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Spread-Time Code-Division Multiple Access 
Pedro M. Crespo, Senior Member, IEEE, Michael L. Honig, Senior Member, ZEEE, and Jawad A. Salehi 

Abstract- An alternative code-division multiple-access 
(CDMA) scheme to spread spectrum (SS), called spread time 
(ST) is proposed for badlimited multiple-access channels. 
ST-CDMA can be considered the be-frequency dual of 
SS-CDMA. In ST-GDMA pslendsraodan (PN) sequences are 
assigned to each user, and the Fourier tcrursf@rm of the 
transmitted pulse for a given user is d&mined by modulating 
the phase of the desired transmitted spectnnn by the user’s 
PN-skquence. The t”Btasd data for a parthdnr mer can 
be recoverad by sampling t8c output of a Plter matchd tcE tbe 
w ” s  pulse. ImplemenEwtloqs rare dascrilred in which wrface 
acoustic wave devices are used to perform the matched fislteL.ing 
or Fourier transformation. Averaged signal-to-intdremoe 
plus noise ratio (SIR) and spectral afldeacy are campuW fbr 
bo& asynchronous ST a d  dCrect-seqnwe SS-CDMA systuns, 
assuming an arbitrary c h n d  t r M e r  fbnetion H(f), whicb is 
the same between all ppirS sf users. Tlhe resnlts are tlnt same 
for SS and ST providsd W t  the magmnipude of the Fourier 
transform of the chip h p e  in the SS system is the 88me 86 
the nragnitwde of the Fader  transform OP t4e ST pulse shape. 
The main advantag@ af tbe ST teehnlqus is the fled 
whick the transmitted spectrum can be sdwtwl. We dcrjlve the 
transmitted spectrum tbat maximizes the SIR subject to an 
average power constraint. 

1. INTRODUCTION 
HE POTENTIAL demand for ubiquitous wireless com- T munications combined with restricted availability of the 

radio frequency spectrum has motivated intense research into 
bandwidth-efficient mwltiple-access schemes. Code-division 
multiple access (CDMA), or spread-spectrum (SS) schemes 
have recently received attention as potentially attractive can- 
didates for these types of multiple access channels [l], [2]. 

We present an alternative CDMA scheme to direct se- 
quence spread-spectrum CDS-SS), called spread rime (ST), 
since it can be viewed as the time-frequency dual of spread 
spectrum. This CDMA technique was motivated by work on 
optical CDMA by Salehi, Weiner, and Heritage [3]. Here, 
we examine ST-CDMA in the context of bandwidth-limited 
wireless communications, and compare its performance to that 
of conventional DS-SS. 

As in SS, in ST, each user is assigned a pseudorandom 
(PN) sequence, and the data is transmitted by pulse-amplitude 
modulation. However, in ST, the transmitted pulse for a given 
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user is determined by modulating the phase of the desired 
transmitted power spectral density.’ That is, the available 
bandwidth is partitioned into M subbands, or frequency bins, 
where M is the processing gain. Each bin is assigned a phase 
(Le., 0. T, f7(./2), which depends on the user’s PN-sequence. 
The pulse is then obtained by taking the inverse Fourier trans- 
form of the resulting frequency response. At the receiver, the 
desired data can be recovered by sampling the output of a filter 
matched to the specific user pulse. Alternatively, the receiver 
can compute the Fourier transform of the time-windowed 
received signal at each symbol interval, which, in the absence 
of interference and channel impairments, produces the PN- 
sequence assigned to the transmitter. Subsequent processing 
then proceeds as in the case of a conventional DS-SS receiver. 
In the next section, implementations of an ST-CDMA system 
are described in which surface acoustic wave (SAW) devices 
[4] perform the matched filtering or Fourier transformation. 

A performance analysis of asynchronous ST- and SS- 
CDMA is given in Section 111. The performance measures 
considered are the ratio of rms signal level to rms interference 
plus noise in the output samples of the matched filter, or 
correlator (i.e., signal to interference plus noise ratio, or SIR), 
and the ratio of rms received signal to rms transmitted signal 
for a particular user (spectral efficiency). This analysis differs 
from previous analyses, Le., [5]-[7], in that our system model 
includes a channel transfer function, which is assumed to be 
the same between all pairs of users. 

We show that the preceding performance measures are the 
same for SS and ST provided that the magnitude of the Fourier 
transform of the SS chip shape is the same as the magnitude 
of the Fourier transform of the ST pulse shape. If the channel 
between each pair of uses is ideal bandlimited, then the SIR for 
ST (or SS) with an optimized transmitted pulse (chip) shape is 
2.1 dB greater than the SIR for SS with rectangular chips. This 
result assumes that the product of bandwidth with symbol time 
is the same for both systems (for SS with rectangular chips 
90% of the pulse energy is confined to the channel bandwidth), 
that for the optimized system, the transmitted pulse and the 
matched filter impulse response are not truncated in time, and 
that the background noise level is zero. 

For the ideal bandlimited channel the spectral efficiency, 
i.e., fraction of transmitted power which appears at the output 
of the channel, is slightly better for ST than for SS with 
rectangular chips. This is because the transmitted spectrum 
in ST can be closely matched to the channel transfer function. 
However, this difference in performance becomes very small 
when chip shaping is used in the SS system to increase spectral 

’ Throughout this paper “transmitted spectrum” refers to the squared mag- 
nitude of the Fourier transform of the transmitted pulse. 
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is the flexibility with which power-limited pulses can be IT-‘ 

11. DESCRIPTION OF ST-CDMA 

Multiplexing in conventional CDMA is achieved by assign- 
ing a different code, or signature sequence, to each transmitter, 
which uses this code to generate a data signal that can be 
decoded at each receiver. Specifically, it is assumed that the 
transmitted signal for user i is of the form 

k 

where { b f ) }  is the sequence of information bits for user 
i, p z ( t )  is the baseband pulse assigned to user i, and 1/T 
is the symbol rate. Thraughout this paper, we assume binary 
signaling, i.e., b t )  E {fl} .  It is desired that the pulses 
p , ( t ) ,  i = 1, . . . , K, where K is the number of users, be nearly 
orthogonal for all time shifts, that is 

I I J O  
I I 

for all 1 # i and T, where t is some suitably small constant. 
In this case, the intended receiver can recover the data from 
transmitter i in the presence of interferers by sampling the 
output of a filter matched to p z ( t ) .  npically, the pulse p i  
is obtained by modulatiag a single-square pulse of width T 
by a PN sequence. We now describe an alternative method 
for generating pulses in which the squme root of the desired 
transmitted spectrum S(f) is modulated. 

An ST-CDMA encoder and decoder is shown in Fig. 1. 
The pulse generator for user i, shown in Fig. l(a) consists 
of a mbdulator followed by an inverse Fourier transform. 
The resulting pulse is then truncated by the time window 
~ ( t ) .  The input to the encoder is the square root transmitted 
spectrum S( f) .  If the modulator multiplies S( f )  by a complex 
function which has modulus one, and w( t )  = 1, then the 
transmitted spectrum is IS(f)12. We refer to this encoder as 
a ‘‘spectral encoder.” The ST-CDMA, or “spectral,” decoder 
shown in Fig. l(b) may consist of a Eourier transformer, which 
computes the Fourier transform of the windowed data signal, 
conjugate modulator, and integrator, which is equivalent to a 
filter matched to the transmitted pulse. 

The code assigned to a particular transmitter, which mod- 
ulates S(f). can be a complex-valued PN-sequence. For 
example, each sequence element can be chosen from a set 
of uniformly spaced points on the unit circle. Assuming the 
intended receiver is properly synchronized, then demodulation 

by the “conjugate” code, in which each PN-sequence element 
is replaced by its conjugate, enables detection of the trans- 
nlitted data sequence. If, however, the decoder is matched 
to a different PN-sequence, then the output signal is additive 
low-intensity interference. 

The spectral encoder can be implemented in one of two 
ways. In the Afst, the inverse Fourier transform shown in 
Fig. l(a) can be imnplemented by SAW chirp filters [4]. The 
second method is to precompute p l ( t ) ,  and then synthesize a 
filter with this impulse response. The transmitted signal is then 
the output of this filter in response to a series of short pulses 
modulated by the data at the rate 1/T. These short pulses 
are “spreas‘ in time by the spectral encoder (hence the name 
“spread-time CDMA”). In either case, the resulting transmitted 
waveform is a noiselike signal which requires more accurate 
processing than standard DS-SS signals. 

An example of an ST pulse obtained from a transmit- 
ted spectrum which is constant over the frequency interval 
[-1/2, 1/21 is shown in Fig. 2. The random sequence used 
to modulate the spectrum has length 256. Only 128 se- 
quence elements are chosen randomly, however, since this 
random sequence and its conjugate modulate the positive and 
negative halves of the spectrum, respectively. This guaran- 
tees that the pulse is real-valued. The sequence elements 
I l k ,  k = 0 ,  - - ,  127, were randomly chosen from the set 
(1, e3“/’, -1, e -Jn / ’ } .  It is easily verified that this pulse is 
given by 

where M = 256, and the chip width f c  = 1/M. Note that p ( t )  
is of infinite duration, and therefore must be truncated in time. 

The spectral decoder can also be implemented in two 
ways. The first consists of Fourier transformation of the time- 
windowed received signal followed by correlation with the 
PN-sequence matched to the transmitter code. In this case, 
processing after the Fourier transformation proceeds as in the 
DS-SS case. Alternatively; Fig. 3(a) shows a spectral decoder 
consisting of a matched filter (correlator), which can, again, be 
implemented as a SAW device. Synchronization may be more 
difficult in the former case; however, correlation with the PN- 
sequence shown in Fig. l(b) is simpler than correlation with 
the transmitted pulse as shown in Fig. 3(a). 
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Fig. 2. Example of a spread-time pulse for an ideal bandlimited spectrum 
(&f = 256).  
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Fig. 3. (a) Generation of desired signal. (b) Generation of interference. 

111. SYSTEM MODELS 
It is of interest to evaluate the performance of ST- and SS- 

CDMA assuming a channel transfer function H ( f ) ,  which is 
the same between all pairs of K users, and a rate R bit& for 
each user. In both cases, the transmitted signal for user i is 
assumed to be of the form (1). 

Here, we focus on two performance parameters: signal- 
to-interference plus noise ratio (SIR), and the fraction of 
transmitted power which is passed by the channel. The fol- 
lowing analysis assumes that for SS 

nM-1 

Pi(t) = - kt,) 
k=O 

where {a:)} is a sequence of independent random variables 
for user i that take on values fl with equal probability, nM is 
the code length, t, is the chip duration, g ( t )  is the chip shape, 
and n is a positive integer which will be explained shortly. 
For the time being, we assume that n = 1 so that the code 
length is M .  Similarly, for ST, we assume that 

n A f I 2 - 1  

~ 

b=-  n M / 2  windowed by some function w(t). For example, in analogy 
c (3) 

assuming M is even, where &(f) is the Fourier transform 
of the ST pulse q;( t ) ,  lS(f)I2 is the desired transmitted 
spectrum, fc is the chip width in the frequency domain, {lit)} 
is a pseudorandom complex sequence, r7(t)  is the rectangle 
function 

1 O L t < r  
0 ekewhere r7( t )  = (4) 

and the remaining quantities are defined as before. Throughout 
this paper a "l' denotes the Fourier transform of the associated 
time function. Note that for conventional DS-SS, g ( t )  = 

Choosing the 6;)s in (3) to be eJek for particular values 
of I9k% i.e., 81, E { h / 2 ,  0, T } ,  implies that the transmitted 
spectrum is given by lS ( f ) I2  for If1 < n M f c / 2 .  Whereas, 
in SS, the magnitude of the transmitted pulse is selected a 
priori, in ST the transmitted spectrum is selected a priori. 
Both transmitted pulses specified by (2 )  and (3) can be scaled 
in order to achieve a desired transmitted power; however, this 
scaling does not affect the results that follow. 

To ensure that the transmitted time waveform associated 
with qi  (f) in (3) is real, the corresponding PN-sequence must 
satisfy tit) = ii!t-l, where "*" denotes complex conjugate. 
Although the length of the PN-sequence assigned to each 
user is therefore one half the length of a PN-sequence in the 
analogous SS system, this is offset by the additional flexibility 
of being able to choose complex &;Is. In what follows, we 

rt, (t>. 

assume that iif) is chosen from one of four uniformly spaced 
points on the unit circle, so that there is an isomorphic mapping 
between the SS and ST sequences { a t ) }  and {?it)}. That is, 

and n k  takes on values 0, 1, 2, or 3 with equal probability. 
Consequently, 

&b) - - e J ( e + n k K / 2 ) ,  where I9 is a constant angle in [0 ,  ~ / 2 ) ,  

and 

assuming the a t ' s  are independent. The following results are 
therefore independent of 19. 

Suppose now that H ( f )  = 1 for I f /  < W. and is zero 
elsewhere. Typically, t, in the S S  system is selected so that 
W = l / tc = M / t ,  where 1/T is the symbol rate. The output 
of the channel in response to the input p z ( t ) ,  given by (2) ,  
is therefore 

M - I  

y ( t )  = a p ( h  * T t , ) ( t  - 
k=O 

where * denotes convolution, and h(t)  = 2W sinc (2Wt) is 
the channel impulse response where sinc t = sin ( ~ t ) / ( ~ t ) .  

Similarly, assuming that for ST the transmitted spectrum is 
matched to the ideal bandlimited channel, i.e., S ( f )  = I H ( f ) l ,  
choosing f, = 2/T implies that W = M f , / 2  = M / T .  Since 
the pulse q;( t )  that results from taking the inverse Fourier 
transform of tZ(f) in (3) is of infinite duration, it must be 
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with the ideal bandlimited channel H ( f ) ,  we can choose the 
ideal time-limited function w(t) = 1 for It1 < T/2. and 
w(t) = 0 elsewhere. The intensity of the ST pulse q z ( t )  varies 
as f, sinc ( f c t )  (33. Consequently, most (approximately 90%) 
of the energy in the pulse q i ( t )  is contained in the interval 
[-T/2, T/21. Of course, chip shapes in the frequency domain 
other than rf,(f) can be selected that confine more of the 
pulse energy to within this interval. If w( t )  is nonzero over 
an interval of length greater than T ,  then the transmitted 
pulses will overlap, although it will be. shown that the received 
samples at the output of the matched filter do not necessarily 
contain intersymbol interference (ISI). The Fourier transform 
of the output of the channel H ( f )  in response to the ST input 
w(t)qa(t) is 

) 
nM/2-1 

? X f )  = fUf)S(f) Q ( 6  * .f,)(f - k f c )  (7) ( k=-nhl/Z 

where G(f)  = T sinc fT  is the Fourier transform of the ideal 
time-limited window w(t). 

Whereas in SS, the transmitted pulse is typically confined 
to a symbol interval, which causes the transmitted spectrum to 
extend beyond the channel bandwidth, in ST, the transmitted 
spectrum can be confined to the channel bandwidth, but the 
resulting time waveform must extend beyond the symbol 
interval. In SS, the transmitted spectrum that falls outside the 
passband of the channel is attenuated, whereas, in ST, the 
portion of the time waveform that extends beyond the symbol 
interval causes IS1 if the duration of the matched filter impulse 
response is truncated do the symbol interval. 

It is also of interest to consider the effect of increasing 
the code length nM for both ST and SS while keeping the 
transmitted spectrum the same. In what follows, we assume 
that M is fixed, Le., M = WT for the ideal bandlimited 
channel, and n is a positive integer. In ST-CDMA, this implies 
that f, must decrease in order to satisfy n M f c  = 2 W  for the 
ideal bandlimited channel. Consequently, the pulse q1 (t) must 
expand accordingly, although its energy remains the same. 
That is, if the symbol interval T remains constant, then f, < 
2/T implies that the pulses y t ( t -kT) .  k = 0. 1, 2 , .  . . ,overlap 
significantly with each other. For example, if n. = 2 ,  then 
f, = 2 W / ( 2 M )  = l/T, and most (90%) of the energy in 
each pulse will be confined to the time interval [-T, TI, which 
implies that each pulse will significantly overlap with the two 
adjacent pulses on either side. 

In conventional DS-SS, the transmitted spectrum depends 
primarily on t,. Fixing M and t, and increasing n implies that 
the length of the transmitted pulse must increase. If nMt ,  > 
T ,  then the pulses p z ( t  - kT),  k = 0, 1, 2 , .  . . .overlap. We 
will show that the SIR for SS and ST-CDMA is approxi- 
mately unaffected by the type of pulse overlap just described. 
However, by increasing n M ,  it may be possible to improve 
the correlation properties of the codes assigned to each user. 

The following analysis therefore assumes that the number 
of chips (in time for SS, and in frequency for ST) per symbol 
is n,M, where M = WT for the ideal bandlimited channel, 
and n represents the number of symbol intervals a transmitted 
pulse occupies. The pulses for SS and ST are then given by 

( 2 )  and (3), respectively, and the transmitted signal is given by 
(l), where p L  is replaced by q2 for ST. The chip width for ST 
is, therefore, .fc = 2W/(nM) = 2 / (nT) ;  however, the chip 
width for SS, t ,  = 1/W, is independent of n. For both SS and 
ST, if 11 = 1, then there is little overlap between transmitted 
pulses, and if 7~ = 2, then each pulse overlaps primarily with 
the two adjacent pulses on either side. 

IV. COMPUTATION OF SIR 

We first compute the SIR for SS. Referring to Fig. 3(a), the 
average received signal energy is E ( s i )  where Sk is the output 
of the matched filter pTH* at time kT. so that 

where the filter with transfer function &(f) has impulse 
response p z ( t )  given by ( 2 ) .  If the chip shape g ( t )  has duration 
t,, then p ; ( t )  has duration nT. Assuming that the transmitted 
symbols b t )  in ( I )  are iid and are kl, then it is shown in the 
Appendix that 

hi-1 

E ( & )  = nZM M + - d ( 0 )  + 2n2M , U 2 ( 1 t C )  ( 1=1 
M-1 

+ 2 (nM - i ) w 2 ( z t c )  (9) 
1=1 

where 
30 

w ( t )  = IH(f)g(f)12eJ2"ft  df (10) L 
and g ( f )  is the Fourier Transform of the SS chip shape. The 
expression (9) also assumes that v ( t )  = 0 for t > T ,  which is 
reasonable for M >> 1. That is, w ( t )  is the impulse response 
corrsponding to the transfer function I H ( f ) g ( f ) I 2 ,  which is 
assumed to have bandwidth on the order of l/t,. The duration 
of ~ ( t )  should, therefore, be on the order of t ,  = T / M .  We 
can rewrite (9) as 

(1 1) 

where PO = n 2 M [ M  + (n - 1)/n]v2(0) is the desired signal, 
and PI, which is equal to the sum of the remaining terms on 
the right-hand side of (9), is ISI. In the usual case where 
g ( t )  = rt , ( t ) ,  and the channel is ideal bandlimited with 
bandwidth 2W. ~ ( t )  is an even function, and has duration 
approximately 2tc,  so that PI z 0. This remains true when 
n > 1 provided that the chip length is t, . That is, even though 
the duration of the transmitted pulses may be greater than T ,  
they are compressed to length T by the matched filter. 

Referring to Fig. 3(b), the interference from a single inter- 
ferer, i.e., user 1, at time kT is I k ,  and is the sampled output 
of the matched filter @:H* in response to the data signal from 
user I filtered by the channel. That is, 

E ( & )  = Po + Pr 
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where $i(f) is the Fourier transform of p i ( t ) .  and T is a 
random phase offset in [0, T) .  It is shown in the appendix that 

J--03 

where the expectation is with respect to the transmitted data 
sequence, PN-sequences, and phase offset r ,  and r is assumed 
to be uniformly distributed in (0 ,  T).  For simplicity, in (12), 
we have omitted the phase of user Is carrier frequency relative 
to that of the desired signal. However, assuming that this phase 
is a uniformly distributed random variable, then subsequent 
averaging will decrease the mean-squared interference in (1 3) 
by a factor of one half. 

Finally, we assume that white noise n(t)  with spectral 
density nNo/2 is added to the output of the channel in the 
SS system. The additional factor of n ensures that the ratio 
of transmitted signal power to additive noise power remains 
the same when the transmitted pulse width is increased beyond 
one symbol interval. Note this additional factor of n should not 
be included in the noise variance for ST, since the transmitted 
pulse energy in ST is independent of r i .  The noise variance at 
the sampled output of the matched filter in this case is therefore 

The SIR is defined as 

SIR = PO )1'2 (15) 
( ( K  - l)E(I;) +PI + (T' 

where PO is the desired signal energy, PI represents ISI, K - 1 
is the number of interferers, so that ( K  - l )E ( I ; )  is the 
interference energy, and cr2 is the term due to additive noise. 
Combining (9)-(15) and the fact that T = Mt,  gives (16) 
shown at the bottom of the page. This expression can be 
simplified by noting that 

M-1 

< 2(n + 1) w2(Zt,)t, M 2(n + 1) 
/=1 

and from Parseval's theorem 
30 

1 ~ w a f ) 1 4  d f  = 2 J m m  d t .  (18) 

Since the most of the energy in w ( t )  is concentrated in 
the interval ( - t c ,  t,), assuming the channel bandwidth is 
approximately 2W, it follows that for large K 

L 

n M ( K  - l)JW IW)i(f)14 df 
--oo 

>> 2(n + l ) M l c m ~ 2 ( t )  dt 

(19) 
d M - 1  

> 2Mt, ( n +  1-  =)t~'(lt,) 
1=1 

and 

To compute the signal energy for ST, we again refer to 
Fig. 3(a), and note that the filter qt should be replaced by G*&, 
where w( t )  is the time window used to truncate the received 
and transmitted pulses. However, to simpify the following 
analysis, we will assume that w( t )  = 1 for all t. That is, the 
transmitted pulse and the matched filter impulse response can 
be of infinite duration. For the case where S ( f )  = H(f) = 1 
for I f \  < W, nearly all of the pulse energy is contained within 
the time interval [-mT/2, mT/2] where m is relatively small, 
(Le., 2 or 3). The effect of truncating the transmitted pulse 
and matched filter reponse to this interval is therefore minor. 
In what follows, we also assume that the transmitted spectrum 
1 S( f ) I ' is zero outside of the frequency band [ - W, W ] .  When 
H ( f )  is not strictly bandlimited, W can be chosen arbitrarily 
large. 

The signal at the output of the matched filter at time t = 0, 
assuming no additive noise and interference from other users, 
is 

so = J_il,lH(f)it(f)12 Cbk)e-JZrrfmT ) df (21) 
( m  

where Q Z ( f )  is given by (3). It is shown in the Appendix that 

W 

E(& = u'(0) + u2(,mT) 

where 

Assuming that the desired transmitted spectrum has bandwidth 
2W, then u(t) is a short pulse with nearly all of its energy 
confined to within a small multiple of 1 /W = T/M.  Conse- 
quently, in this case, u(mT) = 0, for m # 0, and the second 
term on the right-hand side of (22),  which represents ISI, is 
zero. 

To compute the interference for ST, we consider Fig. 3(b) 
where the input to the filter q l ( f ) e 3 2 r r f T  is the impulse train 
Ck b t ) 6 (  t - kT), where { b:)} is the sequence of data symbols 
from user 1 .  Assuming that the output of the matched filter on 
the right is sampled at time t = 0, we have that 

nT(A4 + 1 - ;)w"o)  SIR^ = 
n M ( K  - l)J_",IH(f)g(f)l4 df + + 2TCFzy1(n + 1 - &)vz(Zt,) 
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where T is the phase offset of the interferer, and is assumed 
to be in [0, T) .  Substituting for rji and & from (3), squaring, 

where +tc (f)  is the Fourier Transform of rt, (t). We also have 
that 

and averaging over the data and PN-sequences gives W 

n M / 2 - 1  S _ w ~ ~ ( ~ ) i ( f ) 1 4  df = sinc4 ( t c f )  df. (31) 
-I/& 

' Substituting into the expression for SIR (20), and assuming 

. e-32xf (mT+T) df . 1' (25) 

If it is assumed that H ( f )  = 1 for I f 1  < W and H ( f )  = 0 
elsewhere, and that S(f) = H ( f ) ,  then (25) becomes 

E(1: I T )  = n M f : c  sinc' [fc(kT + T ) ] .  (26) 

Each term in the sum is the mean-squared interference due to 
an interfering pulse shifted by kT + T .  Note that E(1:1~ = 
0) = Mf," when n = 1, and combining this with (15) and (22) 
gives SIR = 4W2/[(K-1)Mf:] = M / ( K - l )  in the absence 
of additive noise, which is the same as the SIR for baseband 
chip-synchronous DS-SS with rectangular chips. Because the 
ST pulse envelope is time varying, the SIR is a function of 7. 

For the ideal bandlimited transmitted spectrum, this intensity 
is given by f," sinc' (fct). Assuming that fc  = 2/T, then 
E(1: I T )  is minimized by taking T = -T/2, in which case 
E(1: I T- = -T/2) = 0. If T is uniformly distributed in 
[0, T), then it is shown in the Appendix that averaging over 
T in (25) gives 

k 

As in the SS case, averaging over a uniformly distributed 
carrier phase decreases E(1:) by a factor of one half. 

The noise variance at the output of the matched filter is 

and combining (15), (22), (27), and (28) gives 

(29) 
M T ~ ~  (0) 

SIR' = 
M(K - 1)J''lH(f)S(f)14 df + -* 

Note that this expression for SIR is the same as (20) when 
n, = 1, if the Fourier transform of the chip shape in (20), g(f), 
is equal to S ( f )  in (29). The ST-CDMA scheme described 
here therefore gives the same SIR performance as an SS- 
CDMA scheme in which the chips in the SS waveform are 
shaped to have the specified ST spectrum. Note that the SIR 
for SS, given by (20), depends weakly on n, and the SIR for 
ST is independent of n. Although the SIR does not change 
significantly when a transmitted pulse of duration greater than 
a symbol interval is used, the longer PN-sequences associated 
with these longer pulses have improved correlation properties. 

As an example, suppose that H ( f )  = 1 for I f 1  < W .  For 
DS-SS with rectangular chips, g ( t )  = rt,(t) and t ,  = 1/W, 
so that 

W 
t:/'/'' sinc' ( t c f )  df (30) 

- 1 h  

n = 1 gives 

where t€1 = J_f ,  sinc2 ( t )  dt M 0.902, IC' = (I:, sinc4 (t) dt) 
/&I z 0.736, and 7 = 2T/No is the ratio of transmitted pulse 
energy to background noise level. As the noise level No + 0, 
(32) becomes 

t€lWT (33) 
KlM -  SIR^ = 

K 2 ( K  - 1) - tQ(K - 1)' 

As the bandwidth W 4 00, with t ,  and M held constant, 
then the preceding discussion shows that the corresponding 
SIR without background noise is given by 

M (s-", SiIlC2 ( t )  dt)  - 3~  SIR^ = - 
( K  - l)J-", sinc4 ( t )  dt 2(K - 1) 

3WT - - 
2(K - 1) (34) 

which is the standard result for baseband asynchronous DS-SS 

Consider now ST where S(f) = 1 for I f 1  < W and 
N0/2 = 0. Then from (23), u(0) = ZW, and from (29) 

(35) 2WMT - YWT  SIR^ = 
M ( K  - 1) + NoT/2 - 1 + y ( K  - 1)/2 

where y = (2W)/(N0/2) is the ratio of transmitted 
pulse energy to background noise level. From (20), this 
is also the SIR for an SS system in which the chip 
shape g ( t )  = (2/tc)sinc(2t/t,). Letting NO ---$ 0 gives 
SIR2 = (2WT)/(K - 1). Comparing this with the expression 
(33), we find that the SIR for ST in the absence of background 
noise is a factor of d m ,  or 2.1 dB, greater than the SIR 
for SS with rectangular chips. As W --+ 00 with t ,  and M 
fixed, this improvement drops to 2/&, or 1.25 dB. 

v. OFTIMLZATION OF TRANSMITTED SPECTRUM 

Since the SIR is a functional of the transmitted spectrum, 
we can find the transmitted spectrum that maximizes the SIR 
subject to an average transmitted power constraint. That is, 
for ST. we wish to 

max SIR 
S(f 1 

subject to 
W 

J_wls(f)12 df = 1. (36) 

ZAveraging over a uniformly distributed random carrier phase for the 
interferer increases this expression by a factor of two. 
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A standard variational argument can be used to show that the 
optimal spectrum is given by 

where 

B(f) = tf :  IH(f)I2 > c2) (40) 

a = (NoT)/[4M(K - l)], and p = meas B(f). Note that c1 

is simply a normalization constant that enforces the constraint 
(36). 

When the additive channel noise is small, i.e., if No/:! + 0, 
then c2 -+ 0 and 

for all f such that IH(f)12 >> c2. If IH(f ) l  > 0 for all 
f ,  c;, - 0  implies that the support of S ( f )  increases without 
bound. As the channel noise level increases, c2 also increases. 
If it is true that 1 >> l / a  as No/2 -+ 03, then 

c2 -+ sup IH(f)12. 
f 

This will be illustrated by an example; however, in general, it 
is easily verified that this is true if IH(f)I  is continuous and 
differentiable at its maximum value(s). If this maximum occurs 
at a finite set of frequencies, then the optimal transmitted 
spectrum becomes narrowly centered around the fs for which 
IH(f) l  is maximized. 

As an example, suppose that IH(f)I = 1 for I f 1  < W. In 
this case 

2a W 
c2 = ~ < 1  

1 + 2Wa 

so that from (40), B(f) = {f: I f 1  < W}. In this case, 
c1 = ( 1  + 2Wa)/2W, and it is easily verified that 

Substituting into the expression for SIR gives SIR2 = 

Assume now that the channel impulse response is h( t )  = 
e P t ,  or IH(f)I2 = 1/(1+4.rr2f2). We have that lH( f ) I2  > c2 

when 

2WT/[(K - 1 )  + NoT/(2M)] .  

so that from (40), 1-1 = measB(f) = 2 f o .  From (38) and (39) 
it follows that 

[2a/ ( 3 ~ ) ] ~ / ~  
1 + [20 / (3~) ]2 /3 '  

c;, = (45) 

I .6 

I .4 

I .2 

lS(f)P 

I .o 

0.8 

0.6 

0 A 

0.2 

0.0 

I a = O d B  t a = - l J d B  
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Fig. 4. 
the channel impulse response is e - ' .  

Optimized transmitted spectra for different values of a,  assuming 

As No/2  increases from zero to infinity, c2 therefore in- 
creases from zero to supf IH(f )I2  = 1. A plot of optimized 
transmitted spectra for different values of a is shown in Fig. 4. 

VI. SPECTRAL EFFICIENCY 
We now examine the spectral efficiency of SS and ST. 

Here, we define the spectral efficiency to be the fraction of 
transmitted power which is present at the receiver, i.e., 

where P is the energy in the transmitted pulse. Note that 
0 5 q 5 1. In the case of SS, if the input pulse (2) is time- 
limited to [0, TI, then P = s,' Ip , ( t ) I2dt  = 1, so that the 
spectral efficiency is simply q = [E( t~ i ) ] ' /~ .  and E ( s i )  is 
given by (9). For this case of the ideal bandlimited channel 
with W = l / t ,  and rectangular chips, the spectral efficiency is 
approximately q x J:~ sinc2 t d t  0.90. That is, on average, 
approximately 10% of the input power is lost in the channel 
in this case. Of course, spectral efficiency can be improved 
by chip shaping. 

For ST the spectral efficiency is given by 

where G(f)  is the Fourier transform of the time window 
m(t) .  The ideal bandlimited channel therefore truncates the 
"spillover" outside the band [-W, W ]  caused by the time 
window w(t ) .  If w ( t )  has width equal to the symbol interval 
T = 2 / f c ,  then G(f)  = (2/fc) sinc ( 2 f / f c ) .  Since the width 
of G(f)  is on the order of f c  = 2W/(nM) ,  for large M the 
energy loss due to the channel is negligible. Consequently, as 
a first-order approximation, q M 1. 

Assuming an ideal bandlimited channel, we therefore con- 
clude that the spectral efficiency for ST is only slightly 
(10%) better than that for conventional DS-SS with rectangular 
chips. For other types of channels, however, ST may offer 

" .. . 
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a significant advantage when compared to SS. For example, 
suppose that H (  f )  consists of two ideal bandpass channels 
each having bandwidth W with respective support on dis- 
connected frequency bands. Since H ( f )  is even, the total 
available channel bandwidth is 4W. The transmitted spectrum 
for ST can be matched to the channel, which results in 
essentially the same performance as for the case of an ideal 
bandlimited channel with bandwidth 4W. That is, SIR = 
[4WT/(K - 1)]'/' and rl M 1. In contrast, a conventional SS 
system would most likely treat this channel as two independent 
channels each having bandwidth 2W. An additional channel 
assignment scheme is then needed to assign users to one of 
the two bandpass channels. 

VII. CONCLUSIONS 
An alternative CDMA technique to spread spectrum, called 

spread-time, has been presented for multiple access com- 
munications over bandlimited channels. Assuming an ideal 
bandlimited channel between each pair of users, our results 
show that the signal to interference ratio for ST (and for 
SS with optimal chip shapes) is 2.1 dB greater than that 
of conventional asynchronous DS-SS with rectangular chips, 
while the spectral efficiency for ST is slightly better than that 
of conventional SS. These results assume that for ST, both the 
transmitted pulse shape and matched filter impulse response 
are not truncated in time. Because ST, in principle, offers 
complete flexibility in choosing the transmitted spectrum, this 
technique may be attractive in applications where the channel 
transfer function deviates considerably from a "boxcar" shape. 
An example which may be of practical interest is when the 
channel has support on disconnected frequency bands. 

In this paper, we have not considered important issues 
related to the implementation of an ST system. For example, 
questions such as how sensitive the system is to inaccuracies 
in the matched filter, the accuracy with which the transmitted 
signal must be generated, synchronization, and the effects of 
system nonlinearities have not been addressed. Other interest- 
ing problems related to channel impairments, such as fading, 
are also left for future investigation. 
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APPENDIX 

roo roo 

n M - 1  n M - 1  nM-1 n M - 1  

x f c  c 

e-j2?rf'm'T df df'. 

Averaging over the data and rearranging terms gives 

Letting w ( t )  denote the inverse Fourier transform of 
IH( f )G( f ) I2 ,  i.e., (lo), then (A3) can be rewritten as 

E($;) = [nMw(0)]2 + n2M2 E v 2 ( m T )  
m#O 

n M - 1  n M - 1  

+ E w2[(k - ~ ) t ,  - m ~ ]  
m k=O l = O  

1#k  

m k=O 1=0 
l # k  

. w[(k  - Z)t, + mT]. 

If the bandwidth of I H ( f ) g ( f ) I 2  is approximately l / t c ,  then 
we can assume that v ( t )  = 0 for t 2 M t ,  since M B 1. 
The right-most triple sum in (A4) then contains only terms 

Here we the average energy and the corresponding to m 0,  and (A4) can be rewritten as 
interference energy E(1:) for both SS and ST. We start with 
the computations-for S S :  Squaring the expression for 30 given n M - 1  n M - 1  

by (8), and averaging over the PN-sequence using the fact that E($;) = [nMv(0)12 + E v2[(k  - Z)t, - mT] 
m k=O 1 = O  

(1 for IC = 1, k' = I' I f k  

l o  otherwise 

n M - 1  nM-1 

where the fact that v ( t )  is an even function has been used. 
Counting terms in the summations gives (9). 
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\ 

To compute E(1,“) for SS, we first square the expression 
for 10, (12), and average over the data, which gives . rfc[f + (k + 1) f,]) 

(A 10) 

Squaring, averaging over the data and PN-sequences using (3, 
and rearranging the terms gives (25). Averaging over the phase ) ’. (A61 offset T ,  letting .i = -(mT -I- T ) ,  and using the definition (23) 
gives 

. @ Z r f [ t c ( k - l ) - m T - T ]  df 

Letting ? = t,(k - 1 )  - mT - T ,  we then have that 
1 rT 

We now compute E ( $ )  and E(1:) for ST. Substituting (3) 
into (81, and noting that 6:’ = 6 ! t P l ,  and that a t ) a t ) *  = 1, 
gives 

1 i M  / z  - 1 

Squaring, averaging over the data, and rearranging terms gives 

/ 7 i M / 2 - 1  ,.LV 

. T f c  ( f  - k f c ) P f m T  df ) 649) 

where the fact that r f c  (-f - kf,) = r fC  [f + (IC + l)fc] has 
been used. Applying the definition of r f <  ( f )  then gives (22). 
Notice that in this case it is not necessary to average over the 
elements of the PN-sequence. 

Substituting (3) into the expression (24) for 1 0  gives 
w 
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