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Abstract— Feedback of channel state information (CSI) enables
a multi-carrier transmitter to optimize the power allocation
across sub-channels. We consider a single user feedback scheme
in which the entire set of sub-channels is evenly divided into
smaller groups of sub-channels, and the receiver requests the
use of a particular group if the gain of every sub-channel in
the group is above a threshold. The transmit power is then
uniformly spread across the requested sub-channel groups. The
amount of feedback is therefore controlled by the group size
and the threshold. For this scheme, we characterize how the
channel capacity scales with the number of sub-channels N as
a function of the feedback rate. We then consider transmission
over a block fading channel, assuming that each coherence block
contains both feedback and data transmission. We optimize the
fraction of feedback overhead as a function of the number of
feedback bits per channel use and coherence time. Numerical
results show that the asymptotic (large-N ) analysis accurately
predicts the behavior of finite-size systems of interest.

I. INTRODUCTION

Multi-carrier transmission techniques, including Orthogo-
nal Frequency Division Multiplexing (OFDM), provide an
effective way to exploit the frequency-diversity present in a
multipath fading channel. A substantial increase in achievable
rates is possible if the power allocated across the sub-channels
can be adapted to the channel variations [1]. However, the op-
timal (water-filling) power allocation may require a prohibitive
amount of feedback of channel state information (CSI).

The problem of power allocation with limited feedback has
been previously considered in [2]–[5]. In particular, [2] pro-
poses a codebook of power loading vectors, which maximizes
an objective such as achievable rate. In that scheme the size
of the codebook, and hence the search complexity, grows
exponentially with the amount of feedback. Other schemes,
which feed back one bit per sub-channel, have been considered
in [3], [5], [6]. It is shown in [3] that with this type of
feedback scheme and N independent block Rayleigh fading
sub-channels, O(log3N) bits of feedback per coherence block
can achieve the optimal growth rate of O(logN) bits/channel
use.

In this work we consider a feedback scheme for a single-
user, multi-carrier channel in which the entire set of sub-
channels is evenly divided into equal-size groups of sub-
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channels. The feedback then indicates the particular (active)
groups, which the transmitter should use to transmit the data.
We assume that the transmitter uniformly spreads the available
power across the active sub-channel groups. This feedback
scheme has been previously studied for downlink (multi-user)
OFDM in [7]. Grouping, or clustering, of sub-channels to
reduce feedback overhead, again in a multi-user setting, has
also been studied in [8]. Clustering sub-channels to reduce
the training overhead and peak-to-average power ratio was
previously studied in [9].

As in [7], we assume that the channel is known at the
receiver, and that the receiver instructs the transmitter to
activate a particular sub-channel group if the gain of every
sub-channel in the group exceeds a threshold. Based on this
criteria, the receiver forms a binary vector, which designates
the set of active sub-channel groups. This vector is compressed
(entropy-coded) and relayed to the transmitter. The feedback
is therefore represented by a variable-length code. The group
size and threshold can be adjusted to maximize the forward
achievable rate, subject to a constraint on the average feedback
rate.

We analyze the performance (achievable rate) of this feed-
back scheme in the asymptotic regime where the number
of sub-channels N is large. Specifically, we characterize the
growth in achievable rate with N as a function of the amount
of feedback (which can also scale with N ). The optimal
group size and threshold are also computed as a function
of the amount of feedback. Let B denote the number of
feedback bits per coherence block and S denote the Signal-to-
Noise Ratio (SNR). Our results state that for large enough N ,
when B is less than S

u? (logN)2−ε1 , where u? is a constant
(approximately 3.92), and ε1 ∈ (0, 2) can be characterized as
a function of N , the achievable rate is proportional to

√
SB

bits/channel use. If B scales faster than S
u? (logN)2−ε1 , then

the optimal group size is one sub-channel per group, and the
achievable rate scales slower than

√
SB.

Note that with the water-filling power allocation, which is
optimal given unlimited feedback, the achievable rate grows as
S logN as N increases. The limited feedback scheme studied
in this paper can provide order optimal achievable rate (i.e.,
S logN ) where we assume one sub-channel per group. In this
case, the threshold is optimized without regard to the feedback
rate, and the amount of feedback grows as S(logN)2+ε2 ,



where ε2 ∈ (0, 1) can be characterized as a function of N .
We use the previous results to characterize the optimal

feedback overhead with a block fading channel. Namely, Time
Division Duplexing (TDD) is considered in which the receiver
relays the CSI back to the transmitter at the beginning of each
coherence block having length T symbols. That is, the first
F symbols are devoted to feedback, assuming a fixed rate Rf
nats/channel use, and the remaining symbols are devoted to
forward data transmission. Increasing the feedback overhead F
increases the forward data rate, but decreases the time available
for data transmission. The optimal F depends only on the
product TRf . Interestingly, we find that for large enough N ,
if TRf is less than 3S

u? (logN)2−ε1 , then the optimal F is T/3,
independent of the SNR. For larger amounts of feedback, the
optimal overhead is smaller.

Numerical examples are presented, which show that the
analytical results are quite accurate given at least a few
hundred sub-channels. The numerical results also show that
the achievable rate becomes more sensitive to the amount of
feedback overhead as the SNR increases.

II. SYSTEM MODEL AND FEEDBACK CONSTRAINT

Consider a multi-carrier channel with N iid Rayleigh fading
sub-channels, so that the N × 1 vector of channel outputs
across sub-channels is given by

y = Hx + z (1)

where H = diag [h1, h2, . . . , hN ] is the channel matrix in
which the diagonal entries are independent, circularly sym-
metric complex Gaussian (CSCG) random variables with mean
zero and variance σ2

h. The N × 1 input vector x satisfies the
average power constraint

E
[
xHx

]
≤ P, (2)

and the N × 1 noise vector z has CSCG entries with mean
zero and variance σ2

z . The time dependence is suppressed to
simplify notation. The channel H is assumed to be known
perfectly at the receiver. We assume a block fading model so
that H remains constant for T channel uses and then changes
to a new independent value.

Now suppose that an average feedback rate of B nats
per coherence block is available to communicate CSI to the
transmitter at the beginning of each coherence block. The
feedback is assumed to be error-free. We therefore need a
power allocation strategy that can be easily adapted to match
the amount of feedback. For this we divide the total set of
sub-carriers into G nonoverlapping groups each containing
NG = N/G consecutive sub-channels. Let the NG × 1
vector of sub-channel gains corresponding to the gth group
be denoted as hg = [hg1, hg2, . . . , hgNG ]T . Given a threshold
to, the receiver informs the transmitter to use this group if
|hgi|2 ≥ to for all i = 1, 2, . . . , NG. The probability of this
event is p = e−NGto/σ

2
h , so that for large N the average

amount of feedback required per coherence block for this
CSI scheme can be compressed to the entropy rate GH(p),

where H(p) = −p log(p)− (1−p) log(1−p).1. The feedback
constraint is therefore

GH(p) ≤ B. (3)

Clearly, the larger the coherence time, the less CSI is required
per channel use to achieve a target rate.

Given the feedback, the transmitter allocates power uni-
formly over the set of active sub-channel groups. To maximize
the achievable rate, we take the entries of the input vector
xg for sub-channel group g to be zero-mean CSCG random
variables with variance Po if |hgi|2 ≥ to, i = 1, · · · , NG, and
zero otherwise. To satisfy the input power constraint (2), we
have Po = P/(N e−NGto/σ

2
h).

III. ASYMPTOTIC RATE VERSUS FEEDBACK

Assuming that the transmitter codes across coherence blocks
in frequency and time, the achievable rate is given by the
averaged mutual information (ergodic capacity),2

C(B) = GEhg

[
1{|hgi|2≥to,∀i}

NG∑
i=1

log
(

1 +
Po
σ2
z

|hgi|2
)]

= Ne−(NG−1)to/σ
2
h

∫ ∞
to

log
(

1 +
Po
σ2
z

t

)
e−t/σ

2
h

σ2
h

dt (4)

Note that this rate does not depend upon the coherence block
length T . We wish to choose the feedback parameters NG
and to to maximize C(B) subject to the feedback constraint
(3). Although it appears to be difficult to obtain an analytical
characterization of the solution for arbitrary N , the following
theorem characterizes the solution for large N and B.

We use the following notation. Suppose

lim
N→∞

f1(N)
f2(N)

= c (5)

for functions f1(·) and f2(·). Then if c = 0, then we write
f1 ≺ f2; if c ∈ [0, 1], then we write f1 - f2, and if c = 1,
then f1 � f2. Also, we define u? as the positive solution to
log(1 + u) = 2u/(1 + u) (i.e., u? ≈ 3.92), and ε1, ε2 as the
solutions to

logN − log
[
S

u?
(logN)1−

ε1
2

]
= (logN)1−

ε1
2 (6)

logN − log[S(logN)1+ε2 ] = (logN)(1+ε2)/2, (7)

respectively, where S = Pσ2
h/σ

2
z is the SNR. Note that for

large N , ε1 ∈ (0, 2) and ε2 ∈ (0, 1). Moreover, as N → ∞,
we have ε1 → 0 and ε2 → 1.

1A practical variable-length prefix code typically requires an additional
bit per coherence block. We ignore this, since a coherence block is likely
to contain several hundred channel uses, so that this extra bit contributes
negligible feedback overhead.

2A somewhat more conservative rate is obtained by selecting the code rate
assuming that all active sub-channel gains |hgi|2 = t0 [7]. This does not
change the following asymptotic results.



Theorem 1: As N → ∞, if B increases with N , and
satisfies

S

u?
≺ B -

S

u?
(logN)2−ε1 , (8)

then the optimal group size, threshold, and corresponding
capacity satisfy

N?
G �

√
S

u?
1√
B

log

(
N√
S B/u?

)
(9)

t?o � σ2
h

√
u?

S

√
B (10)

C(B) �

(√
S

u?
log(1 + u?)

)
√
B. (11)

If
S

u?
(logN)2−ε1 - B - S(logN)2+ε2 , (12)

then the optimal parameters and capacity satisfy

N?
G = 1 (13)

t?o � σ2
h log

(
N log(N)

B

)
(14)

C(B) �
(

B

log(N)

)
log

1 +
S log

(
N log(N)

B

)
(

B
log(N)

)
 (15)

and finally if
S(logN)2+ε2 - B, (16)

then the corresponding optimal parameters and capacity sat-
isfy,

N?
G = 1 (17)
t?o � σ2

h [logN − (1 + ε2) log logN − log(S)](18)
C(B) � S [logN − (1 + ε2) log logN − log(S)] (19)

The proof is omitted due to the space limit. Theorem 1 can
be interpreted as follows. For large enough N , the asymptotic
inequalities in the theorem can be roughly interpreted as
regular inequalities.3 Hence in the range of small to moderate
feedback B (specifically, S/u? < B ≤ (S/u?)(logN)2−ε1 )
the group size NG > 1. In this feedback range the capacity is
proportional to

√
SB.

As the feedback increases, the group size decreases and the
threshold increases, so that the CSI is represented with finer
granularity. Once B exceeds (S/u?)(logN)2−ε1 , each group
reduces to a single sub-channel. Interestingly, the threshold
then begins to decrease with B at the rate given in (14). As
the threshold decreases, the fraction of active sub-channels
increases so that the feedback needed to specify the number
of active sub-channel groups matches the feedback rate. In
this range of feedback the capacity grows more slowly than
O(
√
B). Note that decreasing the threshold below the value

in (18) increases the required feedback rate beyond the upper
inequality in (12), and causes the achievable rate to decrease.

3For this reason we do not write the left inequality in (8) as 1 ≺ B.

For the feedback scheme considered, the maximum amount
of CSI is conveyed by setting NG = 1 and optimizing the
threshold as a function of N (ignoring the feedback rate
constraint). This corresponds to the optimal “on-off” power
allocation, in which the power is uniformly spread over
active channels [3], [4]. The optimal threshold is given by
(18), and the corresponding feedback is given by Bmax =
S(logN)2+ε2 . That is, the achievable rate does not increase
when B is increased beyond Bmax.4 The corresponding
maximum achievable rate is given by (19), which has the
optimal order growth of O(logN) corresponding to the water-
filling power allocation [4]. However, the negative second-
order (log log) term in (19) can be substantial, as shown by
the subsequent numerical examples.

From (7), as N → ∞, ε2 → 1, so that (16) and (19) state
that O(log3N) feedback can achieve the optimal O(logN)
growth in achievable rate. This result has been previously
presented in [3], which considers the same threshold-based
feedback scheme considered here, but with NG = 1. Of
course, allowing NG > 1 gives more flexibility when the
feedback rate is small. Also, subsequent numerical examples
show that for reasonable values of N , the amount of feedback
needed to achieve the O(S logN) forward rate may be closer
to S log2N than to S log3N .

Although the previous theorem does not cover the case
B - S/u?, it is easy to show that as B → 0, we have
NG → N , to → 0 and the achievable rate C → S. This limit
is the asymptotic (large N ) capacity of this channel without
feedback.
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Fig. 1. Comparison of numerically optimized values and asymptotic values
versus feedback per coherence block for N = 1000 and SNR S = 5dB.

4The additional bits could be used to increase the number of quantization
levels for the power on active sub-channels. The corresponding increase in
rate, relative to the one-bit quantization assumed here, is typically quite small
[4].



A. Numerical Examples

Next we present some numerical examples, which illustrate
the preceding asymptotic results. Fig. 1 shows the optimized
group size, threshold, and corresponding capacity as a function
of feedback B. These results are obtained by optimizing the
original capacity expression (4) subject to (3). (Of course,
in practice NG can assume only positive integer values, as
opposed to the real values obtained from the optimization,
which are shown in the figure.) Unless specified otherwise, for
these and subsequent numerical results we choose N = 1000,
σ2
h = 1 and σ2

z = 1.
Fig. 1 also shows the asymptotic results obtained through

analysis. (The values plotted here are refined versions of the
expressions presented in Theorem 1). The plot shows that
the asymptotic values are close to the values obtained from
numerical optimization. As predicted by Theorem 1, the plot
shows that as B increases from zero, the group size decreases,
and the threshold increases. However, once the group size
crosses one (when B is about 60 bits/coherence block),
the threshold decreases with B and the capacity increases
relatively slowly. Finally, for large amounts of feedback (say,
greater than 200 bits/coherence block for this example) the
capacity and threshold saturate, and increasing the feedback
further does not improve performance. Referring to (6)-(7),
these values correspond to ε1 ≈ ε2 ≈ 0.25.

IV. OPTIMAL FEEDBACK OVERHEAD

For large N , Theorem 1 states that on the order of
(logN)2+ε2 bits per codeword are needed to obtain an achiev-
able rate, which is on the order of logN bits per channel
use. Given a fixed coherence time of T channel uses, as N
increases, this implies that the feedback overhead increases
faster than the forward rate, so that the logN rate is unsustain-
able. Here we account for the feedback overhead directly by
assuming that both the feedback and forward data transmission
occur within the coherence time T . We then select the amount
of feedback overhead to maximize the forward rate. This
problem has been previously studied in [7] for the downlink
(multiuser) model in which the number of users scales with the
number of channels. Here we show that the optimal feedback
overhead and corresponding capacity behave differently when
only a single user is present.

Given a coherence block of T channel uses, we assume that
the first F channel uses relay CSI from the receiver to the
transmitter at the rate of Rf nats per channel use. Accounting
for the feedback overhead, the rate is given by

R =
(

1− F

T

)
C(FRf ) (20)

where C(·) is given by (4) with B = FRf . Here we assume
that the amount of feedback FRf is large enough so that the
entropy encoded feedback codes are approximately of fixed
length. Alternatively, we can think of F/T as the average
feedback overhead since we are coding across multiple blocks.
Given T and Rf , we wish to find the F that maximizes R.

Proposition 1: As N →∞, if TRf →∞ with N , and

Rf - S(logN)2+ε2 (21)

where ε2 is computed from (7), then the F that maximizes R
is given by

F ? �

{
T
3 if 3S

u? ≺ TRf - 3S
u? (logN)2−ε1

w? logN
Rf

if 3S
u? (logN)2−ε1 - TRf

(22)

where w? is the solution to(
TRf
logN

− 2w
)

log
[
1 +

S

w
log

N

w

] [
w + S log

N

w

]
= S

(
TRf
logN

− w
)[

1 + log
N

w

]
. (23)

and ε1 is given by (6). Moreover, if S(logN)2+ε2 - Rf , then
F ? = 1.

The proof is omitted to save space. The theorem states that
the optimal F ? depends on the product TRf . If TRf is smaller
than 3S

u? (logN)2−ε1 , then for large N the optimal feedback
duration is approximately T/3. This overhead is relatively
large, and is due to the fact that the forward rate increases
relatively quickly as a function of feedback in this range (i.e.,
as
√
B). From (11) the achievable rate in this regime is given

by C = 2
3

√
STRf
3u? log(1 + u?), i.e., the rate increases as√

TRf .
If TRf is larger than 3S

u? (logN)2−ε1 , then F ? < T/3, and
decreases with TRf . For fixed Rf and log3N - T , we have
F ? � S(logN)2+ε2

Rf
. That is, for large enough coherence times,

the number of feedback symbols are large enough to feed back
the maximum amount of CSI required by the power loading
scheme. Similarly, for fixed T the feedback scheme does not
benefit from increasing the rate Rf beyond S(logN)2+ε2 , in
which case F ? = 1.

Fig. 2 shows the optimized feedback overhead F/T versus
feedback rate Rf with fixed coherence time T = 100. These
results are obtained by optimizing the expression (20). Also
shown are the asymptotic values given by Proposition 1. The
figure shows that for the given SNR values, the analysis
accurately predicts the results of the numerical optimization
over a wide range of feedback values. (The results become
less accurate for very small B as the SNR increases.) For
example, with SNR S = 5 dB (22) implies that F ? ≈ T/3
if Rf ≤ 1.6 bits per channel use, which closely matches the
numerical results shown in the figure.

Fig. 3 shows achievable rate R versus normalized feedback
overhead with different SNRs. This plot shows that the achiev-
able rate is insensitive to the choice of F at low SNRs, and
that the sensitivity increases with the SNR.

V. CONCLUSIONS

We have analyzed the performance of a limited feedback
scheme for multi-carrier transmission, which is based on
grouping the sub-channels. With this scheme the forward rate
is an increasing function of the amount of feedback, which
is determined by the sub-channel group size and activation
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threshold. For large N this scheme achieves optimal order
growth for the capacity (attained by the waterfilling power
allocation) with S(logN)2+ε2 feedback bits per coherence
block, where ε2 ∈ (0, 1) depends on N . We have also shown
that for this scheme, when the feedback rate is relatively small,
the optimal feedback overhead is one third of the coherence
time (again for large N ).

The model and results presented here can be extended in
several directions. For example, we have assumed that a sub-
channel group is activated only when all sub-channel gains
exceed the threshold. In practice, different metrics may be
used to activate a sub-channel group (e.g., the average of the
sub-channel gains [8]). Whether or not the scaling results given
here apply with those other metrics is an open question. We

have also assumed perfect channel estimation at the receiver.
Typically the channel is estimated by means of a training
sequence, which introduces additional overhead. A model,
which accounts for both training and feedback overhead in
the context of beamforming, has been studied in [10]. That
approach may also be appropriate for the multi-carrier scenario
considered here. Finally, it may be possible to relay the
feedback over different frequencies (frequency-division du-
plex), as opposed to the time division duplex scheme assumed
here. Comparative advantages and disadvantages remain to be
studied.
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