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Convergence Models for Lattice Joint Process 
Estimators and Least Squares  Algorithms 

Abstract-A simple model  characterizing the convergence properties 
of an  adaptive  digital  lattice  filter using gradient  algorithms  has  been 
reported [ 11. This  model  is extended to the least mean square (LMS) 
lattice joint process  estimator [SI, and to the least  squares (LS) lattice 
and “fast” Kalman algorithms [9] -[16]. The  models  in  each case are 
compared  with  computer  simulation. The single-stage LMS lattice 
analysis presented in [l ] is also applied to  the LS lattice.  Results 
indicate that  for stationary  inputs, the LMS lattice  and LS algorithms 
exhibit similar behavior. 

I. 
I. INTRODUCTION 

N [ 1 ] the convergence properties of a continuously adaptive 
lattice filter using least mean square (LMS) gradient algo- 

rithms were  discussed. In particular, by making approxima- 
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tions,  a simple model for convergence was described along 
with a first order estimate of coefficient variance and its affect 
upon  the filter’s mean squared output signal. In this paper 
these results are extended to the lattice  joint process estimator 
[5], [7] and to the least squares (LS) lattice algorithm [12] - 
[ 161 . A simple convergence model similar to  that presented in 
[l] is  also  derived for  the  “fast” Kalman algorithm [9] . In 
each case the accuracy of the convergence model is tested by 
computer simulation. 

In Section I1 we extend  the model for convergence presented 
in [l ] to two (similar)  versions of  the LMS lattice  joint process 
estimator. In Section I11 the single-stage  analysis presented in 
[l] is extended to the least squares lattice filter. A com- 
parison of these results with those given for  the LMS lattice 
emphasizes the similarities between the  two algorithms. In 
Section IV-A a convergence model is derived for  the LS lattice 
predictor,  and  in Section IV-B .for  the LS lattice  joint process 
estimator. In Section V  a convergence model for  the least 
squares transversal filter based upon  the “fast” Kalman algo- 
rithm is derived. 
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11. LMS LATTICE JOINT PROCESS ESTIMATOR 
CONVERGENCE MODEL 

We begin by extending the convergence model for the LMS 
lattice  predictor to the  two versions of  the LMS lattice  joint 
process estimator shown in Fig. 1. In  particular, we are given a 
data sequence {vi} which  is  used to estimate some other 
sequence {xi}. Although numerous LMS methods exist for 
adapting the PARCOR coefficients in  the  lattice  structure 
[4] - [ 6 ] ,  the following lattice algorithm is used here, 

ef(iIO) =yi, e,(ilO)=yi-l, e,(ilO)=xi 

ef(iln t 1) = ef(iln) - k,, l(i)eb(iln)  (2.la) 

e,(iln+l)=e,(i- l l n ) - k n + l ( i -  l)ef(i-  lln)  (2.lb) 

B,  (i) = (1 - p ) B ,  (i - 1) + e$(iln) (2.2a) 

Cn (i) = (1 - p)C, (i - 1) t ef(iln)eb(iln) (2.2b) 

(2.2c) 

where 0 < n G N  and N is the  filter  order, p is the  adaptation 
step-size, ef(iln) is the nth-stage  forward residual, e,(iln)  is 
the n th-stage backward residual, and k,  (i) is the  nth-stage 
lattice PARCOR coefficient, all at time i. Notice that eb(iln) 
isdefmedasafunctionofyi-l,yi-,,~--,yi-,-l,i.e., 

where the biln are the backward prediction coefficients. 
The two  structures shown in Fig. 1 are equivalent;  however, 

the  “tap” coefficients which multiply the backward residuals 
of the  lattice  may be adapted  in  two ways. In  particular, the 

algorithm  corresponding to Fig. 1 (a)  is 

where 

f T ( W  = [ f l l N ( i ) ,  f i l N ( i ) , .  * . > fNlN(Ol7 (2-6) 

eT(ilN) [e,(irO), eb(ill), . * , eb(ilN - l)] , (2.7) 

f j l N ( i )  is the j t h  “tap”  coefficient,  and e, @IN) is the Nth- 
order  filter  prediction  error, all at time i. The  algorithm 
corresponding to Fig. l(b) is 

e,(iIn + 1) = e,(iIn) - kpjl(i)eb(iIn) (2.8) 

C p ) ( i )  = (1 - p)Cp) (i - 1) t e, (iin)e,(iln)  (2.9a) 

(2.9b) 

where in this case k?)(i) denotes the  nth  “tap” weight at 
time i. The tap weights are denoted  differently  in each  case in 
order to emphasize the similarity between  the first algorithm 
(2.5) and the LMS transversal algorithm,  and  the similarity 
between  the second  algorithm (2.9) and  a  lattice gradient 
algorithm.  Although the second method is more  popular [7] 
and is analogous to  the least squares lattice  joint process 
estimation algorithm,  convergence  models for  both methods 
are described. 
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(2.1 1 )  

Similarly, minimizing E [  e;(iln)] with respect to k p )  gives (2.17) 

(2.12) 

If the PARCOR coefficients are fixed at  their  optimal values, 
from  the principle of orthogonality, 4, o p t  = k f > p t .  If coef- 
ficients kj' or kfx), 1 < j  < n, are adapting, e, and eb will be 
nonstationary, causing k?Apt andf,, o p t  to vary with time. 

'To model the  lattice  joint process estimator using (2.1), 
(2.4), and (2.5), we rewrite (2.5) as 

[(i t 1 I N )  = f ( i ~ ~ )  + p(i + 1 ) e b ( i ~ ~ ) [ x j  - ~ ~ T ( ~ I N ) ~ ( ~ I N ) I  

where R y ( j ) = E [ y i y i + j ] ,  R x Y ( j > = E [ x i y i -  j ] ,  and the 
bjlm - 1 < j < m - 1 ,  1 < rn < N ,  are computed from the 
convergence model for  the  lattice predictor. The value o f  

is computed by taking expectations of both sides of (2.2a), 
using the value of E[ei(iln)] calculated from the  lattice  pre- 
dictor model. The output mean-squared error is computed as 
follows: 

(2.14) (2.18) 

Taking expectations  of both sides of (2.13) assuming eb(ilN) where R,(j) =E[xixi+j] and E[f ( i lN)]  ,E[eb(ilN)rbT(ilN)I, 
and f(ilN) are approximately independent gives and E[xieb(iiN)] are  given, respectively, by (2.15), (2.16) 

~ [ f ( i  + I I N ) ]  = { I -  E[p(i  t ~ ) ~ E [ E ~ ( ~ I N ) ~ ~ T ( ~ I N ) ] }  and (2.17). Combining (2.15) through (2.18) with  the model 
in [ l ]  therefore completes the convergence model for  the 

~ [ f ( i l ~ ) ]  t E [ F ( ~  + ~ ) ] E [ x ~ ~ , ( ~ I N ) ] .  (2.15) LMS lattice  joint process estimator shown in  Fig. l(a). Since 

Assuming that  the  lattice PARCOR coefficients are following 
trajectories close to their mean value trajectories, we can use 
the convergence model for  the  lattice predictor [l]  to com- 
pute  the second-order statistics of eb(ilN). Specifically, 

~ [ q , ( i I ~ ) e b r ( i I ~ ) ]  I m  

= E[eb(il l-  l)e,(ilm - l ) ]  

the same assumptions were made to derive this model as  were 
made to derive the LMS lattice predictor m'odel, the accuracy 
of  the  two models should be similar.  Fig. 2 compares the 
mean value trajectories for the  tap weights fillo(i), j = 4 and 
10,' computed from the model with the mean value trajectories 
obtained by averaging 200 separate simulations of the algo- 
rithm with a  step size /? = 0.01. (For  a more detailed descrip- 
tion of the simulation, see [2]  .) Fig. 3 shows the  output mean 
squared error obtained  from  the  model and by averaging 200 
simulations. As pointed out  in [ 1 ] , as the step-size /3 decreases, 
the accuracy of  the model should improve. Since the value of 
fl used for this example is less than half that used in [ l ]  , the 
model curves shown here appear to be more accurate than 
those shown in [ 1 J . 

To model the LMS lattice  joint process estimator shown in 
Fig. l(b),  note from (2.4) that e,(iln) is a linear combination 
O f X i , Y i - 1 , Y i - 2 ,  * . * ,Yi- n ,  i.e., 
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Fig. 2. Mean  value trajectories of fhz)(i), j equal to 4 and  10,  in a 
lattice  joint process estimator using (2.5) by (curve 1) simulation and 
(curve 2) from  the convergence model. 

Fig. 3. Output MSE of a tenth-order  latticejoint process estimator using 
(2 .5 )  by  (curve 1) simulation and (curve 2) from  the convergence 
model. 

(2.23) 

(b) 

Fig. 4. Mean  value trajectories of kf”)(i), j equal to 4 and  10,  in a 
lattice  joint process estimator using (2.9) by (curve 1) simulation and 
(curve 2) from  the convergence model.  Curve 3 shows the trajectory 
of (i) computed by the model. i, om 

As previously mentioned, E [  eg(iln)] , and hence E[B,(E’)] , 
1 G n < N ,  are available from the lattice  predictor model in 
[ 11 . In  addition, we approximate 

~[e:(iln)l = E{fT(i ln)y , ( ;C,’y , (~)Tf( iIn)}  

w ~ [ f ~ ( i ~ n ) l ~ [ y ~ ~ ) y , ( ~ ) ~ ~ ~ [ ~ ( i ~ n ) ~  

(2.24) 

and 

~ [ e , ( i ~ n ) e ~ ( i ~ n > l  = E I T T ( i i n ) y l ~ ) y ~ ) T T ; ( i ~ n ) l  

~ ~ ; ‘ [ f ~ ( i ~ n ) l ~ [ y ! i C , ? V i ( f ” , ’ T ~ ~ [ s ( i ~ n ) ~ .  

(2.25) 

Combining (2.21), (2.23), (2.24), and (2.25) with the model  in 
[ l ]  therefore  completes  our convergence model  for  the LMS 
lattice  joint process estimator shown in Fig. l(b). Fig. 4 
compares the mean  value trajectories of the coefficients 
kfx)(i),j = 4 and 10, computed  from the model  with  the mean 
value trajectories  obtained by  averaging 200 separate  simula- 
tions of the algorithm  using the same input  statistics which 
were  used to generate  Fig. 2. Also shown is the time-varying 
optimal value of kp)( i ) ,  given by (2.12). Output MSE versus 
time obtained both by  simulation and by the convergence 
model  is virtually identical to  that shown in Fig. 3 and is 
therefore  omitted. 

A comparison of Figs. 2 and 4 suggests that  the speeds  of 
convergence for both algorithms (2.5) and (2.9) are similar. 
Intuitively, t h s  seems  reasonable  since in both cases the lattice 
predictor is attempting to orthogonalize  the set of inputs 
driving the second set of coefficients. If  we therefore assume 
that  the backward error covariance matrix E[~,(ilN)r;(ilN)] 
is diagonal, and that E[x ieb ( i~n) ]  =E[e,(ilN)q,(iIn)] (which 
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is exactly  true if the coefficients are fixed at their optimal 
values), then (2.9) is equivalent to (2.5). Although this is not 
the case when the  lattice  prediction coefficients are adapting, 
the off-diagonal elements of the backward error covariance 
matrix will be converging towards zero, and hence,  the effect of 
cross coupling between the taps in (2.15) should become 
negligible. 

For both algorithms (2.5) and (2.9) the coefficient estimates 
shown in Figs. 2 and 4 contain significant bias. This is not 
surprising in view of  the coefficient bias present in the  lattice 
predictor. This bias is caused by filter coefficient variance, 
which alters the statistics driving other filter coefficients, and 
by correlations between filter coefficients and the  input data. 
In  the case of  the second algorithm, (2.9), the estimate of k g )  
is unaffected by filter coefficients k f " )  and kj for i  > n.  This 
is in contrast to the  fust algorithm, (2.5), in which f j lN( i )  
depends upon all other filter coefficients. We would therefore 
suspect that  the statistics which determine the values offjlN(i), 
1 < j < N ,  in (2.5) are more severely altered than when using 
(2.9). This would account  for  the  fact  that  the coefficient 
estimates in Fig. 2  contain more bias than  those in Fig. 4. This 
in  turn implies that  the asymptotic output MSE produced by 
the first algorithm is somewhat larger than  that produced by 
the second. We have empirically observed, however, that  this 
difference is  slight. 

A  fust-order  analytic estimate of  tap coefficient variance and 
output MSE using  (2.5) or (2.9) can be obtained using the 
techniques in [l] . In particular, denoting Ea[Xj] as the 
asymptotic mean value of the sequence of random variables 
Xi, it is easily shown from (2.8) that 

E,[ez(iln t 111 =~,[e;(i~n)l - (k@Ef - var ,kp)) 

* E,[eE(iln)] (2.26) 

where var , k p ) ( i )  =E,[ kp) '( i)] - {E,[ kp)( i )]}2.  Evalua- 
tion of var ,k?), 1 < n < N ,  can be accomplished in  the 
same manner as the evaluation of var ,k, in [ l]  . Assuming 
E[eb(iln - l)eb(i t mln - I)] = E[e,(iln - I)eb(i t mln - 
l)] = 0, m f 0, gives 

Replacing k p )  and kg)opf by f n l N  and f n I N , o p f ,  respectively, 
gives the analogous results when using  (2.5),  assuming that  the 
lattice predictor asymptoticidy eliminates cross coupling 
between the tap weights. In general, this assumption is not 
strictly  true due to correlation effects and hence, small differ- 
ences in Coefficient variance and output MSE as produced by 
(2.5) and (2.9)  will be observed. 

111. LS LATTICE  SINGLE-STAGE CONVERGENCE 
ANALYSIS 

The least squares lattice algorithm [12]-[16] adapts the 
PARCOR coefficients in  a  lattice  structure so as to minimize 
the (exponentially weighted) sum of squares of  output residuals 
ef(iln) and eb(iln). It thus takes direct account  of  the nonsta- 
tionarity of the  input (although the model presented here 
assumes a  stationary  input).  The algorithm is  given  as follows: 

Rf(010) =Rb(OIO) = 6 > 0. 

At each iteration i, 

ef(ilO)=yi, eb(ilO) =yi- l ,  y(il0) = 1 

Rf(i10) = WRf(i - 110) t y i "  

ef(iIn + 1) = ef(iln> - /cp,!l(i)eb(iIn) (3.la) 

eb(iln + 1) = eb(i - lln) - ki<),(i - l)ef(i - 1 In) (3.lb) 

(3.2a) 

(3.2b) 

(3.3) 

(3.5a) 

(3.5 b) 

where r(iln) has been interpreted as an  optimal weighting 
factor [13] , kp,!,(i) E xn + l(i)/Rb(iln) ("backward"  PAR- 
COR coefficient), kiql(i) = k, + ,(i)/Rf(iIn) ("forward" 
PARCOR coefficient), and in practice the  update  for R,  and 
Rf is given either by (3.2) or (3.5). The exponential weighting 
factor w is analogous to (1 - 0) where 0 was the LMS adapta- 
tion  constant used in 111 . 

The convergence properties of one stage of the adaptive 
lattice are first analyzed assuming the  inputs  to  that stage are 
stationary. Taking expectations  of (3.4)  gives 

To evaluate E[r(iln)] we  use (3.3) to write 

E[r(iln)] =E[y(iln - l)] - 
E [  e; (iln - I)] 
E[R,(iln - I)] ' (3.7) 

By assumption the previous stages  have converged, and hence, 
E[R,(iln - l)] =f?m[Rb(ih - l)] . Taking asymptotic expec- 
tations of (3.5b), 

E,[R,(iln - l)] =- 1  E[ei(iln - I)] 
1 - w E [ y  (iln - l)] ' 

or 

E[eg(iln - I)] 
EIRb(iln - l)] 

= (1 - w)E[y(iln - l)] . 

Substituting (3.8) into (3.7) gives 

E[r(iln)] = wE[y(iln - I)]. (3 * 9) 

Using the initial condition Y(il0) = 1, (3.9) can be rewritten as 

E[r(iln)] = w". (3.10) 
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Substituting into (3.6) gives 

E[& + l(i)] = wE[k, + l(i - l)] + w-"E[ef(iln)e,(iln)] 

= wi {kn(0)  - ---E[ef(i~n)eb(i~n)] 
W-" 

1 - w  

+ -E[ef(iln)eb(iln)] 
W-" 

1 - w  

Similarly, 

E[R,(iln)] = wE[R,(i - lln)] + w-"E[ef(iln)] 

t -E[eg(iln)]. 
W-" 

1 - w  

If we assume 

(3.11) 

(3.12) 

as in [ l ]  , we can compute  the time ~ $ 1  it takes E [ k t j  I(i)] 
to converge to kib)(0) + g(E,[k,(i)] - kib)(0)) where 0 < 
g <  1: 

Assuming E[eg(iln)] = E[ej(iln)] , the same formula applies 
to k;<ll(i). The difference between (3.13) and the analogous 
formula for  the LMS lattice derived in [ l ]  is the added factor 
wn in brackets. In general w is slightly less than  unity so that 
~ f ' )  will approximately equal the analogous LMS "time con- 
stant." This is not surprising since the fundamental difference 
between the least squares lattice  predictor and the LMS lattice 
predictor given  by (2.1) and  (2.2) is the added least-squares 
"likelihood variable" y. If we assume y(iln) is constant as is 
approximately the case if the previous  stages  have converged, 
both algorithms are basically the same (see [3]  for  a more 
detailed comparison of LS and LMS lattice algorithms). 

Single-stage output MSE is now approximated assuming 
both inputs are stationary. Our interest is in the  asymptotic 
values of E[ej(iln + l)] , the signal in the  lattice  at time i, 
and E[eF(iln + l)] , which denotes the causal mean squared 
prediction error. In particular, ef(iln) uses a regression 
coefficient based upon  the  data y i ,  y i - l ,  * . * , yo. As the 
exponential weighting factor decreases, the more recent 
values of e;(iln + 1) are weighted more heavily, and hence 
E,[ej(iln + l)] decreases. For example, as w + 0, 

and from (3.la), E,[ej(iln + l)] -+ 0. In  contrast,  e>(iln + 1) 
uses  regression coefficients calculated at time i - 1, and hence, 
is the causal least squares prediction error obtained by estimat- 
ing the value of yi  given yi- 1, y i - 2 ,  . . e ,yo.  As w decreases, 
the second-order statistics used to predict yi are effectively 

estimated from fewer samples, and hence,  E,[er(iln + l)] 
increases. It can  be shown  that [2] 

ef(iln) 
ej(iln) = - 

Y 
(3.14) 

so that 

To approximate E,[ej(iln + l ) ] ,  we take asymptotic ex- 
pected values of (3.5a) to get 

Similarly, 

1 
E,[R,(iln)] - E[eg(iln)]. 

w y 1 -  w) 

We now use (3.2b) to write 

(3.16a) 

(3.16b) 

Substituting (3.16) into  (3.17) and assuming E[ej(iln)] = 
Elef(iW1, 

. E[ej(iln)]. (3.18) 

- Squaring (3.4) and takmg asymptotic expectations assuming 
k, + l(i) is uncorrelated with 

ef(iln)e,(iln) 
y (iin) 

gives 

Substituting 

and 

E,[y2(iln)] = W2" 
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gives Substituting (3.24) and (3.23) into (3.22) gives 

(3.19) 

Substituting (3.19) into (3.18) and againassumirigB[eg(iln)] = 
E[ej(iln)] gives 

If we further assume ef (iln) and eb(iln) to be jointly Gaussian, 
then  the  fourth-order statistics in (3.20) can be evaluated as 
fOUOWS, 

2w 
14-w 

E,[ej(iln + l)] %-(w - k;+ l,opt)Ew[ej(iln)]. 

(3.21) 

We have found (3.21) to be  reasonably  accurate for practical 
values of w using a Gaussian filter input sequence. If w is 
very  small  (Le.,  less than 0.Q however, zfl+ l(i),Rf(iln), and 
Rb(iln) start to track  the  immediate variations in ef and eb and 
hence  the  uncorrelated  assumptions  break  down.  Substitution 
of (3.21) into (3.1 5 )  yields the corresponding  expression  for 
the causal output MSE. 

Also of interest is the  asymptotic variance  of the  fdter coef- 
ficients. This is approximated as 

(3.22) 

Squaring (3.5b) and  taking  asymptotic  expectations assuming 
Rb(iln) is uncorrelated  with ei(iln)/r(iln) gives 

Using (3.16b), (3.10), and assuming  as a first approximation 
that eb(iln) is  Gaussian, 

E, [ R  (iln)] = 3 - w  
w 2 y 1  - w)( 1 - w2) 

{E[ef(iln)]}2. (3.23) 

Similarly, assuming ef and,eb are jointly Gaussian in (3.19), 

{E[ej(i ln)]}2.  (3.24) 

(3.25) 

Notice that since w corresponds to (1 - p) in [ 11 , this formula 
is identical to the formula  for coefficient variance using  an 
LMS algorithm in [l] . Also, if the  assumption that Rb(iln) is 
uncorrelated  with eZ(iln)/r(iln) and that Efl+ l(i) is uncor- 
related with ef (iln)eb(iln)/r(iln) is disregarded, the procedure 
outlined in [2] can be used to  calculate a  more  accurate ex- 
pression for var,kh21  analogous to (3.14) in [ l ]  . The corre- 
spondence  between  simulated output' MSE and coefficient 
variance  using  Gaussian inputs  and calculated M S E  and coeffi- 
cient variance  using (3.21), (3.15), and (3.25) has  been  found 
to be fairly close [2] . 

This  completes  the first-order description of single-stage 
convergence time  and output M S E  for  the LS lattice. To 
summarize, for one stage  of the  lattice,  the  mean trajectory of 
the filter coefficients, and  asymptotic variance  of the filter 
coefficients and its affect upon  the  output M S E  have been 
approximated assuming the  inputs to the stage considered are 
stationary. Approximations used are 1) the filter coefficients 
are independent of the  input  data  sequence, which is analogous 
to the  independence  assumption used to  analyze the LMS 
transversal algorithm [19] , 2) the average 

E k ]  

can be replaced  by 

E[XiI 
E[Yil 

for  the cases considered,  and 3) the error sequences eb and ef 
are jointly Gaussian. The  second  assumption is reasonable 
since the random variables Xi and Yi are, for  the cases con- 
sidered, time averages of  second-order  input statistics. The 
variances  of Xi and Yi therefore  become relatively  small  as i 
increases. The  third  assumption was  used to approximate 
fourth-order statistics by second-order statistics. 

A  comparison  of  the  formulas  in this section with their 
counterparts in [ l ]  illustrates the similarities between the LS 
lattice  and LMS lattice. In particular, calculated single-stage 
time constants, coefficient variance, and output M S E  for  both 
the LS and LMS lattice  algorithms are nearly identical. The 
first-order techniques used in this paper  therefore  do not 
distinguish between the LS and LMS lattice algorithms. This 
is because the difference in performance  between  the  two 
algorithms is primarily due to the  added  optimal weighting 
factors r(iln), 1 < n 4 N ,  which tend to remain  constant  for 
stationary Gaussian inputs. The results in this section are 
consistent with  the  comparative LMS-LS simulations in [3] 
which indicate that  the difference in performance  between the 
two  algorithms  with Gaussian  noise inputs is slight. 

1V. MULTISTAGE LS LATTICE CONVERGENCE  MODELS 
Having described the convergence properties of  one stage  of 

the LS lattice, we now  consider the effects which adapting 
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Fig. 5. Mean value trajectories of least  squares  backward PARCOR coefficients by 1) simulation and 2) from the conver- 

gence model. Curve 3 shows the trajectory of k$:ipt(i) computed by the model. 

stages  have on successive  stages. In  this section we therefore 
attempt to extend  the convergence model in [l] for  the LMS 
lattice to the least squares case. 

A. LS Lattice Predictor  Model 
The convergence model for  the LS lattice is  again obtained 

by ignoring the effect of statistical fluctuations of the coeff- 
cients kLb)(i) and k$f)(i) ,  1 < n < N .  Given second-order 
information  about  the  input sequence, we can then replace 
kfJl(i) and kif21(i) by their mean value trajectories and 
obtain a set of simple deterministic iterative equations. In 
particular, noting  that 

ef(iIn) = fT(i~n)yil,  (4. la) 

and 

e,(iIn) =bT(iIn)yiln (4.1 b) 

where 

~ i ~ n = [ ~ i , ~ i - l , ' . . , ~ i - , , . . . , ~ i - ~ - l I ,  (4 4 - 

and F(iln) and X(iln) are defined by (2.19) and (2.22), respec- 
tively, the order recursions (3.1) can be rewritten with kibi1 
and k i q l  replaced by their mean values as follows: 
- 
f( i ln t 1) =F(iIn> - ~ [ k p j ~ ( i ) ] % ( i ~ n )  (4.3a) 

and 
- 
b(iIn + 1) = z - ' X ( i  - 11n) - ~ [ k ~ ~ ~ ( i > l z - ' f ( i  - 11n). 

(4.3b) 

z - 'F(i  - 1 In - 1) represents %(i - 1 In - 1) shifted "down" one 
element, i.e., 

[ .z- lF(i  - 1In)lj = [T(i - ~ I n ) l ~ - ~  for 2 < j < N  t 2 

and [z- 'T(i  - lln)] = 0. 

In  order to compute  E[kLf)(i)] and E [  kib)(i)] , we assume 

and 

Taking expected values of both sides of (3.3), (3.4), (3.5a), 
and (3.5b), using the second approximation discussed at  the 
end of  the last section, the values of E[-, + l(i)], EIRf(iln)] , 
and EIRb(iln)] can be computed  at each iteration i. Second- 
order statistics are approximated as follows: 

~ [ e ~ ( i I n ) e ~ ( i I n ) ]  = fT(iIn)EIYilnF$n] b(iIn), (4.5) 

~[e; ( i in )]  = ~ T ( i I n ) E [ ~ i l n ~ J n ]  r(iIn), (4.6) 

and 

~[ea( i In)]  = bT(iIn)~[y7:l,~$,] F(iIn). (4.7) 
- 

Equations (4.3)-(4.7) constitute  the convergence model for  the 
LS lattice filter. Fig. 5 compares the mean value trajectories 
of ksb)(i), n = 4 and 10, obtained from the model and by 
simulation for the same input statistics used to illustrate the 
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Fig. 6 .  Output MSE of a  least-squares  lattice  predictor by 1) simulation 
and 2) from the convergence model. 

accuracy of  the LMS model in [ l ]  . Also shown are the 
trajectories of 

E[ef(iln)eb(iin)] 
kL%* = E[eg(iln)] ’ 

Fig. 6 compares output MSE as generated by the model and  by 
simulation. The adaptation  constant was set to w = 1 - 0, 
where p was the  adaptation  constant used for  the simulations 
in [ l ]  . The speeds of’convergence  for  both  the LMS and LS 
algorithms are therefore similar. A comparison of Figs. 5 and 
6 with Figs. 3 and 4 in [ l ]  indicates that  the LS model for 
convergence is more accurate than  the LMS model; however, 
additional results in [3] indicate  that by using a somewhat 
different LMS algorithm from  that simulated in [11, the LMS 
curves can be made nearly identical to the LS curves. 

B. LS  Lattice  Joint Process Estimator  Model 
In analogy with the LMS lattice,  the convergence model for 

the LS lattice  predictor is easily extended to the LS lattice 
joint process estimator. In addition to the predictor recursions 
in  Section 111, the LS lattice  joint process estimator El51 uses 
the additional recursions 

(4.1 1) 

where E[ex(iln)eb(iln)] is  given by (2.25). Output MSE as a 
function  of time is  given by (2.24). 

The LS lattice  predictor model in  Section IV-A combined 
with  (4.10)  and (4.11) completes the LS lattice  joint process 
estimator model. Plots of mean coefficient trajectories and 
output MSE are nearly identical to the LMS cases  discussed 
earlier and are therefore  omitted. 

V. “FAST”  KALMAN CONVERGENCE  MODEL 
The “fast” Kalman algorithm [9] is a  computationally 

efficient version of  the Kalman-Godard or least squares trans- 
versal algorithm presented in [8]. Both the  “fast” Kalman 
and least-squares lattice algorithms minimize the (weighted) 
sum of  the squares of  the prediction residuals, and  hence,  in 
this sense  are equivalent. The  lattice  structure, however, 
generates all of the least squares backward and forward resid- 
uals of orders one through N in addition to possessing other 
desirable characteristics [SI. On the  other  hand  the  “fast” 
Kalman algorithm requires somewhat less computation than 
the least squares lattice algorithm [ 161,  [18] . Because the LS 
lattice  and  “fast” Kalman algorithms are equivalent (aside 
from  finite word length effects), if output MSE is the only 
item  of  interest,  the convergence model for  the LS lattice 
algorithm would suffice for  both algorithms. In addition, we 
point out that  the formulas for  asymptotic output MSE given 
in Section 111 should also apply to the LS transversal filter. 

The algorithm is stated as follows: 

where 

As discussed in Section 11, e,(iln)  can  be represented by the 
vector r(iln) defined by (2.19) and ‘(4.8)  can  be rewritten where 

g(i+ l)=&,N(i+ l ) t F N + , ( i t   l ) b ( i +  1) (5.8) 

with kp21(i) replaced by its mean value as (2.21). We then 
approximate 

(4.10) 
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g( i )  is the Kalman gain, i.e.,  The coefficient vectors &(it  1) are then  updated by  using 

g(j> E5 @;/NYi - 1 IN 

and ailN is the sample  covariance matrix, 

(5.1 1) (5.5) to write 

(5.19a) 

i 
w i - ’ ~ j - l i N y j - 1 I N  T t ~ ‘ 6  (5.12) and 

j =  1 - 
1 l = g j - d i ) -  [ A i ) l j - l F l ( i +  1) (5.19b) 

for some  small initial value 6. FmJi) denotes the vector 
formed by  the m th through  the n th  element of the (N  + 1)- 
dimensional “extended Kalman  gain vector”g(i) given  by 

f o r 2 G  j , < N t  1. 
In order to  computeb(i), we use the  fact  that  [2] 

(5.20) 

The residuals e; and e6 are  again the causal prediction errors as  and therefore 
discussed in  Section 111. Note that (5.1) and (5.2) alone con- 
stitute  the least squares transversal algorithm. Equations 
(5.3)-(5.8)  merely  evaluate g ( i )  given by (5.1 1). 

represent the residuals ef(i>_and e&> by their respective in analogy to the  notation used in  Section IV-A.  Since 
prediction coefficient vectorsf(1) andb(i) defined as [zb(i t l)] N +  = 1, it follows that 

[zb(i t I)] 
E[R,(i + 1>1 

- 
gN+ l ( i  1) = (5.21) 

TO obtain  a f‘fast” Kalman  convergence  model, we  again where &(j+ 1) denotes b(j + 1) shifted  “up”  one element 

f T ( i )  = [ l i - f T ( i ) l o ]  (5.14a) 

and 

bT(i) = [oI-bT(i)I1] (5.14b) 

where f(i) and b( i )  are the  forward  and backward tap vectors 
defined  by (5.9). By definition, e i ( i )  andeb(i) are represented 
by the vectors f(i - 1) and b(i - 1). Since we assume the  tap 
weights  are  evolving deterministically, the matrices @ih and 

1 ~ ~ +  can  also be regarded  as deterministic. From  (5.1 1) 
and (5.13)  each  element  of g ( i )  and F(i)  is alinear  combination 
ofyi- 1 ,  y i -  2 ,  . . . , y i  - N, and yi, yi-  1, . . . ,yi - N ,  respectively. 
We therefore represent [g(i)Jj, I < j G N ,  and [g(i t 
1 < j < N t 1, by their respective coefficient vectors 

gF(i) = to, g j l ,  gj2,  ‘ ‘ ‘ 2 gjN, 01 (5.15) 

and 
-T - 
g j ( i ) = [ ~ l , ~ 2 ~ ” . , g j , N + 1 ~ o ] .  (5.16) 

The  vectors g j ( i )  and g(i>, therefore,  approximate  the j t h  
row  of the matrices E[@jil&] and E[@;: l i N + l ] ,  respectively. 
(The last “0” element is added to keep the dimension  of gj 
and% the same as the dimension o f 7  andb.) 

The  mean-forward tap  update can  be  evaluated from (5.2) 
using second-order statistics as follows: 

and 

(5.22) 

(5.23) 

Finally, to update  the vectors gi, 1 < j < N ,  we  use (5.8) to 
write 

gj( i  t 1) =%(i t  1) + [b( i  t l)]jFN+ l ( i  t 1). (5.24) 

Notice that since gj( i  + 1) is a linear combination of y i ,  yi - 1 ,  

. . . , yi-N+ 1 ,  we expect that [gj(i  t 1)]N + = 0. This  can  be 
proven  using  (5.24) and  (5.22). At the (i t 1)st iteration of 
the  algorithm, z-’gj(i t 1) must  be used in (5.17). 

A convergence model  for the least squares transversal filter 
is therefore given by (5.17), (5.18), (5.19), (5.23), and (5.24). 
Fig. 7 shows  mean  value trajectories of the  tap weightsf;.[ &), 
j = 4 and 10, obtained  from  the mGde1 and  by simulation for 
the same input statistics used to illustrate  the accuracy  of the 
LS lattice model  in Section IV-A.  The adaptation  constant w 
was also the same  as that used in  Section IV-A. Output MSE 
generated by  the model and  by simulation  is  nearly identical 
to  the analogous LS lattice curves in Fig. 6  and is therefore not 
shown.  Fig. 7 would  seem to indicate that  the model gives a 
reasonably accurate description  of the convergence process. 

N + l  N 
[ m i =  M i -  O l j +  VI. CONCLUSIONS 

1 = 1  m = l  This paper has discussed the convergence properties of the 

1 [F(i - ~ ) ] ~ g j ~ ( i ) ~ ~ -  - 1 ,  1 < j < N .  LMS and LS lattice  joint process estimators, LS lattice pre- 
dictor,  and  “fast” K h a n  algorithm.  Each  case  involved  an 

(5.17) extension of the techniques  used in [I]   to analyze the LMS 
The mean-covariance update is similarly given by lattice  filter.  The convergence  models for both LMS lattice 

joint process estimation algorithms yield similar  accuracy to 
N + l   N + l  that exhibited  by  the model  presented in [ l ]  . Results for the 

I = 1  m = l  LMS lattice and LS lattice are similar, indicating that  both 
algorithms exhibit similar  performance in  stationary environ- 

E [ R f ( i ) ]  w E [ R f ( i -  l)] + 

* [T(i(i>Il[T(i- 1 ) I m ~ i - m -  (5.18)  ments. The behavior  of LS and LMS lattice algorithms  in  non- 
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Fig.  7.  Mean  value trajectories of tap weights 4 and 10 in a “fast” Kalman tenth-order  predictor  by 1) simulation and 2) 
from  the convergence model. 
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