
 

EECS 307: Lab Handout 1 
(FALL 2012) 

 
I- Introduction: The Software Radio System 
 
In this lab you will program a software-defined radio to generate and demodulate an amplitude-
modulated signal. We first give a brief introduction to software radio and the hardware/software 
platform you will be using. 
 
Software radio (See also http://en.wikipedia.org/wiki/Software-defined_radio) 
 
A software-defined radio system, or SDR, is a radio communication system where components that 
have been typically implemented in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators, 
detectors, etc.) are instead implemented by means of software on a personal computer or embedded 
system. While the concept of SDR is not new, the rapidly evolving capabilities of digital electronics 
have greatly expanded the types of radios and signal processing that can be implemented with SDR. 
 
A basic SDR system may consist of a personal computer equipped with a sound card, or other analog-
to-digital converter, preceded by a Radio Frequency (RF) front end. A significant part of the signal 
processing is handed over to the general-purpose processor, rather than being done in special-purpose 
hardware. Such a design produces a flexible radio, which can receive and transmit according to a wide 
range of different radio protocols (including modulation formats, transmitted waveforms, and 
demodulation and detection procedures) based on the software provided. Software-defined radios are 
expected by proponents such as the SDRForum (now The Wireless Innovation Forum) to become the 
dominant technology in radio communications.  
 
GNU-Radio (Source http://gnuradio.org/redmine/projects/gnuradio/wiki) 
 
GNU Radio is a free & open-source software development toolkit that provides signal processing 
blocks to implement software radios. It can be used with readily-available low-cost RF hardware to 
create a physical software-defined radio, or in isolation (without hardware) to simulate an actual radio. 
It is widely used in academic and commercial environments, and by hobbyists, to prototype wireless 
communications systems. 
 
GNU Radio applications are primarily written using the Python programming language, while 
performance-critical signal processing is implemented in C++ using processor floating-point extensions, 
where available. This enables rapid development of real-time, high-data-rate radio systems in a simple-
to-use, application-development environment. GNU Radio can also support the development of signal 
processing algorithms using pre-recorded data (say, from another system), avoiding the need for actual 
RF hardware. 
 
 
 
 



 

GNU-Radio Companion (GRC) 
(Source http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion) 
 
GNU-Radio Companion (GRC) refers to the Graphical User Interface (GUI) in the Integrated 
Development Environment (IDE) for developing GNU Radio applications. GRC is a graphical tool for 
creating signal flow graphs and generating flow-graph source code (like Simulink for Matlab). 
 
 
Universal Software Radio Peripheral (USRP) 
(Source http://gnuradio.org/redmine/projects/gnuradio/wiki/Hardware 
https://www.ettus.com/product/details/USRP-PKG) 
 
GNU Radio is a software library only, but does support several radio (hardware) front-ends. The most 
commonly used equipment with GNU Radio have been developed by Ettus Research, LLC, and are 
called Universal Software Radio Peripherals (USRPs). In this lab, we will be using USRP1. The 
USRP1 is the original Universal Software Radio Peripheral™ hardware that provides entry-level RF 
processing capability. The USRP1 platform can support two complete RF daughterboards. We will be 
using the BasicTx/BasicRx daughterboards, which provide transmission/reception capability from/to 
the USRP from 1 to 250 MHz. 
 
USRP1 specifications:  
The architecture includes an Altera Cyclone FPGA, 64 MS/s dual Analog to Digital Converter, 128 
Mega-samples/sec (MS/s) dual Digital to Analog Converter and USB 2.0 connectivity to provide data 
to host processors. A modular design allows the USRP1 to operate from DC to 6 GHz.  The two 
daughterboards makes the USRP ideal for applications requiring high isolation between transmit and 
receive chains, or dual-band dual transmit/receive operation. The USRP1 can stream up to 8 MS/s to 
and from host applications, and users can implement custom functions in the FPGA fabric. 

The family of hardware now includes different motherboards with USB or Gigabit Ethernet interfaces, 
possible sampling rates up to 100 MS/s, a range of front-ends for reception and transmission from zero 
Hz (DC) up to over 5.8 GHz. The devices can be operated with a PC or as standalone embedded 
devices. USRPs can be used without GNU Radio as well without any restrictions. 

 
Universal Hardware Driver (UHD) 
(Source http://code.ettus.com/redmine/ettus/projects/uhd/wiki) 
 
All USRPs use the same Universal Hardware Driver (UHD), which is natively supported by GNU 
Radio (officially distributed since release 3.4.0). UHD is a separate project from GNU Radio, but all 
UHD devices are compatible with GNU Radio. It works on all major platforms (Linux, Windows, and 
Mac); and can be built with GCC, Clang, and MSVC compilers. 
 
 
After you have identified the USRP1, its daughterboards, and the USB interface, we are ready to 
start using the GNU Radio Companion.  
 



 

 
 
II- Create an AM Signal with GNU Radio Companion 
 

1. Open a new terminal and type: gnuradio-companion. This will launch GNU radio companion.  

2. Start a new file in GNU Radio Companion (GRC). There should already be two blocks in the 
workspace, labeled “Options” and “Variable”. The variable’s ID is samp_rate. Since we are 
dealing with digital (sampled) signals, we must specify the rate at which we sample our “analog” 
signals. 

3. Double click on the Variable block to set the sampling rate. The value is set to 32 kHz and 
variable name is samp_rate. To use the variable, simply enter its symbolic name as a parameter 
of another block. 

4. Create a source signal block by selecting “Signal Source” listed under [Sources] in the Blocks 
sidebar on the right and dragging it onto the workspace. Double click the block to edit its 
properties. This block generates a signal based on the properties listed here. It should already be 
set to generate a cosine of frequency 1 kHz and amplitude 1. Change the output type from 
“Complex” to “Float” and hit OK. 

5. To view the signal, you can attach the output of the source block to a graphical sink. Create two 
blocks: a throttle (in the Misc category) and a WX GUI scope sink (under WX GUI 
Widgets). In the properties of both of these blocks, change the type to Float to match the 
source block. Also notice that the sampling rate is set to samp_rate. 

Note without a clock to determine the rate at which the samples are processed, such as in an 
audio device or a USRP, the graph would simply run as fast as possible and would consume 
100% of the processing resources when executed, causing the GUI elements to be unresponsive. 
These flow graphs must therefore include a Misc --> Throttle block to throttle the rate of the 
streaming data. If you omit the throttle block, the CPU may attempt to run the flow graph at full 
speed, consuming all of the computer’s processing power. 

6. Connect the signal to the throttle by clicking the “out” (orange) block from the source block, 
then the “in” box of the throttle. Do likewise for the throttle and scope sink. The setup should 
look roughly something like this (the values may be different): 



 

 

7. You should be able to execute the file. Do so by hitting the gear icon in the GRC menu (taskbar) 
or by hitting the F6 key. If you have not saved the file already, it will tell you to do so. Adjust 
the time/div option (controlling the horizontal axis) until the signal becomes clear. Verify that 
the frequency is correct and then close the window showing the signal. 

8. To view the signal in the frequency domain, create a WX GUI FFT Sink block, change the type 
to Float, and connect it to the output of the throttle. Do not disconnect the scope sink. Execute 
the file again to display the signal in both time and frequency. There should be a spike in the 
FFT plot corresponding to the frequency of the generated signal. Close the plots.  

9. To use those plots in your report, click ALT+PrtScn to take a snapshot of the graphs (After you 
transfer your files, delete them from the system). 

10. Now you will modulate the signal. First, disconnect the signal source from the throttle by 
selecting the connecting arrow and hitting delete. Create another signal source block, then 
create a multiply block (under Operators) and set both blocks to use the Float type. 

11. Modify the new signal source to have a frequency of 20 kHz. This will be the carrier frequency. 
Notice that the current sampling rate as set by the samp_rate variable block is 32 kHz, which is 
below the Nyquist rate (minimum sampling rate needed to reproduce the original analog signal). 
To fix this, set the samp_rate block value property to 100 kHz.  

12. Connect the two signal sources to the multiply block and the multiply block to the throttle. The 
final block diagram should look like this: 



 

 

 

13. Execute the file to see the modulated signal in time and frequency. 

14. Take a snapshot of the plots. 

15. What type of AM signal is this? (Hint: Can you see the carrier frequency?) 

16. Experiment with the settings in the signal source block. Specifically, look at the waveforms in 
time and frequency both before and after modulation. To view the signal before modulation 
copy the throttle, FFT, and scope sink blocks and connect the new throttle to the original signal 
source block. (Do not disconnect the source from the multiply block.) If too many graphs are 
displayed, then disable one or two sinks by selecting them and hitting 'd'. (To re-enable select 
them and hit 'e'.) 

 

III- Coherent Demodulation 
1. In this part, you will recreate the original signal from the modulated one using coherent 

demodulation. What is meant by coherent demodulation?  

2. Start with the final diagram from the previous part. You should have two sets of outputs: an 
FFT and scope sink attached to the original signal, and another set for viewing the modulated 
signal. 

3. Copy and paste the carrier signal block and the multiply block to build the coherent 



 

demodulator. Connect the output of the original multiply block (i.e., the modulated signal) to 
the input of the newly added multiply block. 

4. To view the final output, copy a throttle, scope sink, and FFT sink and connect them to the 
output of the second multiply block. At this point, the diagram should look like the figure below. 

5. Disable for now the throttle, Scope sink, and FFT sink of the modulated signal (blocks in the 
middle) by selecting them and hitting 'd'.  

 

 

 



 

6. Plot the original signal and the demodulated signal in the time domain. To do this disable the 
FFT sinks connected to both the original signal and demodulated signal. Run the file. There 
should be two plots in the time domain: one displaying the original signal and a second 
displaying the demodulated signal. 

7. Take a snapshot of the plots and save it. 

8. Plot the original signal and the demodulated signal in the frequency domain. Enable the FFT 
sinks for both the original signal and demodulated signal and disable the scope sinks. Run the 
file. There should be two plots in the frequency domain: one displaying the original signal and a 
second displaying the demodulated signal. 

9. Take a snapshot of the plots and save it. 

10. Explain why the demodulated signal and original signals are not the same. Note that you 
modulated a 1 kHz cosine with a carrier of 20kHz. At the receiver the signal is multiplied 
by a 20 kHz carrier. What frequencies should the demodulated signal contain? 

11. To get rid of the high frequencies, add a Low Pass Filter (under Filters). Change the FIR type to 
Float --> Float (Decimating). Set the Cutoff Freq to 5kHz and transition width to 1kHz.  

12. Disconnect the output of the demodulation throttle from the demodulation multiplier. Connect 
the output of the demodulation multiplier to the input of the Low Pass filter. Connect the output 
of the filter to the input of the demodulation throttle. The block diagram should look like the 
figure below. 

13. Repeat steps 6-9 to see the final demodulated signal in both time and frequency. Save the 
corresponding two plots for your report.  

 

IV- Envelope Detector 
1. Now you will demodulate the signal using an envelope detector. What are the advantages of 

using an envelope detector as opposed to a coherent demodulator? Can we use an 
envelope detector with suppressed carrier modulation? 

2. Save your current GRC file. Open a new file and copy the blocks of your previous file into the 
new one. That way it is easier to modify the block diagram. Save your new GRC file. Make 
sure to set samp_rate to 100kHz in the new file.  

 



 

 
 
 

3. Add a DC component to the original signal. To do this disconnect the original signal source 
from the modulation multiply block and create two blocks: an add block (under Operators) and 
a constant source block (under Sources).  

4. Change the type of both blocks to Float, and set the constant for the constant source to 2. 
Connect the constant and original sources to the add block inputs, and the add output to the 
modulation multiply block input. That part of the diagram should now look like this:  



 

 

 

5. Delete the coherent demodulation multiply and carrier signal source blocks you created in the 
previous section.  

6. To build the envelope detector, add two more blocks to your receiver: a “Max” (maximum 
value) block (under Operators), and a Null Source block (under Sources). Change the type of 
the null source and subtract to Float. The null source just creates a stream of zeros. 

7. Connect the null source to one of the inputs of the max block, and the output of the modulation 
multiply block to the other. This will serve as a diode, since if the input is positive, it remains 
unchanged at the output, and otherwise, the output is zero.  

8. Open the low pass filter's properties. Change the FIR Type of the filter to “Float --> Float 
(Decimating)”, then set the cutoff frequency to 5k and the transition width to 1k. 

9. Your block diagram should look like the figure below. 

10. For now disable the throttle, Scope sink, and FFT sink of the original signal by selecting them 
and hitting 'd'. Let us focus on the modulated and demodulated signals. (You need to enable the 
demodulation throttle, scope, and FFT.) 

11. Plot the modulated and demodulated signals in the time domain. To do this, disable the FFT 
sinks of both the modulated signal and demodulated signal. Run the file. There should be two 
plots in the time domain: one displaying the modulated signal and a second displaying the 
demodulated signal. 

12. Take a snapshot of the plots and save it. 

13. Plot the modulated and demodulated signals in the frequency domain. To do this, disable the 
scope sinks of both the modulated signal and demodulated signal. Run the file. There should be 
two plots in the frequency domain: one displaying the modulated signal and a second displaying 
the demodulated signal. 



 

14. Take a snapshot of the plots and save it. 

15. What is the modulation index? Looking at the time domain plots, is the demodulated 
signal a distorted version of the message? Increase the amplitude of the original signal so 
that the modulation index exceeds 100%, and explain the plots. 

16. Looking at the time and frequency domain plots of the demodulated signal, there should still be 
a DC component. This can be filtered out by subtracting the average of the signal or by using a 
bandpass filter. The original signal is then recovered. 

 

 

V- Lab Report 
For the lab report, please answer all questions in this handout. Attach all plots and explain the results.   

 


