simulate a register file
similar to that of Alpha 21264 [10] with 80 floating point
and 80 integer registers. Note that Alpha has 32
architectural floating point and integer registers. We used a
bimodal branch predictor of size 4K. Our base processor
has 20 pipeline stages with 7-cycle load loop (similar to the
Pentium 4). Errors that cannot be recovered empties the
pipeline and induces a 1000 cycle extra latency.

We simulate 10 floating-point and 10 integer benchmarks
from the SPEC2000 benchmarking suite. The remaining
benchmarks are not simulated due to the simulation
problems we have encountered. We simulate 300 Million
instructions after fast-forwarding an application-specific
number of instructions as proposed by Sherwood et al.
[22]. Detailed characteristics of the applications are
presented in Table 1. However, in the rest of the paper, we
do not present results for individual applications because
their behavior is similar with respect to different
configurations. Instead, we present the average results for
all the simulated applications.

5.2 FIT MEASUREMENT
We analyzed the FIT behavior resulting from our schemes
on the SPEC benchmark programs. We introduced faults in
the register file guided by the fault occurrence probability
obtained in equation (4). If the fault is not detected by the
protection scheme (parity or ECC) it causes an application
error.

Figure 11. Increase in the FIT number while increasing the
frequency.

Figure 11 presents the average relative FIT values under
different relative clock frequency for parity and ecc-
protected register file. The FIT value observed for ECC
based system running in 100% clock frequency is
considered as the baseline case. The relative FIT value is
defined as the change in FIT in the corresponding case
with respect to the FIT of the baseline processor. We see
that reducing the cycle time by 25% (i.e., changing it from
100% to 75% relative clock cycle) has only a minor impact
on the error behavior. Running the system in twice the
original frequency (50% clock cycle time) causes the FIT

numbers to increase by approximately 40% and 20% for
ECC and parity protection schemes, respectively. Note
that, executing a process with 25% relative clock cycle
(increasing the clock frequency by four times) increases
the FIT of the systems by approximately 200%. Our results
are a good indication that the total number of failures due
to our optimizations will be limited even for very
aggressive overclocking of the register file.

5.3 PERFORMANCE OPTIMIZATION
We have performed two sets of experiments. In the first
set, the designer is given a delay constraint for the register
file. In these experiments, we are trying to measure the
effects of introduced errors on the overall performance of a
given architecture (the number of execution cycles).
Hence, architectural parameters such as pipeline depth are
kept constant. In the second set of experiments, we are
given pipeline properties of a processor. We reduce the
register file access times to reduce the corresponding
number of pipeline stages.

Figure 12 summarizes the results for a fixed architecture.
Each point in the figure corresponds to the average
increase in execution cycles of 20 SPEC applications for
the simulated scheme/frequency. We see that even with the
simplest scheme (RB) we can reduce the cycle time by
more than 60% while keeping the penalty under 1%. For
ECC and RP, we can increase the frequency by 5 times
while having 0.14% and 0.12% penalties.

Figure 12. Increase in the execution cycles while increasing the
frequency. Note that the y-axis is in logarithmic scale.

Figure 13. Reduction in average execution cycles for applications
when varying the register file access latency between 4 and 1.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

9

Figure 14. Reduction in average execution cycles for applications
when varying the register file access latency between 8 and 1.

The second set of experiments is conducted for finding the
optimal operation frequency given that the number of
register file access pipeline stages varies with the
frequency. As we reduce the access latency, the number of
stages in the critical loops decreases. This increases the
performance of the processor. However, since we
introduce additional replays due to register read/write
errors, there can be an increase in the execution cycles
additionally. We performed simulations for the base
architecture, a base architecture with 4-cycle register file
access, and a base architecture with 8-cycle register file
access2. Reducing the latency to 1 cycle from 2 results in
7.4%, 6.5%, 6.8%, and 7.5% reduction in execution cycles
for the ECC, RB, RE, and RP schemes. The results for the
processor with 4-cycle register access latency are
summarized in Figure 13. Although processors such as
Pentium 4 dedicate 2 pipeline stages for the register file
access, this is likely to increase in the near future with the
increase in the register file size and the overall number of
pipeline stages. Figure 133 presents the average reduction
in the execution cycles for 20 SPEC applications as we
change the cycle time of the register file. We see that
reducing the latency to 50% (i.e. to 2 cycles) has a positive
effect for all recovery schemes. Reducing beyond this
point, on the other hand, reduces the advantages seen by
RB and RE schemes, where the number of rollbacks
increases due to errors that cannot be recovered. RP and
ECC, on the other hand, can recover from most errors.
Therefore, they give their best performance for an access
latency of 1. Specifically, ECC and RP reduce the number
of execution cycles by 8.7% and 8.9%, respectively. The
results for a processor with 8-cycle register access latency
are presented in Figure 14. Similarly, as we reduce the
latency, we generally see an increase in performance.
However, when the access latency is set to 1, all techniques
significantly increase the execution cycles: ECC, RB, RE,

2 Note that 2 pipeline stages are dedicated to register file access in
Pentium 4. If the total number of pipeline stages is increased,
the number of stages dedicated to register file accesses is likely
to increase as well.

and RP increase the execution cycles by 26, 77, 69, and 24
times respectively.

There are two reasons for this. First, even if all the errors
can be recovered, the processor spends most of its time
replaying instructions due to register read errors. In
addition, many times the errors cannot be recovered. Hence
the rollbacks constitute a significant overhead. In fact, this
is the only configuration in our simulations where the
probability of a rollback is larger than a base architecture
with full voltage swing. Overall, the RP gives the best
result by reducing the execution cycles by 11.5% when the
register file access latency is reduced to 2 cycles.

6. RELATED WORK
Fault tolerant computing has been studied in detail in the
context of high radiation environments and outer space
[17, 26]. Techniques exist to study potential errors in the
pre-silicon [2] stage and subsequent to the fabrication
process [14]. More recently, designing computer systems
for resiliency [12, 18, 19, 21, 27, 28] to transient faults has
gained greater significance due the combined effect of
higher integration densities, lower voltages, and faster
clock frequencies. In comparison to our study, these
techniques aim to increase the reliability of the processor
with minimal impact on performance. Nakka [13] proposed
RSE framework which provided reliability and security
support. Bower [3] introduced SRAS which masked hard
faults in microprocessor array structures. Both of these
approaches have hardware and performance overheads.
Our work, on the other hand, aims to increase the
performance without affecting the overall reliability.

There is a recent trend in computer architecture to design
processors that can adapt to circuit-level phenomena.
Examples of this trend include Razor [4], thermal control
schemes [24], and techniques for reducing inductive noise
[16] and voltage variation [9]. Among these studies, Razor
[5] is the closest work to ours. In Razor, the performance
of the processor is reduced to achieve lower energy
consumption by reducing the supply voltage in each
pipeline stage. There are two major differences between
Razor and our study: our goal is to improve the
performance, whereas Razor improves the energy-
efficiency while having a negative impact on the
performance. Second, the particular technique we apply on
the architecture is different. In short, to our best knowledge
there is no work that studies the effects of operation
frequency on reliability and trades off reliability for
increasing performance, which is the focus of our paper.

7. CONCLUSIONS
In this paper, we have presented a method for reducing the
cycle time of register files in high-performance
microprocessors. We have first established a model for
estimating the probability of a bit error when the cycle time
of a register is reduced. When the cycle time is reduced, a

0

2

4

6

8

10

12

7 6 5 4 3 2 1
Register file access latency

R
ed

u
ct

io
n

 in
 e

xe
cu

ti
o

n
 c

yc
le

s
[%

]

ECC RB RE RP

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

10

circuit node will experience reduced voltage swing, hence
the probability of an error due to noise and other external
factors increase. Then, we have presented novel
architectural techniques to increase the robustness of the
register file. Our goal is to allow the circuit designer to
push the frequency higher (hence increase the probability
of an error) and recover from these errors with the
architectural techniques developed. We first showed a
novel system for error detection and correction (EDC),
which pushes the EDC logic out of the critical path of the
processor. Then, we showed that a large fraction of
physical registers are not utilized during certain periods of
execution in superscalar processors. The redundancy-based
schemes use these underutilized registers to copy the
values of active registers. We discussed an Error-
Correction Code (ECC) based on Hamming codes and a
replication-based scheme, which uses a replica register file
to store the copies of the active register values and uses
those copies in case of errors to restore the state. Finally,
we have presented experimental results showing that using
the proposed techniques the frequency of the register file
can be reduced by as much as 80% while having a 0.12%
penalty in number of execution cycles. In addition, the
number of pipeline stages in a processor with 4-cycle
register file access can be reduced by 75%, resulting in a
reduction of 8.9% in total execution cycles.

REFERENCES
[1]. Borch, E., et al. Loose Loops Sink Chips. in International
Conference on High Performance Computer Architecture
(HPCA-02). Feb. 2002. Boston, MA.
[2]. Bose, P. Ensuring dependable processor performance: an
experience report on pre-silicon performance validation. in Intl
Conference on Dependable Systems and Networks, July 2000.
[3]. Bower Fred., et al. Tolerating Hard Faults in Microprocessor
Array Structures. in International Conference on Dependable
Systems and Networks (DSN). June, 2004. Florance, Italy.
[4]. Burger, D. and T. Austin, The SimpleScalar Tool Set, Version
2.0. 1997, Univ. of Wisconsin-Madison, Comp. Sci. Dept.
[5]. Ernst, D., et al. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. in International Symposium on
Microarchitecture. Dec. 2003.
[6]. Hamming, R.W., Error detecting and correcting codes. Bell
Sys. Tech. Journal, 1950. 29: p. 147-160.
[7]. Hartstein, A. and T.R. Puzak. Optimum Pipeline Depth for a
Microprocessor. in International Symposium on Computer
Architecture. May 2002. Anchorage / AK.
[8]. Hinton, G., et al., The microarchitecture of the Pentium 4
processor. 2001.
[9]. Joseph, R., D. Brooks, and M. Martonosi. Control Techniques
to Eliminate Voltage Emergencies in High Performance
Processors. in International Symposium on High Performance
Computer Architecture. Feb. 2003.
[10]. Kessler, R., The Alpha 21264 Microprocessor. IEEE Micro,
Mar/Apr 1999. 19(2).
[11]. Mallik, A. and G. Memik. A Case for Clumsy Packet
Processors. in International Symposium on Microarchitecture.
Dec. 2004. Portland, OR.

[12]. Mukherjee, S.S., M. Kontz, and S.K. Reinhardt. Detailed
Design and Evaluation of Redundant Multithreading Alternatives.
in International Symposium on Computer Architecture (ISCA).
May 2002.
[13]. Nakka N., et al. An Architectural Framework for Providing
Reliability and Security Support. in International Conf. on
Dependable Systems and Networks (DSN). June 2004. Florence,
Italy.
[14]. Paschalis, A., et al. Deterministic Software-Based Self-
Testing of Embedded Processor Core. in Design Automation and
Test in Europe (DATE). March 2001.
[15]. Phelan, R., Addressing Soft Errors in ARM Core-based SoC.
Dec. 2003, ARM Ltd.
[16]. Powell, M. and T.N. Vijaykumar. Exploiting resonant
behavior to reduce inductive noise. in 31st Annual International
Symposium on Computer Architecture (ISCA). June 2004.
Munich, Germany.
[17]. Prager, K., et al. A fault tolerant signal processing
computer. in International Conference on Dependable Systems
and Networks (DSN). June 2000.
[18]. Ray, J., J. Hoe, and B. Falsafi. Dual Use of Superscalar
Datapath for Transient-Fault Detection and Recovery. in
International Symposium on Microarchitecture (MICRO). Dec.
2001.
[19]. Reinhardt, S.K. and S.S. Mukherjee. Transient Fault
Detection via Simultaneous Multithreading. in International
Symposium on Computer Architecture (ISCA). June 2000.
[20]. Reinhardt, S.K. and S.S. Mukherjee. Transient Fault
Detection via Simultaneous Multithreading. in 27th Annual
International Symposium on Computer Architecture. June 2000.
[21]. Sato, T. and I. Arita. Tolerating Transient Faults through an
Instruction Reissue Mechanism. in International Conference on
Parallel and Distributed Computing Systems (PDCS). Aug. 2001.
[22]. Sherwood, T., E. Perelman, and B. Calder. Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation
Points in Applications. in International Conference on Parallel
Architectures and Compilation Techniques (PACT 2001). Sep.
2001. Barcelona, Spain.
[23]. Shivakumar, P., et al. Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic. in
International Conference on Dependable Systems and Networks
(DSN). June 2002.
[24]. Skadron, K., M. Stan, and T. Abdelzaher. Control-theoretic
techniques and thermal-RC modeling for accurate and localized
dynamic thermal management. in International Symposium on
High-Performance Computer Architecture. Feb. 2002.
[25]. Tremblay, M. and Y. Tamir. Support for Fault Tolerance in
VLSI Processors. in International Symposium on Circuits and
Systems. May 1989. Portland, Oregon.
[26]. Turmon, M., R. Granat, and D. Katz. Software-implemented
fault detection for high-performance space applications. in
International Conference on Dependable Systems and Networks
(DSN). June 2000.
[27]. Vijaykumar, T.N., I. Pomeranz, and K. Cheng. Transient-
Fault Recovery via Simultaneous Multithreading. in International
Symposium on Computer Architecture (ISCA). May 2002.
[28]. Zhang W., G.S., Kandemir M., Sivasubramaniam A. ICR:
In-Cache Replication for Enhancing Data Cache Reliability. in
Dependable Computing and Communication Symposium (DSN-
03). 2003.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

