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ON THE SPREAD OF CONTiNUOUS-TIME LINEAR SYSTEMS*

AVNER FRIEDMANt AND MICHAEL L. HONIGt

Abstract. Given the impulse response h of a linear time invariant system, this paper considers signals
y=h * u with inputs u subject to lu(t)l~l and asks, for a given r>O and y(to), what is the set of all the
possible values (the "spread") of y(to+ r). This set is characterized, its properties are studied, and it is
computed for some functions h.
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1. Basic definitions and results. Let h(t) be a prescribed continuous function
defined for 0 ~ t < 00 and belonging to L 1(0,00); we refer to it as an impulse response.
Let u( t) be any measurable function for 0 ~ t < 00 satisfying Iu (t) I~ 1; we refer to it
as an input. The function yet), defined

yet) = L h(t-s)u(s) ds,

is called the output or the signal.
Given a EIR, to~ 0, T> 0, we would like to estimate the range of the output yet)

at time t = to+ T,given that y (to) = a. More quantitatively, we wish to bound the numbers

0:+( a, T, to) = sup {y( to+ T); given y( to)= a},

0:-( a, T, to) = inf {y( to+ T); given y( to) = a}.u

Introduce the class of control functions

(1.1)
K.T",={UEI:.eo(-OO,T),-I~U(S)~I, reo h(-S)U(S)ds=a}

and the functional

( 1.2)
JT ( U) = [eo h (T - s) u(s) ds,

and define

(1.3) U+(T,a)= sup JT(u),
u E KT,a

(1.4) U-(T, a)= inf JT(uL.
u E KT,a
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758 A. FRIEDMAN AND M. L. HONIG

DEFINITION 1.1. The function a(7,a)=a+(7,a)-a-(7,a)is called the spread
of the linear system.

The motivation comes from the following theorem.
THEOREM 1.1. For any a E IR, 7> 0,

(1.5) sup 0:+(7, a, to) = a+( 7, a),
'0"'0

(1.6) inf 0:-( 7, a, to) = a-( 7, a),
'0"'0

and, consequently,

(1.7) sup 0:+(7, a, to) - inf 0:-( 7, a, to) = a( 7, a).
~",o ~",o

Proof The condition y(to) = a means that

(1.8) f
'O

0 h(to- s)u(s) ds = a.

Writing

f
'O+T

y(to+7)= 0 h(to+7-S)U(S) ds

and substituting to-s=-s', u(to+s')=v(s'), we get

y(to+ 7) = f,o h( 7- s')v(s') ds'.
The same substitution applied to (1.8) gives

f,o h( -s')v(s') ds' = a.

Hence

0:+(7, a, to)=sup [f T h(7-S')V(s') ds'; v satisfies Iv(s')I::;=; 1,
-10

fo h(-s')v(s') ds'= a
}

.
-10

Extending v(s') to s'<-to by zero, we see that a+(7, a, to) is suplT(v) when v IS
restricted to a subset say KT"".lo' of KT",,; hence

0:+(7, a, to)~a+(7, a).

As to~ CX)the subsets KT"".loincrease and every u E KT"" restricted to a bounded interval

is a function in U '0>0KT"""o restricted to the same interval; this implies the equality in
(1.5). The proof of (1.6) is similar.

THEOREM 1.2. For any a E IR, 7> 0 there exist admissible functions u;"", u~'" in

KT"" such that

(1.9 ) IT(u;',,,) = sup IT(u) = a+(T,a),
UE KT.a

(1.10) IT(u-;,,,) = inf IT(u) = a-( 7, a).
, uEKT.a
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Indeed, taking a maximizing sequence uj>we can extract a subsequence that is
weakly convergent in Ltoc to a function Uo. It is easy to check that Uois a maximizer
for In i.e., Uois the asserted u;"". The proof of (1.10) is similar.

In this paper we study the structure of u~'" and this enables us to compute the
spread of some linear systems of interest. In § 2 we solve a general maximization
problem, which is then used in § 3 to analyze the structure of u~",. In § 4 we establish
various properties of a( T,a), and in § 5 we compute a( T,a) for some examples.
Finally, in § 6 we show that all the results can be extended to the case where y(to),
y( to+ TI)' . . . , y( to + TN -I) are prescribed and the range of y( to + TN) is sought; here

0<TI<T2<" '<TN'

Motivation for studying the function aX( T, a) comes from the following problem,

posed in [1] and [2]. For any d > 0, T> 0 and impulse response h('), denote by
Nmax(T, d) the maximum number of inputs Uj(s) such that the corresponding outputs

yj (t) satisfy

max IYi(t) - Yj(t)1 ~ d Vi oj=j.O<t",T

Since the mapping U~ y, in L coCO,T), maps the set of inputs u into a compact subset,
the number Nmax(T, d) is finite. We define

(1.11) MCT(d) = lim log Nmax(T, d\its/sec,
T->co T

and would like to obtain bounds on the MCT(d) for any h('). Set

T* = inf {T Iu( T,0) = d}.

Work in progress [3] indicates that

(1.12)
1

MCnd) ~*
T

for any h( .) that satisfies

f Ih (- s) Ids ~ f Ih (- s )Ids
{he r-s)/ h( -s)"" I} {he r-s)/ h(-s)", 1}

for all T~ T*; the arguments used depend on results derived in this paper. Results
obtained here (in § 6) for the N constraint problem, in which N output values are
specified, can be used to tighten the upper bound given by (1.12) (see [3]).

The problem of computing spread for a discrete-time linear system with impulse
response hi>i = 0, 1,2, . . . , is considered in [2]. This computation is equivalent to
solving a linear program with bounded variables and one equality constraint. Here we
show how the spread can be computed for a continuous-time linear system. Two
examples of special interest are presented in which the spread can be computed by
finding a solution to a transcendental equation.

2. A general optimization problem. Let f(s), g(s) be continuous functions in
ro < s ~ 0 that belong to L 1(-ro, 0), and assume that

(2.1) f oj=0 a.e.,

meas {y = iL} = 0
for any iLER(2.2)
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Let

K = fu(s) measurable for -00< s <0, lu(s)121, frof(S)U(S) ds = a}
for some fixed a E IR, and

leu) = fro g(s)u(s) ds.

As in the proof of Theorem 1.2, we can show that there exists a function UoE K such
that

(2.3) f(uo) = max f(u).
UEK

THEOREM 2.1. For any solution UoE K of (2.3) there exists a number A EIR such
that'almost everywhere

(2.4) ( )
_

{
sgnf(s)

Uo S -
-sgnf(s)

Note that (2.4) is equivalent to

ifg(s)/f(s) > A,
ifg(s)/f(s) <A.

uo(s) = sgn [g(s) - Af(s)].

Proof We begin by proving that Uo= 1 almost everywhere. If the assertion is not
true then the set Go={Iuol < I} has positive measure. Denote by G the subset of Go
consisting of all points t of Go-density equal to 1, such that also f( t) ¥-O. Then
meas G = measGo>o.

Take tl, t2 in G(tl ¥- t2) and let Gi be a subset of G contained in the Do-neighbor-
hood of ti, such thatsupoi lul < 1, meas Gi ¥-0 and 2Do<Itl- tJ By decreasing one of
these sets we arrive at the situation where

Gin G2=0, meas GI = meas G2 = D> O.

For any real numbers AI, A2, if E is positive and small enough then the function

(2.5)
E E

U = uo+ Al "8Xo, + A2"8 Xoz

satisfies 111121.Furthermore, if

(2.6) Al f f(S)dS+A2 f f(s)ds=O,
01 Oz

then erof(s)u(s) ds = a, so that u E K. Note that (2.6) is equivalent to

(2.7) Ad(tl)+Ad(t2)=UI(Do)

for some UI(Do) such that uI(80)"""0 if Do"""O.
From the maximality of Uoit follows that (2.6), or (2.7), implies f( 11)2 f(uo), that

J

IS,

(2.8) Al
f

g(S)dS+A2
f

g(S)dS20,
01 O2

1.e.,

(2.9) AIg( tl) + A2g( (2) 2 U2(Do)

for s~rne U2( Do) such that U2( Do)"""0 if 80""" O.
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If we choose

(210) A = -A f(t2) + (71(80)
. I 2 f(tl) f(tl)

so that (2.7) is satisfied, (2.9) must then hold and, upon letting 80--;>0,we get

(2.11) A2[ g();~~t2)+g(t2)]~0.

Since A2 is arbitrary, it follows that the expression in brackets must vanish. Thus

g(tl) = g(t2)
f(tl) f(t2)

for all tl, t2 in G. Since G has a positive measure, this is a contradiction to (2.2).
Denote by D the set of all points t such that f(t) ¥-0 and t is a Lebesgue point

of Uo.Thus almost all t in (-00,0) belong to D. Take any tl, t2 in D with

(2.12) g(tl) > g(tJ.
f(tl) f(t2)

We will prove that almost everywhere

(2.13) UO(t2)= sgnf(t2) implies UO(tI) = sgnf(t1),

(2.14) UO(tl)= -sgnf(tl) implies UO(t2)= -sgnf(t2).

These two statements clearly imply assertion (2.4).
To prove (2.13) suppose the assertion is not true. Then the set G of the pair (tl, t2)

for which (2.13) is not true has positive measure. Choose tl, t2 at which G has
density 1. Since tl and t2 are Lebesgue points of the function uo( t) and Iuol= 1 almost
everywhere, for any 80> 0 we can find sets GI, G2such that meas Gj ¥-0, Gj is contained
in the 80-neighborhood of tj, and

uo(t)=sgnf(t) for all tEG2,

uo(t) = -sgnf(t) for all t E GI.

By choosing 280< 1 tl - t21 and by suitably decreasing one of the sets Gj, we get
GI nG2 = cp, meas GI = meas G2. We again form the function (2.5). If

(2.15) A2 sgnf(t2) < 0, Al sgnf(tl) > 0,

then 1171~ 1 if E is sufficiently small.
If we can further choose AI, A2 such that (2.6) (or (2.7)) holds, then (2.8) (or

(2.9)) must be satisfied. Condition (2.7) is satisfied by the choice (2.10) of AI, and if
A2 sgnf(t2) < 0, then clearly also Al sgnf(tl) > 0 provided 80 is sufficiently small. We
conclude, after letting 80--;>0, that (2.11) must hold provided A2 sgnf(t2) < O.Dividing
(2.11) by AJ(t2), we arrive at the inequality

- g(t1) + g(t2) 2: 0
f(tl) f(t2) - ,

which is a contradiction to (2.12). This completes the proof of (2.13); the proof of
(2.14) is similar.

From Theorem 2.1 we immediately get Corollary 2.2.
COROLLARY2.2. The constant A in Theorem 2.1 is uniquely determined by

(2.16) f If(s)1 ds - f If(s)1 ds = a;
{g(s)lf(s»A} {g(s)/f(s)<A}



762 A. FRIEDMAN AND M. L. HONIG

consequently the maximizer Uo is also uniquely determined. As a decreases from

eooIf(s)1 ds to -eoo If(s)1 ds, A= A(a) increases monotonically from

inf {g(s)/f(s)} to sup {g(s)lf(s)}.
s<o s<o

3. The structure of u~,a' Choose h (t) as in § 1, i.e.,

(3.1) hE L1(0, 00) n Co[O, 00)

and assume further that

h(t)~O a.e.,

{

h(t+r)

}meas O<t<oo; h(t) =A =0 \fT>O, AEIR.

Takingf( t) = h(- t), g( t) = h(r - t) in Theorem 2.1 and Corollary 2.2,we get Theorem
3.1.

THEOREM3.1. There exists a unique solution u;'a of (1.9) given by

(3.2)

(3.3)

(3.4)

[

sgn h(-s)

u;a(s) =

-sgnh(-s)

h(r-s»A+,
if h( -s)

h(r-s)<A+
if h(-s)

where A+ is determined by

I Ih(-S)ldS- 1
Jh(-s)lds=a.

{h( T-S)/ h( -s»A +} {h( (-s)/ h( -s)<A +}

qearly also u;'a(S) = sgn h( r- s) if 0 < s < r.
We now consider a special case.
THEOREM 3.2. If hEL1(0,oo), h>O, d2(1ogh)/dt2>O, then there is a unique

solution of (1.9) given by

(3.5)

(3.6)
u;'a(s) = {~1

if -00 < s < JL,

ifJL<s<O

and u;'a(s) = 1 if 0 < s < r, where JLis determined by

flL h(-S)ds- fo h(-s)ds=a.
-00 IL

(3.7)

Proof By assumption, \
h'(s). . I

. . .

h (s) IS stnct y mcreasmg;

hence

h'( r+ s) h'(s)>-.
h(r+s) h(s)

This means that

d h(r+s)

ds h(s) > 0,
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and thus

h(r-s). . d
..-

)
IS stnctly ecreasmg in s.

h(-s

Now apply Theorem 3.1 to complete the proof.
Remark 3.1. If log h is convex (but not satisfying d2(log h)/ dt2> 0), then we can

approximate it by a smooth function hn with d 2(log hn)/ dt2> O. Applying Theorem
3.2 to the corresponding maximizers u~:'o"we deduce that there is a maximizer uT,a
(for h) having the form (3.6), (3.7). There may be other maximizers; for instance, if
h(t) = e-t then every u EKT,a is a maximizer. (Note that (3.3) does not hold for
h(t) = e-t.)

THEOREM3.3. If hE L '(0,00), h > 0, and d2(log h)/ dt2< 0, then there is a unique
solution of (1.9) given by

(3.8)
{

-I

u~a(s) = 1
if -00 < s < ;1,
if;1<s<O

and u~a(s) = 1 if 0 < s < r, where ;1 is determined by

_fii h(-S)ds+ f~ h(-s)ds=a.
-00 (.L

(3.9)

Note that dp,fda>O, d;1/da<O, where p,=p,(a) and ;1=;1(a) are defined by
(3.7) and (3.9), respectively.

4. Properties of the spread. Theorem 3.1 implies that

(4.1)

u+(r,a)= r + [sgnh(-s)]h(r-s)ds
J{h(T-S)/h(-S»A }

- f + [Sgnh(-S)]h(r-S)ds+ fTlh(T-S)ldS
{h(T-S)/h(-s)<A} 0

= r h(r - s) Ih ( - s )Ids
J{h(T-S)/h(-S»A+} h(-s)

i h(r-s) f
T

- + ( - )
Ih ( - s ) I ds + Ih ( r - s ) Ids

{h(T-S)/h(-s)<A} h s 0

/

where A+ is determined by (3.5). Similarly, we can show that

(4.2)
f h(r-s)

u - ( r, a) = - Ih (- s)Ids
{h(T-S)/h(-s»A-} h(-s)

+ f - Ih (- s )Ids - fT Ih(r - s )Ids
{h(T-S)/h(-s)<A} 0

where A- is determined by

- f Ih(-s)1 ds+ f Ih(-s)1 ds=a.
{h(T-S)/h(~s»A -} {h(T-S)/h(-s)<A-}

As a decreases from S~ Ih(s)1 ds to -J~ Ih(s)1 ds, A-(a) decreases monotonically
from sups<dh( r - s)/ h(-s)} to infs<o{h(t - s)/ h(-s)}. Also, A-(0) = A+(0).

(4.3)
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Combining (4.1) and (4.2) gives the spread

1 1 +
- 0'( T, a) = - [a (T, a) - 0'- (T, a)]
2 2

= r h(T-S) Ih(-s)1 ds
J{h(T-S)/h(-s»AMJ h( -s)

1
h(T-S)

I

T

- Ih(-s)1 ds+ Ih(T-S)1 ds
{h(T-S)/h(-s)<A",Jh( -s) °

where AM=max(A-,A+) and Am=min(A-,A+).
THEOREM4.1. There holds

(4.4 )

(4.5)
aO'~( T, a)

aa
A~.

Proof. Since A+(a) is a monotonically decreasing function of a, we can write

(4.6) r Ih(-s)ldS- f Ih(-s)lds=a-l1aJ{he T-S)/ h( -s» A+ +~A} {h( T-S)/ h (-s)<A ++~AJ

where .:lA, .:la are positive. Subtracting (4.6) from (4.1) gives

(4.7) 2 1 Ih(-s)lds=l1a.+ +
{A <h(T-S)/h(-s)<A +~A}

From (4.1), (4.6), and (4.7),

+ +

1
h(T-S)

1 Ia (T, a) - a (T, a - 11a ) = 2 h (- s) ds
{A+<h(T-.,)/II(-s)<A++~A} h(-s)

= [A + + e(I1A )].:la

where e(I1A)--i>0 as I1A--i>O. Letting l1a --i>0 gives aO'+/aa=A+. A similar argument
shows that aO'-/aa =A-.

THEOREM4.2. 0) 0'+(T,a) is concave in a, 0'-( T, a) is convex in a, and thus 0'(T, a)
is concave in a:

(ii) o'~(T, a) = -O'~( T, -a) and therefore 0'(T,a) = 0'(T, -a),
(iii) aO'(T, a)/ aa ~ 0 if a> O.
Proof. Assertion (i) follows immediately from Theorem 4.1 and the fact that

aA+/ aa (aA- / aa) is negative (positive) for all a. Assertion (ii) is obvious from the
definition of o'~. Finally, since 0'(T,a) is concave in a (by (i)) and aO'(T,a)/ aa = 0 at
a = 0 (by Oi», (iii) follows.

We now specialize to the case where either log h is convex, so that

O'+(T,a)= fl'- h(T-S)ds- fo h(T-S)ds+ I T h(s')ds'
-co I'- °

where J-t is determined by (3.7), or log h is concave so that

(4.9) O'+(T,a)=- fii h(T-S) ds+
f~ h(T-S) ds+f

T h(s') ds'
-co I'- 0

where Ii is determined by (3.9).
THEOREM4.3. If h' < 0 and log h is convex or concave, then

aO'~( T, a)
->0.
aT

(4.8)

(4.10)
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Proof If log h is convex, then from (4.8) we get

a(}"+(T, a)

aT f
l-' d

f
o d

- - h (T - s) ds + - h (T - s) ds + h ( T)
-co ds I-'ds

= 2h( T) -2h( T- f.L)> O.

Similarly, if log h is concave then

a (}"+( T, a)

aT f
ii d

f
o d-

d h (T - s) ds - - h ( T - s) ds + h (T)
-co s ii ds

= 2h(T - (i) > O.

Finally, the second inequality in (4.10) follows from the first inequality and Theorem
4.2(ii) .

5. Examples. If h(t) = exp {-k(t)}, where k(t) ~ 00, k convex (k concave), then
log h is concave (convex). For h(t) = (t + a)b where a> 0, b > 0, log h is convex.

We now consider two functions h(t) of special interest.
THEOREM5.1. Let

(5.1)
N

h(t) = I a; e-l3,t
;=1

(a; > 0, f3;> 0).

Then d210g hi dt2 > O.
Proof As in the proof of Theorem 3.2, the assertion is equivalent to showing that

d h(T-S)--
ds h(-s)

h( -s )'l..a;f3; e-I3;(T-S) - h (T - s )'l..a;f3; el3;'

h 2( - s)

is negative for any T> O. But the numerator is equal to

I I a ;f3;aj( e-I3;!T-S)+l3jS - e -l3j(T-S)+I3;')

= I I a;ajf3; eS(f3;+I3)(e-I3;T - e -l3jT)

= ~I I a;aj es(I3;+l3j)[f3;( e-f3;T - e-l3jT) + f3j( e-l3jT - e-I3;T)]

= ~I I a;aj es(f3;+f3j) (f3; - f3j)( e -f3;T - e -f3jT)

and each term in the last sum is negative if f3;# {3j.
For the function (5.1), the f.Ldetermined by (3.7) is given by

N a.
I --!.(2 el3;1-'-1) = a.
;=1 f3;

The next example is

(5.2) h(t) = e-l3t cos (r)t (f3 > 0, (r» 0).

Since

h(T-S)

h(-s)
e-f3T( cos (r)T+ sin (r)Ttan (r)s),
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we can check that the optimal solution u;'a, which for simplicity we will denote by
uo, satisfies

[

sgn h( -s)

uo(s) =

-sgn h(-s)

. (2n+I)7T
If r - n7T< OJS< ,2

. (2n+3)7T
If < OJS< r - n7T2

if n = 0, 1,2, . . . , and

( ) _
{

-Sgnh(-s) if-7T/2<OJs<min(r+7T,0),
Uo s -

sgn h( -s) if min (r+ 7T, 0) < OJS ~ 0

where r E[-3 7T/2, -7T/2 J is to be selected such that

(5.3)
rco h (- s ) uo(s) ds = a.

Recalling (5.2) we can check that

{

-I
uo(S)= 1

if r - 2n7T< OJS < r - (2n -I) 7T,

if r - (2n -1)7T < OJS < r - 2(n -1)7T

for n = 1, 2, . . . , and

{

-I
uo(s)= 1

if r < c.us< min (r + 7T,0),

if min (r + 7T,0) < OJS< O.

Setting r' = min (r + 7T,0) and using the formula

fb h( -s) ds = -Re
{
~ [e-(JHi"')b - e-</Hi",)QJ

}Q ~+~ '

we can compute

f

o co

[ [

(Y-(2n-01T)/'"

[

(Y-2(n-l)1T)/'"

]
h(-s)uo(s) ds= I - h(-s) ds+ h(-s) ds

-co n=1 (y-2n1T)/'" (,,-(2n-I)1T)/'"

f
Y'/'"

f
o

- h( -s) ds+ h( -s) ds.
Y/'" y'/",

After somewhat lengthy calculations we get the expression

{

a' 1 + -{37r/'" a .
}

(5.4) Re t-' - ~ e({3+i"')y/'" e + t-' - IOJ [1- 2 e({3+i"')y'/'" + e({3+i"')y/"' J
~2+OJ2 l-e-{37r/'" ~2+OJ2 ,

or

~ 2 e{3y/", 2 {3y'/",

~2 + OJ2 + (~2 + c.u2)(1- e-{3'n-j",)(~ cos r + OJsin r) - ~:+ c.u2(~ cos r' + c.usin r').
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Hence (5.3) determines y by the following formulas:

2 e(3Ylw
-(3'1Tlw({3 cos y + w sin y) = a (W2+ (32)+ {3 if -17 < y < 0,l-e

(5.5) [
2 (3'1lw

]
.

)e +2e(3(Y+'1T)lw ({3cosy+wsmy
1 -(37Tlw-e

= a(w2+ (32)- (3 if -317/2 < y < -17.

Since

[00 h( T - S)uo(s) ds = Re {[oo e-«(3+iW)(T-S)uo(s)dS}

= Re{ e-«(3+iw)Troo ho( -s)uo(s) dS}

and the last integral is equal to the expression in braces in (5.4), we find that

2 e(3(YIW)-T)

(]"+(T, a) = (2 2)( -(37Tlw)[{3 cos (y - WT) + W sin (y - WT)](3 +W l-e
-~

I
T

- ~ 2({3coswT-wsinwT)+ Ih(s)lds if-l7<y<O,
(3 +w °

2 e(3«(Y+'1T)/W-T)

(]"+(T,a) = (2 2)( -(37Tlw)[{3 cos (y-WT)+W sin (Y-WT)](3+w l-e

e-'(3T f
T 3

+ 2 2({3coswT-wsinwT)+ Ih(s)lds if-~<Y<-l7.
(3+w o 2

6. Several constraints. The results of the previous sections can be extended to the
case of several constraints. In fact it all hinges on generalizing Theorem 2.1 to the

problem

~W; roo g(s)u(s) ds

where Kcx is the set of all measurable functions u (s) satisfying

(6.1 )

(6.2) -1~u(s)~1 for -oo<s~O,

roo};(S)U(S) ds= ai (i= 1, 2,"', N).
(6.3)

Here g and j; are given functions in Ll( -00,0) n CO(-00,0] and ai are given real
numbers.

THEOREM 6.1. Assume thatfl ¥- 0 almost everywhere and that, for any real numbers

/Ll> . . . , /LN,

measure{g = it /LJ} = o.

Then there exist sequences Urn,Ai,rn,ai,rn with Urn~ Uo weakly in Lioc, al,rn = a I, ai,rn~ ai

for 2 ~ i ~ N, where Uo is a maximizer of (6.1), and

(6.4) Urn(s)=sgn[g(s)-I Ai,rn};(S)].
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(6.5)
foo};(S)Um(S) ds = O:;,m

(i = 1,2, . . . , N).

Thus to evaluate (6.1) we need to analyze the Urnfrom (6.4), (6.5) and then compute
eoo gum, noting that

f:oo g(s)um(s) ds~ foo g(s)uo(s) ds=~~: foo g(s)u(s) ds.

Proof For any small TJ> 0 introduce the "penalized" functional

f
o 1 N

[f
O

]

2

(6.6) JT)(U) = -00 g(s)u(s) ds-:;; ;~2 -oo};(s)u(s) ds-o:;

and consider the problem

(6.7) maximize JT)(u) for UE K

where K consists of all functions U satisfying

-1 ~ U(s) ~ 1, foo It (s) ds = 0:t .

Proceeding as in the proof of Theorem 2.1, we deduce that if liil ~ 1, where ii is defined
by (2.5) with Uo= uTI'then (2.6) implies

2 N

(f
O

)
.

Atg(tt) + A2g(t2) -:;;;~2 -00 /;uT)ds - 0:; (A,/;(tt) + A2/;(t2)) ~ uz(80)

where uTIis a solution of (6.7) and U2(80) ~ 0 if 80~ O.Taking 80~ 0, we get the inequality

At [ g(tt) - I A;,T)};(tt)] + A2 [g(t2) - I A;,T)};(t2)] ~ 0

for some scalars A;.T)'We can now proceed as in § 2 to deduce that meas {luT)1< 1}= 0;
furthermore,

(6.8)
UT)(s)=sgn[ g(S)-;~, Ai,T)};(S)].

We note that

JT)(UT»)?;JT)(u) 'V U E K;

from this inequality it follows that

1 N

[f
O

]

2

:;; i~2 -oo};(S)UT)(S) ds-o:; ~ C, C independent of TJ.

Hence, as TJ~ 0,

O:i.T)= foo/;(S)UT)(S)dS~O:i (2~i~N).

It is also easy to verify that for any convergent subsequence uT)m(weakly in L:oc),
the limit Uois a solution to problem (6.1). Indeed

(6.10) JT)(uT»)~ foo gUT)ds ~ ~~~ [00 gu ds = [00 gUT) ds"

where K"," is defined as K", but with

(6.9)

0:2 = 0:2,T)'. . . , O:N= O:N,T)'
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Since (Xj.,.,--';>(Xj,if we take TJto vary in a subsequence of TJm such that u,.,--';>u weakly
in Lioe, then eco gu,.,--,;>eco gu and u E K. (i.e., u satisfies (6.2), (6.3)). Denoting by UI
any solution of (6.1)-(6.3), we then have

[co gu ds ~ [co gUI ds;

also, by maximality of u,., (see (6.7)),

[co gUI ds = J,.,(UI) ~ J,.,(u,.,).

Using these relations in (6.10) and noting that

[co gu,., ds --';>[00 guo ds,

we conclude that

[co guo ds = [co gUI ds = ~~ [co gu ds.

Thus Uo is a solution to (6.1)-(6.3). Recalling (6.8), (6.9) completes the proof of
Theorem 6.1.

Remark 6.1. The Ai.msatisfy

f };(s)dS- f };(s)ds=ai
{g>~Aj",,1i} {g<~Aj.",Ji}

From these equations we should be able to determine the Aj.m, at least in some relatively
simple examples, and show that Aj.m--';>Aj (A; finite) as m --';>00; this would imply that

Uo= sgn [g(S) - i Aj;(S)].

[oofi(S)uo(S)dS=(Xj forl~j~N.

(1 ~ i~ N).

Remark 6.2. Theorem 2.1 can actually also be proved using the penalized
functional

Remark 6.3.

f
o 1

(f
O

)
2

fo (U-U)2
gu ds - - fu ds - (X - ~ ds.

-00 TJ -co -00 1+ s

Consider the problem

max Jr(u)
UEK(6.11)

where K is the set of all inputs u that satisfy

(6.12) f~ooh(tj-S)U(S)dS=(Xj' j=1,...,N

and where Jr(u) is defined by (1.2) and 0= tl < t2<. . . < tN-I < tN == r.
Set

(6.13a) (J"+(r; tl> (XI>' . . , tN, (XN) = max Jr(u),UEK

(6.13b) (J"-(r; tl, (Xi>"', tN, (XN) =min Jr(u).UEK
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Then there exists a solution to (6.11) if and only if

10'113 IX' Ih(s)1ds,
(6.14)

a--(tj; tl> 0'1>. . . , tj-I, l¥j-I) 3 O'j3 a-+(tj; tl, a), . . . , tj-h O'j-I),

1<j 3 N

If we assume h(s) =0 for s < 0, the conclusion of Remark 6.1 becomes

(6.15)

(

sgn [h( T- s) - t Ajh(tj -s) l
u(s)=

sgn [h( T-S) - jt Ajh(tj-s) l

tj < S < tj+l,

s < tl

where AI> . . . , AN satisfy (6.12).
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