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’ Pole-Zero Decision Feedback Equalization with a 
Rapidly Converging Adaptive IIR Algorithm 

Pedro M. Crespo, Member, IEEE, and Michael L. Honig, Member, IEEE 

Abstract-A decision feedback equalizer (DFE) containing a 
feedback filter with both poles and zeroes i s  proposed for high- 
speed digital communications over the subscriber loop. The 
feedback filter is composed of two sections: a relatively short 
finite impulse response (FIR) filter that cancels the initial part 
of the channel impulse response, which may contain rapid vari- 
ations due to bridge taps; and a pole-zero, or IIR, filter that 
cancels the smoothly decaying tail of the impulse response. 
Modifications of an existing adaptive IIR algorithm, based on 
the Steiglitz-McBride identification scheme, are proposed to 
adapt the feedback filter. These new algorithms have compa- 
rable complexity to gradient-based adaptive IIR algorithms 
when the number of poles is small, but converge significantly 
faster. A measured subscriber loop impulse response is used to 
compare the performance of the adaptive pole-zero DFE, as- 
suming a two-pole feedback filter, with a conventional DFE 
having the same number of coefficients. Results show that the 
pole-zero DFE offers a significant improvement in mean squared 
error (i.e., 4 dB at a signal-to-noise ratio of 25 dB) relative to 
the conventional DFE. Furthermore, the speed of convergence 
of the adaptive pole-zero DFE is comparable with that of the 
conventional DFE using the standard LMS adaptive algorithm. 

I. INTRODUCTION 
ECISION feedback equalization has been widely D proposed as an effective technique for suppressing 

intersymbol interference (ISI) in the context of high-speed 
digital communications over dispersive channels [ 11-[3]. 
A DFE, shown in Fig. 1, consists of a feedforward filter 
P(z) follwed by a feedback loop containing a decision ele- 
ment in the forward path, and a filter F(z)  in the feedback 
path. The prefilter P(z) compensates for precursor ISI, that 
is, IS1 from symbols that have not yet been detected at 
the current symbol interval, and F(z)  cancels postcursor 
ISI, that is, IS1 from previously detected symbols. Typi- 
cally, P(z)  and F(z) are FIR filters. 

A particularly attractive application for decision feed- 
back equalization is in high-speed digital subscriber lines 
(HDSL’s) [ 2 ] ,  [ 3 ] .  Channel dispersion in this case causes 
severe IS1 at high data rates (i.e., 800 kb/s), which means 
that the DFE must contain many taps, assuming a con- 
ventional implementation. As an example, a measured 
subscriber loop impulse response (IR) corresponding to 
12 kft of 24 gauge twisted-pair wire is shown in Fig. 2.  
The lead time before the leading edge of the IR is the 
group delay of the channel. Assuming that this IR in- 
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Fig. 1. Decision feedback equalizer 
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24-gauge twisted-pair cable. 
Fig. 2. Normalized measured channel impulse response for 12 kft of 

cludes the effect of filtering at the transmitter and re- 
ceiver, then precursor IS1 is caused by the portion of the 
IR preceding the cursor, and postcursor IS1 is caused by 
the tail of the IR. In general, for the subscriber loop ap- 
plication the prefilter P(z) typically requires few taps (i.e., 
five or less) to adequately suppress precursor ISI. To min- 
imize mean squared error (MSE), however, the number 
of taps in the feedback filter F(z) must span almost the 
entire tail of the IR to cancel postcursor ISI. The number 
of taps in F(z) is therefore approximately T / T ,  where 7 is 
the length of the IR tail and T is the time between sam- 
ples. For the IR in Fig. 2, 7 is approximately 200 ps, so 
that a symbol rate of 500 kbauds implies that F(z)  should 
have approximately 100 taps. 

One way to reduce the number of taps in F(z)  is to 
shorten the tail of the IR by adding taps to the prefilter 
P(z).  This however, increases equalizer noise enhance- 
ment. Another alternative is to make F(z)  an IIR, or pole- 
zero, filter. The primary problem with this approach is 
that, in general, IIR filters are notoriously difficult to adapt 
when the channel IR is initially unknown. Specifically, 
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the MSE, when viewed as a function of the filter coeffi- 
cients, may contain local optima so that the adaptive al- 
gorithm may converge to a solution in which significant 
IS1 is present. Furthermore, the filter may becomes un- 
stable during the adaptation. These problems become 
much less troublesome, however, when the number of 
poles to be identified, M, is small (i.e., M I 2), and the 
number of poles in the adaptive filter is at least M. In this 
case, stability is easily monitored and local optima are not 
as likely to appear [4]. 

In the case of the subscriber loop, the IR typically de- 
cays smoothly to zero and can be accurately modeled as 
the IR of a one- or two-pole transfer function. F(z)  can 
therefore be replaced by a filter consisting of two sec- 
tions: an FIR filter that compensates for the initial part of 
the postcursor IR, which may be relatively difficult to 
model with an IIR filter, and a one- or two-pole filter that 
compensates for the tail of the postcursor IR. For exam- 
ple, the FIR filter needed to cancel the initial part of the 
postcursor IR in Fig. 2 is approximately one-third the 
length of the original FIR feedback filter F ( z ) ,  and only 
two or three additional taps are needed to cancel the re- 
maining tail. Numerical results show that for the IR in 
Fig. 2, a 4 dB improvement in MSE can be obtained by 
using the proposed IIR feedback filter instead of a con- 
ventional DFE of the same complexity, assuming a sig- 
nal-to-noise ratio (SNR) of 25 dB. 

Similar types of structures have been proposed in the 
context of echo cancellation [5]-[7]. The structures pro- 
posed in [5] and [6] are not adaptive, and the adaptive 
algorithms proposed in [7] are different from those pro- 
posed here. References [8]-[ 101 propose different tech- 
niques for cancelling the tail of the echo, which can also 
be used in a DFE (see also [ l l ] ) .  A summary of these 
techniques is given in [ 101. In this paper, however, we 
study only IIR feedback filters for tail cancellation and do 
not attempt to quantitatively compare the various tech- 
niques proposed in [5]-[l l]. We add that adaptive IIR 
filtering has also been studied in the context of echo can- 
cellation of speech signals [ 121-[ 141. 

Currently, there are a number of adaptive IIR algo- 
rithms that can be used to adjust the taps of the proposed 
IIR feedback filter when the channel is initially unknown 
[15], [16]. The equation error method is one such algo- 
rithm that has been used in the context of voice echo can- 
cellation [ 121, [ 131, and has the advantage that the error 
surface is unimodal so that the tap weights converge to a 
unique solution. In the presence of noise, however, this 
solution gives a biased estimate of the poles of the chan- 
nel transfer function, resulting in some residual ISI. We 
observe that when the equation error method is used to 
optimize the pole-zero DFE, the denominator polynomial 
in the pole-zero feedback filter appears in cascade with 
the channel transfer function and the prefilter P(z) .  Add- 
ing poles to the pole-zero DFE when the equation error 
method is used to optimize the feedback filter is therefore 
analogous to adding taps to the prefilter of a conventional 
DFE. In the former case, a biased channel estimate causes 

residual ISI, and in the latter case, a longer prefilter causes 
additional noise enhancement. Our numerical results in- 
dicate that this tradeoff generally favors the conventional 
DFE. That is, the output MSE for the pole-zero structure, 
when adapted via the equation error method, is typically 
larger than the MSE of a conventional DFE of the same 
complexity. 

The IIR feedback filter can also be adapted to minimize 
the output MSE directly via a gradient algorithm [15], 
[16]. Although in general the MSE cost function can be 
multimodal, it is shown in [4] that this is not the case 
when the number of poles to be estimated, M, is less than 
or equal to two, and the number of poles in the adaptive 
filter is at least M. Since the tail of a typical subscriber 
loop IR (such as the one in Fig. 2 )  can be accurately mod- 
eled with two poles, a two-pole feedback filter in the 
HDSL application should be sufficient to guarantee the 
absence of local minima in the error surface. The asymp- 
totic performance of a gradient algorithm, when used to 
minimize the MSE, will then be superior to that of the 
equation error method. 

Although a two-pole feedback filter adapted via a gra- 
dient algorithm achieves the minimum MSE for the cases 
of interest, it exhibits extremely slow convergence. Our 
results show that the pole-zero DFE with an IIR gradient 
algorithm takes more than 10 times as many iterations to 
converge to the asymptotic MSE as a conventional DFE 
using the standard LMS transversal algorithm [ 171. 
Adapative IIR algorithms that converge faster than the 
gradient algorithm can be obtained by modifying the al- 
gorithm proposed in [ 181, which is based on the Steiglitz- 
McBride identification algorithm. One modification con- 
sists of switching the order of the preprocessing filter 
( 1  / D ( z ) ,  where D(z) is obtained from the current estimate 
of the system poles) and the filter C(z)  that estimates the 
system zeroes. The input to C(z) then becomes the uncor- 
related transmitted symbols. When adapted via the LMS 
algorithm, C(z) therefore converges faster than when its 
input sequence is first filtered by 1 / D ( z ) .  

A second modification to the algorithm proposed in [ 181 
consists of using a recursive least squares (RLS) algo- 
rithm, rather than the LMS algorithm, to update the poles 
and/or zeroes of the IIR adaptive filter. The convergence 
speed of this algorithm is found to be comparable with 
that of a conventional DFE using the LMS algorithm. 
Since only two poles are considered, this RLS algorithm 
requires little additional complexity relative to the LMS 
algorithm. 

The next section presents the pole-zero DFE, and Sec- 
tion I11 discusses adaptive IIR algorithms. Section IV pre- 
sents numerical results comparing the performance of the 
adaptive pole-zero DFE with a conventional DFE. 

11. AN IIR FEEDBACK FILTER 

A block diagram of the proposed DFE is shown in Fig. 
3. The filters P(z) ,  A ( z ) ,  C(z), and D(z)  are finite-length 
(FIR) transversal filters. The purpose of A ( z )  is to cancel 
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Fig. 3 .  DFE with pole-zero feedback filter to cancel the tail of  the postcur- 
sor IR. 

postcursor IS1 due to the initial part of the IR of the com- 
bined transmitter filter, channel, receiver filter, and pre- 
filter p ( ~ ) .  The pole-zero filter C(z) /D(z)  then cancels 
postcursor IS1 due to the tail of the IR. It is assumed that 
A ( z )  spans 7 - 1 symbols, so that the filter z- 'C(z)/D(z) 
cancels the residual postcursor IR. Note that the relatively 
complicated high frequency behavior of some subscriber 
loop channels, such as those with bridge taps, typically 
affects only the first part of the IR, which in this case is 
modeled by A(z) .  

Throughout this paper it will be assumed that C(z ) /D(z )  
has at most two poles; that is, 

CO + clz-I 
( 1 )  

Stability monitoring then becomes quite easy. That is, the 
zeroes of D(z) are within the unit circle provided that [ 151 

- C(Z) - -  
D(z) 1 - d1.i-I - d22-2' 

1 + d l  -d2 > 0, 1 - d l  -d2 > 0,  

andd, > -1. (2) 
Rather than impose the specific feedback filter structure 

shown in Fig. 3 ,  the filters A ( z )  and z- 'C(z) /D(z)  can be 
combined into the single pole-zero filter C ' ( z )  /D ' ( z )  
shown in Fig. 4. The two feedback filters in Figs. 3 and 
4 are the same when 

C'(Z) = A(z)D(z) + z-'c(z) 
and D'(z)  = D(z).  If the order of C'(z) is T + 1, then any 
feedback filter shown in Fig. 3 can be synthesized as 
C'(z ) /D' (z ) .  The structure shown in Fig. 3 ,  however, has 
the following advantages over the structure in Fig. 4. 

The primary advantage of the structure in Fig. 3 is that 
it is easier to adapt than the structure in Fig. 4. To see 
why this is true, note that the coefficients of A ( z )  in Fig. 
3 can be adapted independently of D(z)  (with a small 
enough step-size), and converge to the first T - 1 values 

Fig. 4 .  DFE with pole-zero feedback filter. 

is no longer any transparent relation between the IR coef- 
ficients and the coefficients of C'(z)  [or D ' ( z ) ] ,  and the 
coefficients of C'(z) cannot be adapted independently of 
D'(z) .  Furthermore, for the cases considered in Section 
IV, the MSE (that is, E [ e 2 ( i ) ] ,  where e ( i )  is shown in Fig. 
3), is much more sensitive to variations in C'(z) in Fig. 4 
than to variations in A ( z )  in Fig. 3 .  Consequently, the 
step-size needed in a gradient algorithm to adapt the struc- 
ture in Fig. 4 to the global minimum must be extremely 
small, resulting in very poor convergence properties. 

Another advantage of the structure in Fig. 3 is that if 
the filter P(z)  is fixed, then this DFE structure can be eas- 
ily combined with the timing recovery scheme described 
in [19] .  This scheme relies on estimates of the channel 
IR, which can be obtained from A(z ) ,  to determine the 
optimal sampling phase of the received signal. For trans- 
mission at moderate data rates over twisted pairs, such as 
the current ISDN standard of 160 kb/s, precursor IS1 is 
typically very small, so that P(z)  can be replaced by a 
constant gain. In this case, the pole-zero DFE proposed 
here combined with the timing recovery scheme in [I91 
may be attractive. 

111. ADAPTIVE ALGORITHMS 
We first show how the equation error method and a sim- 

plified gradient algorithm can be used to update the coef- 
ficients of the IIR feedback filter in the proposed DFE. 
We then describe some different sequentially adaptive IIR 
algorithms which give unbiased estimates of the channel 
poles in the presence of additive white noise, and con- 
verge faster than the previous algorithms. It will be seen 
that these proposed IIR algorithms are closely related to 
the IIR gradient algorithm. Although the algorithms are 
explicitly stated assuming that C(z) and D(z) are given by 
( l ) ,  generalizations to higher-order polynomials are 
straightforward. 

A .  The Equation Error Method 
Fig. 5 shows a block diagram of an adaptive version of 

the DFE in Fig. 3 using the equation error method [15] ,  
[16], [20] .  The output of the prefilter P(z)  in Fig. 5 at 
time iT, where 1 / T  is the symbol rate, is 

of the postcursor IR. The coefficients of D(z) can subse- 
quently be adapted to cancel the remaining postcursor ISI. 
In this way, the adaptation problem is partitioned so that 
the filter poles are adapted to match a smoothly decaying 
IR, which is relatively easy. In contrast, the structure in 
Fig. 4 must select zeroes and poles to match the overall 
postcursor IR, which is a significantly harder task. There 

m 

r ( i )  = C s(k)h(i  - k )  + n(i> (3) k =  -m  

where h( i )  is the ith sample of the equivalent discrete- 
time IR of the channel including filtering at the transmit- 
ter, receiver, and P(z) ,  s(k) is the kth transmitted symbol, 
and ( n ( i ) }  is a white noise sequence. We will assume 
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Fig. S .  DFE with pole-zero feedback filter adapted via the equation error 
method. 

throughout the rest of the paper that h(0) = 1. That is, an 
automatic gain control ensures that the cursor is set to 
one. 

k =  1 , 2  ( 4 4  

where the coefficients of D(z) and C(z) are given by ( l ) ,  
and PI and p 2  are step-sizes. Two copies of the filter 
D(i, q )  are shown in Fig. 5. One is used to generate the 
equation error, and 1 / D ( i ,  q) is used to estimate postcur- 
sor ISI. 

Since E[e  ’ 2 ( i ) ]  is a quadratic function of the filter coef- 
ficients of A ( z ) ,  C(z), and D(z) ,  it has a unique minimum. 
Specifically, let S(z), R(z), and N(z )  be the z-transforms 
of the sequences { s ( i ) } ,  {r(i)}, and { n ( i ) } ,  respectively, 
where r ( i )  is given by (3). Assuming that $(i) = s ( i )  for 
every i, then the z-transform of the equation error se- 
quence is 

In HDSL applications, the additive noise n ( i )  may con- 
tain crosstalk and is therefore likely to be colored. How- E(z) = [R(z) - A(z)S(z )  - S(z)lD(z) - z-7c(z)S(z) 

ever, a fractionally-spaced feedfonvard filter, P(z ) ,  can be 
used to both whiten wide-sense stationary noise and sup- 
press cyclostationary interference (i.e., crosstalk) [2 11. 
Consequently, if the prefilter in the DFE is adaptive, then 
the assumption of additive white noise seems appropriate 
for initial comparisons between the proposed pole-zero 
DFE and the conventional DFE. 

Except for P(z) ,  all of the filters shown in Fig. 5 are 
assumed to be adaptive and are therefore time-varying. 
An adaptive prefilter will be considered later in this sec- 
tion. In order to distinguish a transfer function that is 
being adapted from the standard z-transform which as- 
sumes a time-invariant filter, we use the arguments (i, q)  
to denote a time-varying transfer function, where q re- 
places z as the delay operator. That is, 

7 -  I 

= [H(z)S(z) + N(z) - A(z)S(z) - S(z)lD(z) 

= {[H(z)  - A(z) - l ] D ( z )  - z-‘C(z)) S(z) 

- z-‘c(z)S(z) 

+ D(z)N(z).  ( 5 )  

Assuming the transmitted symbols are independent and 
that the noise is independent of the symbols, then to min- 
imize E [ e ’ 2 ( i ) ]  the coefficients of A(z)  and C(z) should be 
selected to cancel as many terms (powers of z )  as possible 
in the braces. It follows that ak = h(k) ,  k = 1, * * , 7 - 1, 
co = h(7),  and c1 = h(7 + 1) - dlh(7). 

Suppose now that 

z-’C(z) H(z) = 1 + A(z) + ~ 

A(i ,  q) = c a k ( i ) q k  for fixed A(z) and &), where the orders of &z) and A ( z )  
are the same. If A(z)  = A(z), then (5) implies that 

k =  I 

where ak(i), k = 1, 

input sequence { $ ( k ) )  is denoted as 

, 7 - 1, are the filter coefficients 
at time i. The output of A ( i ,  q) at time i in response to the E(z) = @ - 1) z-’C(z)S(z) + D(z )N(z ) ,  

7 -  I 

A(i,  9) [$(i)] = ak(i)$(i - k ) .  
k =  I 

Let H(z)  denote the z-transform of the impulse response 
sequence {h ( i ) } .  Then it is easily verified that the equa- 
tion error shown in Fig. 5 satisfies e ’ ( i )  = D(i, q ) [ n ( i ) ]  
if H(z)  = 1 + A(z)  + z-7 C(z) /D(z)  and the symbol de- 
cisions $(i) = s ( i )  for every i. 

A stochastic gradient algorithm can be used to adapt the 
filters A ( i ,  q) ,  D(i,  q),  and C(i, q) to minimize the mean 
squared equation error E [ e ’ 2 ( i ) ]  where e ’ ( i )  is shown in 
Fig. 5. Specifically, 

e ’ ( i )  = D(i, q) [ y ( i )  - $(ill - C( i ,  q) [$(i - 711 
( 4 4  

k =  1, * e *  , 7 - 1  (4b) 

(4c) 

U k ( i  + 1) = U k ( i )  + PIS^(; - k ) e ’ ( i ) ,  

C k ( i  f 1) = C k ( i )  + plS^(i - 7 - k ) e ’ ( i ) ,  k = 0, 1 

so that the D(z) that minimizes E [ e  ‘ 2 ( i ) ]  is 

where S,(z) = E [ N ( z ) N ( z - l ) ]  is the noise spectrum, and 
the transmitted symbols are assumed to be independent 
and identically distribut_ed with variance a 2 .  In the ab- 
sence of noise, D(z) = D(z) so that minimizing the mean 
squared equation error also minimizes the MSE, E [ c 2 ( i ) ] .  
However, in the presence of noise, the estimate of D(z) is 
biased, resulting in residual ISI. 

After some inspection, it becomes apparent that the 
DFE structure in Fig. 5 is closely related to the conven- 
tional DFE in Fig. 1. Specifically, in Fig. 5 the denomi- 
nator polynomial D(i,  q )  is in casade with a “modified” 
channel I&). That is, if A(z)  is selected optimally, then 
A(z) differs from H(z)  only in that the first 7 - 1 coeffi- 
cients of I&) are zero. The effect of the filter D(i, q)  in 
Fig. 5 is therefore similar to that of a prefilter in a con- 
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ventional DFE. The structure in Fig. 5 differs from the 
conventional DFE, however, in that the equation error 
which is being minimized is not the true performance cri- 
terion. In addition, the convergence properties of the 
structure in Fig. 5 may differ from those of the conven- 
tional DFE since the input to D(i, q )  in Fig. 5 is different 
from the input to P(z)  in Fig. 1. 

Assuming that D(z)  and C(z) are given by ( l ) ,  it is of 
interest to compare the output MSE of a conventional DFE 
with T + 1 feedback coefficients and a second-order pre- 
filter with that of the pole-zero DFE in Fig. 5 where P(z)  
= 1 and the mean squared equation error is minimized. 
Stated another way, the comparison is between the struc- 
ture in Fig. 5 and the conventional DFE that can be de- 
rived from Fig. 5 by moving the filter D(i,  q)  before P(z)  
and setting l / D ( i ,  q)  in Fig. 5 to one. This comparison 
can be interpreted as trading residual ISI, caused by a 
biased channel estimate, for noise enhancement caused by 
a longer prefilter. The numerical results in Section IV in- 
dicate that the MSE, or mean squared output error, in Fig. 
5 is typically larger than the MSE corresponding to the 
conventional DFE. There are some cases, however, in 
which the structure in Fig. 5 performs marginally better 
than the conventional DFE. 

It has been assumed so far that P(z)  is a fixed filter that 
compensates for precursor ISI. Ideally, it is desirable to 
be able to adapt P(z )  simultaneously with the feedback 
filter to minimize the mean squared equation error. How- 
ever, because P(z)  is in cascade with D(i,  q) in Fig. 5 ,  
E[e ' 2 ( i ) ]  is not a quadratic function of the coefficients of 
these filters. The equation error method, therefore, cannot 
be readily applied to simultaneously adapt the coefficients 
of both P(i,  q) and D(i,  q) ,  although it may be possible 
to update P(i,  q) by using the output error e(i) instead of 
the equation error. This latter scheme was not tried, how- 
ever, since the numerical results in Section IV show that 
the MSE produced by the equation error method when 
precursor IS1 is negligible is often worse than that pro- 
duced by a conventional DFE of the same complexity. 

B. Simplijied Gradient Algorithm 

The filters A ( i ,  q) ,  C(i, q) ,  D(i ,  q ) ,  and P(i ,  q )  in Fig. 
3 can also be adapted to minimize the MSE directly, but 
at the risk of converging to a local, but not global, opti- 
mum. One can at least reduce the MSE resulting from the 
equation error method by switching to a gradient algo- 
rithm using the MSE cost function after the equation error 
algorithm has converged. Furthermore, for fixed P ( z ) ,  if 
the postcursor channel IR can be modeled with the feed- 
back filter in Fig. 3, where D(z) has one or two poles, 
then the MSE cost function does not contain local optima 

Referring to Fig. 3, A ( i ,  q) can be adapted to minimize 
either E[e2(i)]  or the MSE, E [ e 2 ( i ) ] .  In either case, opti- 
mality occurs when ak = h(k) ,  k = 1, . . . , T - 1. Adapt- 
ing A(i ,  q) with the error c ( i )  has the advantage that A ( i ,  
q)  becomes independent of D(i,  q). That is, the conver- 

[41. 

gence behavior of A(i ,  q)  is the same as if D(i ,  q) were 
not present. However, adapting A ( i ,  q) with ~ ( i )  has the 
disadvantage that e ( i )  contains residual IS1 that cannot be 
cancelled by A(i ,  q) alone. This residual IS1 acts as a noise 
source which increases coefficient variance due to adap- 
tation. Of course, this variance can be reduced by de- 
creasing the gradient step-size, but at the expense of in- 
creasing the convergence time. The update equation for 
the coefficients of A(i ,  q)  remains the same as (4b), where 
e ' ( i )  is replaced by either E ( i )  or e(i). (The error e(i)  was 
used to generate the results in Section IV.) 

A simplified gradient algorithm can be used to adapt 
C(i, q ) ,  and D(i,  q)  to minimize the MSE [15]: 

e(i) = y(i) - i ( i )  - u ( i )  

ck(i  + 1) = ck( i )  + /3g"(i - k ) e ( i ) ,  

dk( i  + 1) = d k ( i )  + /3gd(i - k + l ) e ( i ) ,  

( 7 4  

k = 0, 1 (7e) 

k = 1, 2 

(7f) 

where /3 is the step-size, gd(i - k )  = d e ( i ) / a d k ( i ) ,  and 
g'( i  - k )  = a e ( i ) / a c , ( i )  [15]. Note that 

L 

= i ( i  - T )  + dk( i )gc( i  - k ) .  
k =  1 

The filter P(i ,  q)  can be updated in the conventional way: 

pk( i  + 1) = p k ( i )  + P'x(i - k ) e ( i ) ,  

k = 0, 1, e * *  , K  (8) 

where p k  (i), k = 0, 1, , K are the coefficients of P(i ,  
q) ,  x ( i )  is the input to P(i ,  q)  at time i, and 0' is a step- 
size that may be different from /3 in (7). The algorithm 
can be initialized by setting all variables to zero. The sta- 
bility conditions (2) can be checked at each iteration. If 
one of these conditions is violated, then the coefficient 
updates (7f) are not performed. Note that this algorithm 
requires somewhat more computation than the equation 
error method, due to the filtering of the sequence { v ( i ) }  
by 1 /D(i, q)  to produce the (approximate) gradient signal 
gd( i ) .  The gradient algorithm is illustrated in Fig. 6, which 
shows the intermediate gradient signals g'(i) and g d ( i ) .  

A sequential gradient algorithm can also be easily ob- 
tained for the IIR feedback filter shown.in Fig. 4.  That 
is, C'( i ,  q) and D'( i ,  q)  in Fig. 4 can be adapted according 
to an appropriate modification of (7). Unlike the preced- 
ing gradient algorithm for the structure in Fig. 3 ,  the coef- 
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I 

Fig.  6.  Illustration of the simplified IIR gradient algorithm. 

ficients of C'( i ,  q)  in Fig. 4 depend strongly on the coef- 
ficients of D'( i ,  q) resulting in very slow convergence. 

C. Sequential Steiglitz-McBride Algorithms 
In order to explain the algorithms that follow, we first 

give a brief description of the Steiglitz-McBride (SM) 
identification algorithm [22]. Referring to Fig. 7,  suppose 
that the unknown system with rational transfer function 
C ( z ) / D ( z )  is to be identified with a finite number of input 
data samples u(O), , u(N - 1). Suppose that the N '  
outputs, y(O), - - - ,  y ( N '  - l), are observed where N '  2 
N .  (For purposes of the following discussion, any reason- 
able windowiFg scheme for the input data can be as- 
sumed.) Let D(z) in Fig. 7 be some fixed filter. Then by 
solving a set of linear equations, we can compute the fil- 
ters X ( z )  and Y(z)  that minimizelthe sum of the squared 
equation errors e J 2 ( i ) .  If D(z) = 1 ,  this is simply 
the equation error method, and the resultingA estimate of 
D(z ) ,  namely Y(z) ,  is biased. However, if D(z) = D(z) ,  
then the estimates obtained will be unbiased when the 
noise is white. 

The preceding observation suggests the following iter- 
ative estimationl scheme 1221. 

i) Initialize D(z) = 1. 
ii) Compute the X ( z )  and Y(z)  that minimize CYLo 

iii) Set D(z) = Y(z) .  
iv) Repeat from ii) until d(z) and Y(z)  are sufficiently 

close. 
I )  7'he Fan-Jenkins Algorithm: It is possible to use the 

SM algorithm i)-iv) to estimate the feedback filters in Fig. 
3 given a block of transmitted symbols and the corre- 
sponding channel outputs. However, the least squares 
(LS) estimate in step ii) is computationally expensive to 
obtain, and this step must be executed many times. An 
algorithm that processes the data sequentially is also de- 
sirable in this application. 

A sequential IIR adaptive algorithm, based on the SM 
algorithm, has been proposed by Fan and Jenkins [l8]. 
Rather than compute the LS estimate in step ii), for fixed 
D(z) it is possible to adapt X ( i ,  q) and Y(i, q) with the 

[e'(i)12 in Fig. 7.  

I I 
I X ( Z )  I 

I I 
I Y ( Z )  I 

Fig.  7 .  Block diagram illustrating the Steiglitz-McBride identification al- 
gorithm. 

standard LMS algorithm. Furthermore, since Y(i, q)  
should converge to D(i,  q) ,  we can simply replace D(z) in 
Fig. 7 by Y(i, q) .  Applying this adaptive algorithm to the 
pole-zero DFE results in the algorithm (7), where (7c) 
and (7f) are replaced, respectively, by 

and 

dk(i  + 1) = dk( i )  + pgd(i - k)e( i ) ,  k = 1, 2. 

This algorithm is illustrated in Fig. 8. Because the cas- 
caded filters l/D(i, q) and D(i,  q)  in Fig. 8 result in a 
(time-invariant) unity transfer function, the error e ( i )  in 
Fig. 8 is given by (7d). 

As pointed out in [ 181, the only difference between this 
algorithm and the gradient algorithm (7) is that in the Fan- 
Jenkins (FJ) algorithm y(i) - i( i)  is filtered by 1 / D ( i ,  q)  
to produce the gradient gd(i)  for updating D(i ,  q) ,  whereas 
in the gradient algorithm v ( i )  is filtered to produce g d ( i ) .  
Since v( i )  is the current estimate of y(i) - i(i), the per- 
formance of the FJ algorithm is likely to be similar to that 
of the gradient algorithm. Results in [ 181, as well as our 
own simulation results, indicate that this is indeed the 
case. Specifically, the pole-zero DFE in Fig. 3 was sim- 
ulated using both the gradient and FJ algorithms to adapt 
the pole-zero feedback filter. The speed of convergence 
for both algorithms was observed to be virtually identical. 
Consequently, numerical results for the FJ algorithm are 
not explicitly shown in the next section, since they are 
essentially the same as those shown for the gradient al- 
gorithm. 

Although the FJ algorithm does not immediately im- 
prove upon the performance of the adaptive IIR algo- 
rithms already discussed, Figs. 7 and 8 suggest the fol- 
lowing modifications of the FJ algorithm, which do 
improve performance for the application considered. 

2)  Reversing the Order of Filtering-the SM-LMS 
Algorithm: Referring to Fig. 7,  the order in which the 
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I SM-LMS algorithm 

Fig. 8. Illustration of the Fan-Jenkins and SM-LMS algonthms. The or- 
der of the filters C(i ,  q) and q - ’ / D ( i ,  q) IS  reversed for the SM-LMS al- 
gorithm. 

filters 1/&) and X ( z )  appear is intrinsic to the SM al- 
gorithm. That is, the output of the filter l / D ( z )  in re- 
sponse to the input sequence { u ( i ) }  is used to compute 
X ( z ) ,  so that the order of these filters cannot be reversed. 
If, however, a sequential algorithm such as the LMS al- 
gorithm is used to adapt X ( i ,  q) and Y(i, q) ,  then in steady 
state it shFuld not matter whether X ( i ,  q) comes before or 
after 1 /D(i, q).  This simple interchange, however, can 
have a dramatic effect on the convergence properties of 
the algorithm. 

For example, in the DFE application the input se- 
quence { u ( i ) >  consists of the transmitted symbols, which 
are Atypically uncorrelated. Filtering this sequence by 
1 /D(z )  causes the input to X ( z )  to Fig. 7 to be correlated. 
Loosely speaking, the closer the zeroes of D(z) ace to the 
unit circle, the more correlated the output of 1 / D ( z )  will 
be. It is well known that the LMS algorithm converges 
much faster in response to uncorrelated data, as opposed 
to a strongly correlated input. Consequently, faster con- 
vergence relative to that of the FJ algorithm should be 
obtained by using an uncorrelated sequence as the input 
to X ( i ,  q ) ,  and placing l / D ( i ,  q) after X ( i ,  q) .  

The preceding discussion suggests switching the order 
of l / D ( i ,  q)  and C(i ,  q)  shown in Fig. 8.  The FIR filters 
D(i,  q) and C(i,  q) can be adapted to minimize E [ e 2 ( i ) ]  
via the LMS algorithm, assuming that the all-pole filter 
1 / D ( i ,  q )  is time-invariant. Of course, 1 / D ( i ,  q)  is time- 
varying and is determined by the current estimate D(i ,  q) .  
Specifically, the SM-LMS algorithm is 

dk(i  + 1) = dk(i) + pgd(i  - k ) e ( i ) ,  k = 1, 2 (9c) 

ck(i  + 1) = c k ( i )  + pS;(i - 7 - k ) e ( i ) ,  k = 0, 1 

( 9 4  

A(i,  q) and P(i ,  q) can again be adapted via the LMS al- 
gorithm. 

The input to C(i,  q) in this case is the sequence of un- 
correlated transmitted symbols. If we assume for the mo- 
ment that l / D ( i ,  q) is time-invariant, then the statistics 
of the error e ( i )  are approximately the same as the statis- 
tics of the error in the FJ algorithm. Consequently, C(i,  
q)  should converge faster in  this configuration, as com- 
pared with the configuration shown in Fig. 8,  when the 
LMS algorithm is used to update the coefficients. The nu- 
merical results in Section IV show that this is indeed the 
case, where the speedup in convergence of (9) relative to 
the gradient algorithm is roughly a factor of 4-5. 

Of course, it is also possible to switch the order of the 
cascaded filters 1 / D ( i ,  q )  and D(i ,  q )  in Fig. 8. However, 
because the signal y ( i )  - i ( i )  is correlated, adapting D(i,  
q )  with this signal instead of g d ( i ) ,  as in (9), is unlikely 
to offer a substantial improvement in performance. 

3)  A Sequential SM Algorithm with *Recursive Least 
Squares (RLS) Updates: For any fixed D(z) in Fig. 7, the 
least squares (LS) estimate of X ( z )  and Y(z) in step ii) of 
the SM algorithm can be obtained sequentially. That is, 
LS estimates for Y(z) and X ( z ) ,  given N + 1 input and 
output samples, can be obtained recursively from the LS 
estimates of Y(z)  and X ( z )  given N input and output sam- 
ples plus some additional state information. Once the re- 
cursive LS (RLS) algorithm has converged for fixed 
D(z) ,  we can then replace D(z) by Y ( z ) ,  reinitialize the 
RLS algorithm, and recompute X ( z )  and Y(z) .  

The RLS algorithm must be reinitialized after updating 
Q(z) ,  since state information corresponding to the old 
D(z) would otherwise be retained, thereby corrupting suc- 
cessive estimates. This has the disadvantage, however, 
that the RLS algorithm must be periodically terminated 
and restarted with zero state information, so that the re- 
sulting estimates of Y( i )  and X ( z )  are quite poor until the 
algorithm has once again converged. An attractive alter- 
native is to use an RLS algorithm with exponentially fad- 
ing memory. That is, the weighted sum of squared errors, 
E;”=, w N - ’  [e’ ( i )J2 ,  is minimized for each N .  This way, 
the algorithm discounts past input data and can track 
changing input statistics, which is caused by updating 
D ( i ,  q) in Fig. 7. (There are other ways of implementing 
RLS algorithms with fading or finite memory [23];  how- 
ever, exponential weighting is relatively simple and is 
found to perform quite well for the examples in the next 
section .) 

The rate at which b ( i ,  q) is updated determines how 
fast the statistics of the input to the RLS algorithm are 
changing. For fastest convergence, it seems plausible to 
update D(i,  q)  as fast as possible while maintaining sta- 
bility. Algorithm stability also depends critically on the 
exponential weight w. As w decreases, the RLS algorithm 
tracks changing statistics faster although the variance of 
the estimate increases, potentially causing instability. We 
chose to update D(i, q) at each iteration, so that the sta- 
bility and convergence speed of the algorithm is deter- 
mined solely by w .  For the two-pole example considered 
in the next section, taking w = 0.999 gave satisfactory 
results. 
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To show how the adaptive IIR algorithm just described 
can be applied to the proposed pole-zero DFE, we define 
the following vectors associated with Fig. 8. 

g’(i) = [gd(i  - I), gd(i - 21, gc(i), gc(i - 111 

d’(i) = [dl(i), MI, C O ( ~ > ,  c ~ ( i ) l .  
The coefficients of D(i, q) and C(i, q)  are updated as fol- 
lows. 
Initialization: 

1 
6 

d(0) = 0, R-’(O) = - I, s^(i) = g‘(i) = gd( i )  0, i < 0 

(104 
F o r i  = 0, 1 ,  2,  . do: 

(lob) 

e(i + 1) = y(i + 1) - s^(i + 1) 

y(i + 1) = R-I(i)g(i + 1) (10e) 

W 

1 
w + g’(i + l)R-I(i)g(i + 1) 

- 

(10f) ) * [y(i + l)y’(i + 1)1 

d(i + 1) = d(i) + [R-’(i + l)g(i + l)]e(i + 1).  

(1%) 
In the initialization, 6 is chosen to be some small constant 
that is large enough to ensure stability. The RLS algo- 
rithm (10) uses the matrix inversion lemma [24, Sect. 5.11 
to compute the inverse of 

I 

R(i) = c w’-kg(k)g’(k). (11) 
k = O  

(Strictly speaking, R-I(i) in (10) only approximates the 
inverse of R(i) defined by (11) due to the approximate 
initial condition.) 

Of course, there are many alternative RLS algorithms 
to the one used in (10). Of particular interest are the 
ARMA lattice algorithms described in [25]. (See also [24, 
Sect. 10.21). That is, the filters C(i,  q )  and D(i,  q) in Fig. 
8 can be implemented as a single ARMA lattice filter, and 
the filter 1 / D ( i ,  q) can also be implemented as an all-pole 
lattice filter [25], which greatly simplifies stability check- 
ing when D(i, q)  has more than two zeroes. In addition, 
lattice structures are generally less sensitive to roundoff 
errors than direct form implementations. It is also possi- 

ble to replace the RLS algorithm (10) by one of the com- 
putationally efficient RLS transversal algorithms de-. 
scribed in [23] and [24, Ch. 51. However, for the example 
considered in the next section, R is a 4 X 4 matrix, so 
that the potential savings in complexity offered by the 
“fast” RLS algorithms is minor. 

A simple way to reduce the complexity of the SM-RLS 
algorithm (lo),  while compromising performance only a 
little, is to use the RLS algorithm to estimate only the 
poles [D(i, q)] and use the standard LMS algorithm to 
estimate C(i, q) .  Specifically, we can redefine the vectors 

g’(i) = [gd(i - I ) ,  gd(i - 211 

d’(i) = [d,(i), d2(i)l 

so that R(i), defined by (1 I ) ,  is now a 2 x 2 matrix. The 
SM-RLS algorithm (10) can then be used to estimate D(i, 
q) ,  and C(i, q)  can be updated as in the SM-LMS algo- 
rithm, i.e., via (9d). The convergence speed of the re- 
sulting algorithm will be somewhat slower than when the 
RLS algorithm is used to update both D(i, q) and C(i, 4). 
However, the results in the next section indicate that the 
savings in complexity makes this an attractive alternative 
for the application considered. 

There are, of course, many other possible variations on 
the algorithms proposed in this section. In general, the 
filters C(i, q) and D(i, q) can be updated via any FIR 
adaptive algorithm and can be implemented with any FIR 
filter structure. The resulting estimate for D(i, q) can then 
be substituted back into the all-pole filter l /D(i ,  q) in 
Fig. 8.  (Again, depending on the particular algorithm 
considered, it may be advantageous to change the order 
of the filters in Fig. 8.) The stability and convergence 
properties of this class of algorithms is a very interesting 
topic which is not pursued here. 

IV. NUMERICAL RESULTS 

Throughout this section, C(z) and D(z) in the pole-zero 
DFE are assumed to be given by (1). The conventional 
DFE, to which the pole-zero DFE will be compared, has 
T + 1 feedback taps, where T - 1 is the number of taps 
in A(z)  in Fig. 3,  and has a prefilter containing two more 
zeros than the number of zeroes in the pole-zero DFE pre- 
filter. The number of feedback taps in F(z) in the conven- 
tional DFE shown in Fig. 1 is therefore the same as the 
total number of taps in A ( z )  and C(z) shown in Fig. 3.  
Also, the number of taps in P(z) in Fig. 1 is the same as 
the number of taps in the pole-zero DFE prefilter plus the 
number of taps in D(z)  in Fig. 3 .  As discussed in Section 
III-A, this illustrates the design option of adding taps to 
the prefilter of a DFE, which in the presence of severe IS1 
tends to shorten the channel 1R at the expense of enhanc- 
ing the noise, or using the additional taps to construct a 
pole-zero feedback filter. 

Before presenting performance results for adaptive 
DFE’s, we first show the potential advantage in MSE of- 
fered by the proposed pole-zero DFE relative to a con- 
ventional DFE having the same complexity. We will sub- 
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sequently demonstrate that this performance advantage 
can be achieved when the channel is initially unknown by 
using one of the adaptive IIR algorithms described in the 
last section. All of the results presented here assume that 
the channel has the measured subscriber loop IR shown 
in Fig. 2. (Filtering at the transmitter and receiver is as- 
sumed to be included in this IR.) 

A.  Comparisons of Minimum MSE 

Two sets of results are shown in Figs. 9 and 10. The 
first set, shown in Fig. 9, assumes a symbol rate of 400 
kbauds, which, because of the sharp leading edge of the 
IR in Fig. 2, is slow enough so that precursor IS1 is quite 
small. Consequently, the pole-zero DFE in this case has 
P(z)  = 1.  The second set of results in Fig. 10 corresponds 
to a symbol rate of 800 kbauds, so that precursor IS1 is 
no longer negligible. Here we assume that the pole-zero 
DFE has a third-order prefilter P ( z ) .  The results at the 
lower symbol rate are included for two reasons. First, 
adapting the prefilter P ( i ,  q)  in addition to the pole-zero 
feedback filter is significantly more difficult than adapting 
only the feedback filter with a fixed prefilter. It is, there- 
fore, of interest to compare the performance of adaptive 
algorithms in these two situations. The second reason is 
that assuming a fixed prefilter simplifies the computation 
of MSE when the mean squared equation is to be mini- 
mized. The performance of the equation error method is 
therefore shown only at the lower symbol rate. 

Fig. 9 shows a plot of MSE versus the total number of 
taps in A(z)  and C ( z )  for the DFE structure in Fig. 3. The 
signal-to-noise ratio (SNR) is 20 dB, and is defined as 
x 2 / E [ n 2 ( i ) ] ,  where x is the maximum value of the channel 
impulse response shown in Fig. 2, and the noise sequence 
is assumed to be white. Plots are shown corresponding to 
minimization of both the mean squared equation error and 
MSE. Also shown are plots of minimum MSE (MMSE) 
versus number of taps in F(z)  for the conventional (FIR) 
DFE in Fig. 1, assuming that the prefilter P(z)  is a sec- 
ond-order FIR filter, and assuming that P(z)  = 1. In the 
former case, the total number of filter coefficients corre- 
sponding to an x-axis entry in Fig. 9 is the same as the 
number of filter coefficients for the pole-zero DFE. The 
results shown in Figs. 9 and 10 assume that the sampling 
delay (in number of symbols) is optimized for both struc- 
tures, and that the sampling phase is the same in each 
case. 

Fig. 9 shows that the equation error method performs 
much worse than a conventional DFE with a second-order 
prefilter when the number of feedback taps is relatively 
small (less than 20), and performs about the same as the 
conventional DFE when the number of feedback taps is 
large. Consequently, the biased pole estimates obtained 
via the equation error method in Fig. 5 generally create 
more MSE in the form of residual IS1 than the MSE due 
to noise enhancement from a second-order prefilter. Fig. 
9 also shows, however, that if the MSE is minimized di- 
rectly, then the pole-zero structure requires only 13 feed- 
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Fig. 9. Minimum MSE versus number of feedback taps for the pole-zero 
DFE in Fig. 3,  and a conventional DFE with an FIR feedback filter. The 
symbol rate is 400 kbaud and the SNR is 20 dB. Output MSE for the pole- 
zero DFE assuming that the mean squared equation error is minimized is 
also shown 
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Fig. 10. MMSE versus number of feedback taps for the pole-zero DFE 
and the conventional DFE, assuming SNR's of 2 0 ,  2 5 ,  and 30 dB. The 
symbol rate is 800 kbauds. The pole-zero DFE contains a third-order pre- 
filter, and the conventional DFE contains a fifth-order prefilter. The aster- 
isks correspond to asymptotic averaged squared error for the conventional 
and pole-zero DFE's when adapted via !he LMS and SM-RLS algorithms, 
respectively, and assuming that the SNR is 25 dB in each case. 

back taps to achieve the maximum SNR of 20 dB. The 
improvement relative to the conventional DFE is nearly 4 
dB in this case. Alternatively, to achieve the performance 
of the pole-zero DFE with 13 feedback taps, a conven- 
tional DFE requires nearly 40 feedback taps. 

Fig. 10 compares the MMSE for the pole-zero DFE 
with that of a conventional DFE at three different SNR's, 
assuming a symbol rate of 800 kbauds. Third- and fifth- 
order prefilters are assumed for the pole-zero DFE and 
the conventional DFE, respectively. Consequently, as the 
number of feedback taps goes to infinity, the conventional 
DFE performs slightly better than the pole-zero DFE be- 
cause of the extra feedforward taps. In all cases, however, 
the pole-zero DFE requires less than 30 feedback taps to 
achieve nearly the same MMSE as a conventional DFE 
with a third-order prefilter and an infinite number of feed- 
back taps. Fig. 10 shows that to achieve this MSE, the 
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conventional DFE requires approximately three times the 
number of feedback taps as the pole-zero DFE. Altema- 
tively, assuming 30 feedback taps, as the SNR increases 
from 20 to 30 dB, the difference in MMSE for the two 
structures increases from approximately 3 dB to 5.5 dB. 
The reason for this is that the MMSE for the conventional 
DFE with only 30 feedback taps is due primarily to resid- 
ual ISI. Consequently, the difference between this MMSE 
and 1 /SNR increases as the SNR increases. In contrast, 
the pole-zero DFE with 30 feedback taps is able to elim- 
inate ISI, so that the MMSE in this case is approximately 
1/SNR. The upper and lower asterisks in Fig. 10 corre- 
spond to the averaged squared error obtained by the LMS 
algorithm and the SM-RLS algorithm, respectively after 
50 000 iterations, assuming that the SNR is 25 dB. 

We remark that the computation of the MMSE for the 
pole-zero DFE shown in Fig. 3 is not entirely straight- 
forward. This is because the MSE is a nonlinear function 
of the feedback taps. Including P(z) in  the optimization 
further complicates the computation. With fixed P(z) ,  the 
MMSE was computed by emulating the SM algorithm. 
That is, the algorithm (i)-(iv) in Section 111-C was used 
to compute the filters C(z) and D(z)  in Fig. 8,  where in- 
stead of computing LS estimates of C(z) and D(z)  from 
randomly generated data, MMSE estimates were com- 
puted from the channel IR. In general, this procedure is 
not guaranteed to converge to the globally optimal solu- 
tion although, as previously pointed out, this is not a 
problem when two poles are sufficient to model the tail of 
the channel IR. To compute the MMSE with P(z)  present, 
we used the following simple approach. First compute the 
MMSE feedback filter with some fixed P(z).  Then fix the 
feedback filter and compute the MMSE prefilter, and so 
forth until convergence. Initially, P(z) was set to 1.  Al- 
though local minima may again be a problem with this 
algorithm, the computed values for the MSE shown in 
Fig. 10 appear to be global minima. 

B. Performance Comparisons of Adaptive IIR 
Algorithms 

We now compare the performance of the adaptive IIR 
algorithms described in Section 111. Fig. 11 shows aver- 
aged squared error versus iteration for the pole-zero DFE 
using the equation error algorithm (4), the simplified gra- 
dient algorithm ( 7 ) ,  and the SM-LMS algorithm (9) at the 
lower symbol rate of 400 kbauds and an SNR of 20 dB. 
The number of feedback taps in A(i ,  q) is 13 for the SM- 
LMS algorithm and is 15 for the other two algorithms. 
All of the simulation results presented here assume binary 
transmitted symbols, i.e., s ( i )  E { 1,  - l } .  The asymptotic 
averaged squared error in Fig. 11 is somewhat greater than 
the corresponding results for MSE in Fig. 9 due to tap 
fluctuations. This excess MSE is less than 1 dB in all 
cases. The plots in Fig. 11 were generated by averaging 
successive blocks of 1250 squared errors. 

Fig. 11 shows that the SM-LMS algorithm takes less 
than 125 000 iterations to converge, which is more than 

-10 R 
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Number of IIerations/l250 

Fig. 11. Averaged squared error versus iteration for an adaptive pole-zero 
DFE assuming: i) the equation error algorithm (4); ii) the IIR gradient 
algorithm (7); and iii) the SM-LMS algorithm (9) is used to adapt the pole- 
zero filter. The symbol rate is 400 kbauds and the SNR is 20 dB. The 
feedback filter A ( i .  q )  contains 13 taps for the SM-LMS algorithm, and 15 
taps for the  other two algorithms. 

four times faster than the convergence speed of the gra- 
dient algorithm, and is comparable with the convergence 
speed of the equation error algorithm. It was also found 
that the SM-LMS algorithm is much less sensitive to the 
choice of step-size than the gradient algorithm. 

It is not surprising that the equation error algorithm (4) 
converges faster than the gradient algorithm (7) since the 
mean squared equation error is a quadratic function of the 
feedback taps, whereas the output MSE is a nonlinear 
function of the feedback taps. This is illustrated in Fig. 
12, which shows MSE-' versus the feedback taps dl  and 
d2 in the pole-zero DFE. Each point on the surface cor- 
responds to the optimal choice of A(z) and C(z) given dl 
and d2. There is only one local optimum; however, the 
cost function exhibits a sharp peak at the optimal values 
of dl and d2, and is relatively flat elsewhere. The averaged 
squared error corresponding to the gradient algorithm in 
Fig. 11 therefore stays relatively constant, while the gra- 
dient algorithm traverses the plateau in Fig. 12, and sub- 
sequently decreases to its minimum value as the gradient 
algorithm traverses the spike. Although the convergence 
properties of both algorithms can be altered somewhat by 
changing the step-size 0, the comparison in Fig. 11 is a 
representative illustration of the slow convergence of the 
IIR gradient algorithm. 

The SM-RLS algorithm described in Section 111-C is 
compared with the conventional FIR DFE in Fig. 13, as- 
suming the lower baud rate of 400 kbauds, and an SNR 
of 25 dB. The pole-zero DFE has 13 taps in the feedback 
filter A(i ,  q) and has no prefilter. The conventional DFE 
has 13 feedback taps and a second-order prefilter. Be- 
cause of prefilter noise enhancement, the asymptotic MSE 
for the conventional DFE is greater than that for the pole- 
zero DFE. 

Fig. 13 shows that the speedup in convergence offered 
by the SM-RLS algorithm relative to the other adaptive 
IIR algorithms considered is dramatic. Each point in Fig. 
13 corresponds to an average over a block of 100 succes- 
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Fig. 12. MMSE surface as a function of tap coefficients d ,  and d2. The 
filter A ( i ,  q )  contains 15 taps, and the remaining parameters are the same 
as in Fig. 11. 
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Fig. 13. Averaged squared error versus iteration for: i) the conventional 
DFE with a second-order prefilter using the LMS algorithm: and ii) the 
pole-zero DFE with no prefilter using the SM-RLS algorithm. The symbol 
rate is 400 kbauds, the SNR is 25 dB, and the filter A ( i .  4)  contains 13 
taps. 

sive squared output errors. The SM-RLS algorithm there- 
fore takes approximately 10 000 iterations to converge, 
which is more than 10 times faster than the convergence 
speed of the SM-LMS algorithm shown in Fig. 11 and 
about 40 times faster than the IIR gradient algorithm. The 
conventional DFE using the LMS algorithm takes more 
than 10 000 iterations to converge to the asymptotic MSE. 

Averaged squared error versus number of iterations for 
the SM-RLS algorithm and the conventional DFE are 
shown in Fig. 14 for the higher symbol rate of 800 kbauds 
and an SNR of 25 dB. Both DFE's have third-order pre- 
filters; however, the conventional DFE has 100 feedback 
taps so that the asymptotic MSE is the same for both 
structures. Each point in Fig. 14 again corresponds to an 
average over 100 successive squared errors. Both versions 
of the SM-RLS algorithm described in Section 111-C are 
represented in Fig. 14. That is, one plot assumes an RLS 
algorithm is used to estimate both C(z) and D(z) in Fig. 
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Fig. 14. Averaged squared error versus iteration for: i) the conventional 
DFE using the LMS algorithm, ii) the pole-zero DFE using the SM-RLS 
algorithm; and iii) the pole-zero DFE using the simplified SM-RLS algo- 
rithm, in which the RLS algorithm is used only to estimate D(i ,  4 ) .  The 
symbol rate is 800 kbauds, the SNR is 25 dB, both DFE's contain a third- 
order prefilter, A ( i ,  q )  contains 28 taps, and the conventional DFE contains 
100 feedback taps. 

8, and the other assumes an RLS algorithm is used to es- 
timate only D(z)  (the poles). The exponential weight in 
(1Of )  for both cases is w = 0.999. The SM-RLS algo- 
rithm takes approximately 30 000 iterations to converge, 
which is essentially the same as the convergence time for 
the conventional DFE. The two plots in Fig. 14 corre- 
sponding to the two SM-RLS algorithms show approxi- 
mately the same convergence time. This is fortunate since 
using the RLS algorithm (10d-g) to obtain an estimate of 
only D(z)  requires significantly less computation than 
using this RLS algorithm to estimate both C(z) and D(z) .  
The averaged squared errors obtained by these algorithms 
after 50 000 iterations are represented by the asterisks in 
Fig. 10. 

V. CONCLUSIONS 
A pole-zero feedback filter has been proposed to reduce 

the complexity of decision feedback equalization for 
channels with severe ISI. Although this pole-zero DFE 
has been studied only in the context of high-speed digital 
communications over the subscriber loop, it is potentially 
advantageous whenever the tail of the channel IR can be 
accurately modeled with a two-pole filter. For the IR con- 
sidered in Fig. 2, our results indicate that the proposed 
pole-zero DFE offers a 3-5 dB improvement in MSE rel- 
ative to a conventional DFE having the same complexity 
at moderate SNR's. As shown in the preceding section, 
this improvement generally increases with SNR. 

Important practical issues, such as error propagation 
and finite precision effects, have not been considered. Be- 
cause of the recursive nature of IIR filters, finite precision 
effects may be more of a problem for the pole-zero DFE 
than for the conventional DFE. This requires further 
study. However, ignoring this potential problem, the deg- 
radation in performance due to error propagation for both 
DFE structures should be the same, since the IR of the 
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pole-zero feedback filter in Fig. 3 is approximately the 
same as that of a conventional FIR filter that cancels the 
entire postcursor IR. 

In addition to the practical issues just mentioned, there 
are other issues which also deserve further investigation. 
The convergence speed of the adaptive pole-zero DFE can 
be made faster, relative to the results in Section IV, by 
using a fast converging FIR adaptive algorithm (such as 
RLS) to adapt the filters A ( z )  and P(z)  in Fig. 3.  It would 
be of interest to see how much improvement can be ob- 
tained, although these faster algorithms are likely to be 
too complex for practical applications. A related issue is 
to characterize the convergence properties of the adaptive 
IIR algorithms given in Section 111. At present, little is 
known about this although some results are available [26], 
[27]. A rigorous characterization of the MSE versus it- 
eration for any of the adaptive algorithms with random 
inputs is likely to be quite difficult. However, an approx- 
imate treatment, using the types of convergence models 
described in [28], may provide some insight. 

Finally, it is of interest to determine whether or not the 
adaptive IIR algorithms described in Section 111-C may be 
useful in other contexts, such as echo cancellation of 
speech or data signals [ 5 ] - [  141. These applications may 
require the estimation of more than two poles, so that the 
presence of local minima becomes an important problem. 
In addition, stability checking becomes more difficult as 
the number of poles increases. The combination of other 
filter structures, such as the ARMA lattice structure [25],  
with a sequential SM algorithm may prove useful in this 
context. 
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