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Abstract-The  convergence  properties of adaptive  least squares (LS) 
and stochastic  gradient (SG) algorithms are studied  in the context  of  echo 
cancellation of voiceband  data  signals.  The  algorithms  considered are  the 
SG transversal, SG lattice, LS transversal (fast  Kalman), and LS lattice. It 
is  shown that for  the  channel  estimation  problem  considered  here, LS 
algorithms  converge  in  approximately 2N iterations where N is the order 
of the filter. In contrast,  both SG algorithms  display  inferior  convergence 
properties  due  to their  reliance upon  statistical  averages.  Simulations are 
presented to verify  this  result, and indicate  that the fast Kalman algorithm 
frequently  displays numerical instability  which  can be  circumvented by 
using  the lattice  structure.  Finally,  the  equivalence between an LS 
algorithm and a  fast  converging  modified SG algorithm which uses  a 
maximum length  input  data  sequence  is  shown. 

I. INTRODUCTION 

T HE  application of  recursive  least  squares (LS) algorithms 
t o  speech  modeling,  channel  equalization,  and  echo 

cancellation of speech signals has  been  reported  respectively 
in [ 13 - [ 3 ] .  In  all  cases,  improved  performance  (i,e.,  speed of 
convergence)  has  been  observed  when  compared to  more 
conventional  recursive  least  mean  square  or  stochastic  gradient 
(SG) techniques.  Here we examine  the performance of recur- 
sive LS algorithms  in  the  context of echo  cancellation of 
voiceband  data  signals.  This  case  deserves  special  considera- 
tion,  since  the  input  to  the canceller  is  significantly  different 
from  the  corresponding  inputs used in  the  previous  applica- 
tions  mentioned. 

The  echo  cancellation  problem  considered  here is illustrated 
in Fig. 1 .  A  detailed  exposition of this  problem  in  a  practical 
communication  system is given in   [4]  . Echoes  in  the received 
signal  are  caused  by  impedance  mismatches  in  the  hybrid 
couplers  which  interface  the  two-wire  and  four-wire  circuits. 
Focusing on the  far  left receiver,  transmitted  energy  from  the 
far  left  transmitter  can  leak  through  both  the  far  left  hybrid 
("near-end" echo)  and  through  the  hybrid  at  the  far  end  of 
the  four-wire  circuit  ("far-end"  echo).  The  purpose  of  the 
echo  canceller  shown  in  Fig.  l(b) is to  compensate  for  this 
distortion  by  synthesizing  a  repiica  of  the  system  impulse 
response as seen  between  the  far  left  transmitter  and  receiver. 
If this  synthesis is exact,  then  the  inputs  to  the  summer will be 
equal,  and  the  residual  echo  at  point A will be  completely 
nulled. In practice,  however,  the  echo  canceller i s  typically  a 
linear  finite  impulse  response (FIR) filter, so that  some resid- 
ual  echo  at  point A will remain  uncancelled.  Because  the 
impulse  response to  be  synthesized is initially  unknown  and 
may vary  with  time,  the  canceller  must  be  an  adaptive  filter. 

For  purposes of this  study, we  need only concentrate on 
Fig, 2 which  shows  the  data  samples {a i )  as  inputs  to  a  noisy 
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Fig. 1.  (a)  Typical  dialed  connection. (b) Use of data-driven  echo  canceller 
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Fig. 2. Illustration of the  channel  estimation  problem. 

channel  and  the  canceller. If the  impulse  response  of  the 
canceller  is the  same as that of the  channel,  then  the  output 
error ei will equal  the  noise  sample vi. Echo cancellers  have 
typically  used  the SG transversal  algorithm [4]  to  adjust   the 
coefficients so as to  minimize  the  output  mean  squared  error 
(MSE) E[eF  1. Notice  that,  assuming  the  input  and  noise  are 
uncorrelated,  the  minimum MSE achievable  is the  noise vari- 
ance E [  vi2 I . 

The  distinguishing  features of this  application  from  the 
applications  mentioned  at  the  beginning  of  this  section  are 
1)  the  number  of  coefficients  in  the  adaptive  filter  must  be 
quite large  (i.e.,  greater  than  100)  in  order  to  cancel  the  far- 
end  echo,  and 2 )  the  input  to  the  adaptive  filter is in  this  case 
binary  uncorrelated  data.  The  performance  degradation  of 
the SG transversal  algorithm  due to  a  highly  correlated  input 
(i.e,,  large  "eigenvalue  spread" [ 5 ] )  is therefore  eliminated. 
One  might  suspect  that  under  these  ideal  conditions,  recursive 
LS algorithms  offer no  significant  improvement  over  the SG 
transversal  algorithm. I t  is shown  that  this is not  the case. 
Assuming  a  noiseless  channel, an LS algorithm  can  perfectly 
estimate N impulse  response values  given only N data  samples, 
whereas  the SG algorithm  requires  approximately 5N t o  7N 
data  samples  to  converge,  depending on the  step  size.  When 
added  noise is considered,  an LS algorithm  requires  approxi- 
mately 2N data  samples  in  order  to  achieve  an  output MSE 
which is 3 dB  above  the  channel noise  variance,  whereas  the 
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SG aigorithm  requires  approximately 7N t o  9N data samples 
t o  achieve  the  same  level  of  cancellation. 

In  the  next  section,  the  performances of LS and SG al- 
gorithms  are  compared  analytically.  In  Section 111, it is shown 
that  by  choosing  the  input  sequence  in  an  appropriate  fashion, 
the  computational  complexity  of  an LS algorithm  can  be 
greatly  reduced.  Using  a  maximum  length  input  sequence  in 
fact  leads t o  a  slightly  modified SG transversal  algorithm.  This 
algorithm  was  proposed  by  Farrow  and Salz and is also dis- 
cussed in [ 6 ] .  Section  IV  describes the  algorithms  considered 
in  this  paper  and  Section V presents  simulation  results  which 
verify the  discussion  in  preceding  sections. 

11. LS VERSUS SG COMPARISON 
In  this  section  the  performances of LS and SG algorithms 

are  compared  with  respect t o  speed of convergence.  The  input 
t o   t he  canceller is assumed to  be  a  sequence of independent 
data  samples { u j } ,  each of which  assumes  a  value of + I  or -1 
with  probability  1/2.  The  output of the  channel  in  Fig. 2. at 
iteration i is denoted as 

where ai  is the  most  recent  input, rj, 0 5 j < i, are  the  first 
i f 1 samples of the  channel  impulse  response,  and v i  is ad- 
ditive  channel  noise.  For  convenience,  we  assume  that 

r . =  I 0 f o r j > N -  1  (2.2) 

where N is some  prespecified  integer.  Defining  the  N-dimen- 
sional  vectors 

bilNT = [aiai-l  U ~ - N + ~ ] ,  (2.4) 

(2.1) can be rewritten  as 

’ y .  =rTa .   IN + vi .  (2.5) 

The  objective of the  canceller is to  estimate  the  vector r .  
Denoting  the  estimate of r at  time i as ci, the  output  error 
is 

e .  = y .  - c .  a 
I I z T  i lN .  (2.6) 

Assuming the  noise  samples vi are  uncorrelated  with  the  data 
samples,  the value  of ci which  minimizes  the  output MSE 
E [ e j 2 ]  is 

Copt = [ E ( a i l ~ a i l N ~ ) ]   - ‘ E ( y i a i , N )  r (2.7) 
and 

min E[e i2]  = E[T$] 5 $. (2.8) 

The LS estimate of r at  time i selects ci such  that  the  sum 

i 

s wjei2 
i= 0 

is minimized,  where  the  coefficients wi are  introduced t o  
weight  recent  errors  more  than  past  errors.  This  technique 
allows  nonstationary  channel  statistics  to  be  tracked.  Typi- 
cally,  the  errors  are  weighted  exponentially,  Le., 

. .  w. = w’-I 
I (2.10) 

where w is a  constant  slightly less than  unity.  Setting  the 
derivative of (2.9)  with  respect t o  ci equal to  zero gives 

Notice  that if the  first  data  sample  is received at  time i = 0, 
then  some  type of assumption  must  be  made  concerning  the 
data samples a i ,  j < 0, which  enter  the  vectors a o l N ,  a l l  N ,  
-, a N - 2 ~ ~ .  “Prewindowed” LS estimation [ 1 ] assumes  that 

The  estimate of ci, (2.11),  assuming  that  the  (nonzero)  data 
values a-1,  a - 2 ,  , U - N + ~  are  available at  the receiver a t  
iteration i = 0 will be called the  “covariance LS estimate” 
of ci, in analogy  with  the  covariance LS estimation  used in 
speech  processing [ 1 1 .  Both  “prewindowed”  and  “covariance” 
estimates  are  nearly  equal, given a  moderate  number  of  data 
samples  (i.e., 2 N   t o  3N). However,  the  startup  procedures 
to  obtain  each  type of estimate  recursively will be  different. 
It is apparent  that  as i --f 00, the  estimate  (2.1  1)  approaches 
Copt  in  (2.7). 

The LS estimate  (2.11)  can  be  written  recursively  as  fol- 
lows: 

... 

c .  z = c .  z - 1 + eO@ilN- ‘QilN (2.13) 

I -  I -  1 TailN (2.14) 

where e /  is the “causal”  prediction  error 
l e .  = y i  - c .  

and  the  sample  covariance  matrix  is 
i 

a i lN  wia,lNailNT. (2.15) 

Notice  that  the  error e /  is to  be  distinguished  from  the  error 
ei defined  by  (2.6).  Computationally  efficient recursive LS 
algorithms  have  received  much  attention  in  the  literature  and 
will be  described in Section  IV. 

Notice  that  the  covariance LS estimate of ci at  iteration i 
requires N more  data  samples  than  the  prewindowed  estimate. 
The  time  it  takes  an LS algorithm to  converge will always  be 
referred t o  in terms of the number of input datu samples 
received. If it is stated,  for  example,  that  the  output MSE 
has  “converged”  (i.e., is within  3  dB  of  its  asymptotic  value) 
at  time i = N ,  this  means  that if prewindowed LS estimation 
is,  assumed,  the  algorithm  has converged  after N iterations, 
whereas if covariance LS estimation is assumed,  the  algorithm 
has  converged  after 2 N  iterations (N iterations  are  required 
to  receive the  first N data  samples). 

It will be  instructive to  examine  the  prewindowed LS 
estimate c given rn data  samples  where m G N. Consider 
first  the case  where  the  additive  noise vi = 0 .  Notice  that 
for m < N the  matrix ami N, which  appears  in  (2.1 l), is 
singular,  however,  an LS solution  for  the  first rn values  of 
c is obtained  by solving the  following  triangular  set of linear 
equations: 

j = O  
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In  this  case  the  error  sequence given by  (2.6) is zero  for i = 
0 ,  1, -, rn - 1,  and  hence,  the  sum  (2.9) assumes the  mini- 
mum value  of  zero.  When a neiv data  sample a, is received, 
the  same  system of equations  (2.16) is  solved where rn is 
replaced  by rn + 1. Notice  that  the  first rn coefficients  remain 
the  same, so that  only c , + ~  must  be  determined.  This  pro- 
cedure is continued  until N data  samples  are  received,  in  which 
case the  estimated  vector C N -  1 = Y. 

If the  additive  noise is nonzero,  the  system  of  equations 
(2.16)  still  yields  the LS estimate  for c1 , -., c,, ; however,  after 
N iterations  the  estimate C N - ~  may  deviate  substantially 
from r.  Examination  of  (2.16) reveals that  the  deleterious 
effect of the  added  noise is cumulative,  and  that  for  moder- 
ately  large N ,  the  last  few  estimated  impulse  response values 
become  dominated  by  channel  noise.  The  effect of additive 
noise  upon  the  estimate c was found  empirically  to  be so 
devastating  that  computer  roundoff  error  alone  can  'cause 
successive estimated  impulse  response  coefficients t o  be- 
come  extremely  large  for  moderate  values  of N (i.e., N = 
30) ,  depending  upon  the  input  data  sequence. 

Notice,  however,  that if N + 1,  rather  than N ,  data  sam- 
ples  are  used to  obtain  an LS estimate  for N impulse  re- 
sponse  values,  the  sequence of errors ei,  i = 0 ,  1, .-, N (with 
additive  channel  noise)  cannot  in  general  be  set to  zero,  and 
the  triangular  system of equations  (2.16) no longer  applies. 
The  expected  value of the  sum  (2.9),  where wi = 1, cannot  be 
less than  the  sum of the  noise variances, 
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Setting wi = 1  for 0 < j < i gives 

The  output  causal MSE conditioned on the  input  sequence 
in  this  case is therefore 

b'[ei'z I ao ,  -, nN- ] 

The  unconditional  output MSE is  the average  of (2.21) 
over  all  possible (2 '+l)  input  sequences.  Unfortunately,  this 
average is extremely  difficult  to  compute;  however,  it is shown 
in  the  Appendix  that,  assuming  exponential  weighting  and 
covariance  estimation,  as  a  first-order  approximation, 

(2.22) 

for large i, where w is the  exponential  weighting  constant. 
Asi'w, 

and  the  effect of the  channel noise upon the  estimate  of  the 
. latter  impulse  response  values is not  nearly as  severe  as  when 

given N data  samples. 
This  startup  problem  has  typically  been  avoided  by  initializ- 

ing the diagonal  elements of the matrix ,,, given by (2.1 5), 
to  some  small value 6 such  that  the  algorithm  (2.13) is numer- 
ically  stable.  Although  this  technique  destroys  the  exactness of 
the LS solution,  results  in  Section V and  in  [2]  and  [3 ] 
indicate  that  when  this  type of initialization  procedure is  used 
with  the LS lattice  algorithm,  the  degradation  in  performance 
is not  noticeable. Use of  this  initialization  procedure  with  the 
LS transversal  (fast  Kalman)  algorithm [ 7 ] ,  however,  did  not 
prevent  the  algorithm  from  diverging. 

To compute  the  output MSE resulting  from  the LS estimate 
(2.1 l), (2.5)  and  (2.1  1)  can  be  combined  to give 

r i  1 

(2.20) 

(2.23) 

The  exponential  weighting  therefore  decreases  the  asymptotic 
level o f .  cancellation.  A  similar  result was presented  in [8] 
and  [9].  As w + 1,  (2.22)  becomes 

(2.24) 

This  behavior  was  first  pointed  out  in [ l o ] .  Notice  that 
f o r i = N - 1 ,  

b ' [ e N - , ' 2 ]  = 202 (2.25) 

indicating  that  at  time i = N - 1,  or  after  2N  iterations,  (Le., 
2N data  samples  have  been  received),  the  output MSE is 3 
dB  above  the  channel  noise  variance.  Although  these  results 
have  been  derived  assuming  covariance  estimation,  the  cor- 
responding  prewindowed  behavior  should  not  be  significantly 
different.  This is verified via simulation in Section V. 

It is instructive to  compare  the  behavior of the LS al- 
gorithm  (2.13)  with  that  of  the SG transversal  algorithm 
[ 5 ] .  A comparison  with  the SG lattice  algorithm is post- 
poned  to  Section V. The SG transversal  algorithm is given 

(2.26) 

algorithm  were  studied  in [ 4 ] .  It  was  found  that  for  the  base- 
band  canceller  considered  here, 
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zero.  Letting a = l /N,   the value computed  in [4]. which gives 
the  fastest  convergence  to  the  steady  state MSE, (2.27)  be- 
comes 

(2.28) 

For  this value of a, the  output MSE only  asymptotically 
approaches  2u2,  the value approximately  obtained using 
an LS algorithm  after  2N  iterations. If at  iteration i we  have 
that E [ e i ’ 2 ]  % 2u2,  then  (2.28)  can  be  accurately  approxi- 
mated as 

(2.29) 

which  says  that E [ e j ’ 2  J is 1Oi log [ 1 - ( l / N ) ]  dB  below 
E[eo2  J . As an  example, if N = 100  and if we  assume  the sig- 
nal-to-noise  ratio is 30  dB,  after  200  iterations  the  output 
MSE is 21.3  dB  above  the  noise level. After  500  iterations, 
the  output MSE is 8.1  dB  above  the  noise  level.  The discus- 
sion  in  this  section  indicates  that  an LS algorithm  converges 
approximately 4-5 times  faster  than  the  SG  transversal al- 
gorithm. 

111. SELECTION OF STARTUP SEQUENCE 

An  important  design  parameter  offered  by  the  application 
considered  here is the  binary  startup  sequence,  which  is  the 
initial  input t o   t he  canceller,  This is in  contrast  to  other 
applications  such  as  channel  equalization,  where  the  input 
to   the  equalizer is the  output of an  unknown  channel, By 
selecting  the  startup  sequence  in  an  appropriate  fashion,  the 
complexity of the  matrix  inversion  needed  to  obtain  the LS 
estimate  (2.1  1)  can  be  dramatically  reduced. 

Assume,  for  example,  that  the  data  vectors a O l ~ ,   a i l  N ,  
..., a N - l  I N are  rotated  versions of an  N-term  maximum 
length  sequence [ 111,  and  therefore have the  following 
properties: 

(3 . la )  

(3 . lb)  

where 1 is  the  N-dimensional  vector  whose  elements  are  unity. 
(Since aOIN is assumed to  contain no zero  elements,  covari- 
ance  estimation is assumed.)  The  covariance  matrix  at  the 
Nth  iteration is 

(3.3) 

Substituting  (3.3)  into  (2.11),  assuming wi = 1,  and using 
(3.1 ) gives 

(3.4) 

which  can  be  written  recursively  as . 

( 3 . 5 )  

It  is easily verified  that  replacing y j  by ei’ also  yields  (3.4) 
at  iteration i = N - 1.  

If  a  maximum  lf3gth  sequence  with  period N is the  input 
to the  canceller,  the  following  algorithm  therefore gives an 
LS solution  for  the  coefficient  vector  after  Niterations: 

(3 .6)  

This  algorithm was originally  presented  by  Farrow  as  a  desira- 
ble  modification of the SG algorithm  (2.26) [ 121.  It  is  pointed 
out  in [ 131,  however,  that any startup  sequence  can  be as- 
sumed as long  as  the  covariance  matrix, ail in  (2.13)  is 
nonsingular  for i = 0, 1, -., N - 1.  (The  singularity  problem 
can  always  be  avoided  by  substituting Q ~ I N  + 61 for  ail^ 
where 6 is  a  small  constant.)  Since  the  training  vectors a. 1 N ,  
a1 1 N ,  -., U N - ~  I N  are  known a priori, the gain vectors 
ail ~ - l a i l  N for i = 0, 1, e * . ,  N can  be  computed  off  line  and 
stored  prior  to  transmission.  Furthermore,  either  prewindowed 
or covariance  LS  estimation  can  be  used.  It is in  fact  suggested 
[ 131  that  a  maximum  length  training  sequence  may  not  re- 
sult  in  the  fastest  possible  convergence,  and  that  other  training 
sequences  (in  particular,  a  training  sequence  which  produces 
a  diagonal  covariance  matrix  at  iteration N - 1)  may  be  more 
desirable.  Ignoring  the  increase  in  required  memory,  the  com- 
plexity  (number of multiplies  and  additions  per  iteration) 
of the  resulting  prewindowed LS algorithm is identical t o   t he  
complexity  of  the SG transversal  algorithm. 

Assuming  a  periodic  maximum  length  training  sequence 
of  length N is transmitted  for  i < N ,  (2.1  8),  (2.20),  and  (2.21) 
(assuming wj = 1)  can  be  used  directly  with  (3.1)-(3.4)  to 
give 

(3.7) 

0 2  

N +  1 
E [ ( C N - l  - r ) ( c N P l  - r )* ]  =- (I + 1 1 T )  (3.8) 

and 

l!?[eN-1’2]  = 2 u 2 .  (3.9) 

The  properties of maximum  length  sequences  therefore 
enable  a  convenient  characterization of the  impulse  response 
estimate  after N iterations.  This  example serves to  illustrate 
the  essential  difference  between  the SG algorithm  (2.26), 
which relies upon  second-order  statistical  properties of the 
input,  and LS algorithms  which  attempt  to  exploit  the dge- 
braic properties of the given input  sequence [ 141. 

IV. ALGORITHM DESCRIPTIONS 
In  this  section  the  specific  algorithms  used t o  generate 

the  simulation  results in Section V are  described,  Recursive 
SG and  LS  algorithms  can  assume  either  a  tapped-delay  line 
(transversal)  or  order-recursive  (lattice)  type of filter  struc- 
ture.  The  algorithms  (2.13)  and  (2.26)  recursively  compute 
the  coefficient  vector c and,  hence,  assume  the  transversal 
filter  structure  shown  in  Fig.  3. In order  to  define  the  lattice, 
or  order-recursive  filter  structure [ 151,  we  first  define  the 
following  prediction  errors.  Given  an  arbitrary  time  series 
ao ,  a l ,  -., ai ,  where a i  is the  current  data  sample,  the  nth- 
order  forward  prediction  residual  at  time i is 

e f ( i  I n )  = ai  - fr(i I .)ai- 1 I n  (4.1) 

where 

. P ( i I n ) =  [ f l l n   . . . f n ~ n l  
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Fig. 3. Echo canceller  using  the  transversal  filter  structure. 

is the  vector of forward prediction  coefficients.  Similarly,  the 
nth-order  backward  prediction  residual  at  time i is 

eb(i 1 n )  = ai- , - bT(i I n)ai ln (4.2) 

where 

bT(i I n) = [b ,  1, ... bnrR]  

is the  vector  of backward prediction  coefficients. If the  second- 
order  statistics of the  data  sequence {a i}  are  known  and  sta- 
tionary,  then  the  optimal values  of the  vectors f ( i l N )  and 
b(ilN) which  respectively  minimizeE[ef2(ilN)]  andE[eb2 (ilN)] 
can  be  computed.  The  lattice  structure is shown in Fig.  4(a). 
It  follows  directly  from  the  following  order  recursions  for  the 
error  sequences, given that  the  prediction  vectors f and b are 
chosen  optimally [ 151 : 

e f ( i  1 n )  = ef(i I n - 1) - Kneb(i - I \  n - 1) (4.3a) 

eb(i I n )  = eb( i  - 1 I n - 1 )  - K,ef(i I n - 1)  (4.3b) 

for 1 < n < N, where N is the  filter  order.  The  lattice,  or 
PARCOR,  coefficients K ,  are given by 

E [ e f ( i l n  - I)eb(i  - 1 In - I)] 

E [ e f Z ( i  1 1 2  - I)] 
Kn = (4.4) 

An  important  property of the  backward  residuals is that 
they  are  uncorrelated,  that  is, 

E[eb( i  I m)eb(i  I n ) ]  = 6mnE[eb2(i  I n)] (4.5) 

where S,, = 1,  for m = n ,  and 6,, = 0, for m f: n .  In 
analogy  with  the  transversal  structure,  the  filter  coefficients 
K,, 1 < n < N, can  be  updated  in  time if the  second-order 
statistics  of  the  input  sequence  are  unknown  or  time  varying. 

The  filter  structure  shown  in  Fig.  4(a)  can  be  used  to 
generate  prediction  residuals given a single input  time series. 
The  application  considered  here,  however,  requires  that  a 
linear  combination of the  data  samples U ~ - N + ~ ,  a i - N + p ,  
-., ai be  formed to  predict  the  channel  output yi .  The  ap- 
propriate  lattice  structure  for  the  echo  cancellation  applica- 
tion is shown  in Fig. 4(b).  The  input  data  sequence is  used 
as the  input  to  the  lattice  structure  to  form  the  sequence  of 
backward  prediction  errors eb(ilO),  eb(il l ) ,  -., eb(i lN) .  A 
linear  combination of the backward  residuals,  rather  than  the 
input  data, is formed t o  predict yi. The  filter  residual is 
therefore 

N - I  
ei = y i  - Kz+leb(i l  n). (4.6) 

n=O 

(b) 

Fig, 4. (a) Lattice  structure. (b) Echo  canceller  using  the  lattice  structure. 

The  coefficient K," which  minimizes E [ e i 2  J is 

E[yieb( i  I n - I)] E[ec(i  I n - I)eb(i I n - I>]  
c -- -_  

K n  - E[eb*( i  1 n - 
- 

E[eb2(i  I n - I)] 

(4.7) 

where e,(il n - 1 )  is the (n - 1)st-order  filter  residual e i .  
From  (4.6)  it  follows  that 

ec(i I n) = e,(i In - 1) - K;eb(i I n - 1) (4.8) 

which,  when  combined  with  the  recursions  (4.3),  results  in 
the  filter  structure  shown  in Fig.  4(b). 

Recursive SG and LS estimation  techniques  exist  for  both 
the transversal  and  lattice  structures.  The LS algorithms will 
be  described  first.  Recursive  covariance LS estimation  191, 
[ 1.51 -[ 181  requires  substantially  more  computation  than 
prewindowed  estimation,  and  should  not give substantial 
improvements in performance, so that  we  consider  only  the 
prewindowed  algorithms. 

Computationally  efficient  prewindowed  recursive LS 
algorithms  which  require  on  the  order  of N operations  per 
iteration have been  presented  in [ 1 1 ,  [ 71,  [ 1.51, and [ 191 - 
[ 21 1 . The  following  algorithm  updates  the  lattice  coefficients 
K ,  and K g ,  1 < n G N ,  so as t o  minimize  the  sum 

2 

R c ( i I n ) = ~ w ' - i e c 2 ( i l n ) ,   l < n < ~  (4.9) 
j =  0 

where  the  error  sequence ec( j lN) ,  j = 0, 1, ..., i, results  from 
passing the  input  data  through  a  filter  with fixed coefficients 
computed  at  time i. 

Initialization: 

~ - ~ ( ~ = e ~ ( - l l n ) = k , + ~ ( - l ) = O  f o r O < n < N .  

(4.10) 

For i = 0, 1,  2, -, 

For n = 0 t o  n = n': 
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(4.17) 

(4.18) 

(4.19a) 

e,(i I n + 1) = e,(i I n )  - K;+] ( i )eb( i  I n )  (4.19b) 

where 

i 

k , ( i ) = E  ef*(jin)eb*(j- l l n )  
j = O  

and  the LS cost  functions  are 

(4.20) 

(4.21) 

(4.22) 

Also, the gain  variable 

Ti ~n = a i l n T @ i l n - l a i l n  (4.23) 

where  is  the  covariance  matrix  (2.15).  The  variable y 
does  not  appear  in SG lattice  algorithms  and is analogous 
to  the  Kalman  gain,  which  appears in recursive LS transversal 
algorithms [ lo ] ,   [ 19 ] - [21 ] .   The  residuals e f * ( j l n )  and 
eb*(jl n ) ,  0 < j < i, result  from  passing  the  input  through  a 
predictor  with f ixed coefficients  computed  at  time i. 

The  value  of n’, which  specifies  the  upper  limit  for  the 
order  recursions  (4.14)-(4.19),  depends  upon  the  initialization 
procedure.  Notice  that  the  recursions  (4.15)  cannot  be  com- 
puted unless Rf( i ln)  # 0 and Rb(i  - 11 n )  # 0. This  will 
not  be  true  for all n < N when i < N. One  procedure  to 
alleviate  this  problem  is t o  perform  the  computations  (4.14)- 
(4.19)  for n = 1, ..., min (i - 1, N - 1).  In  this  way  the  filter 
is  “built”  in  an  order-recursive  fashion,  i.e., given i < N data 
samples,  an  ith-order LS filter  is  computed.  This  startup 
procedure is equivalent t o  solving the  triangular  set of equa- 
tions  (2.16).  Alternatively,  we  can  set 

where 6 is  some  small  constant  chosen to  ensure  that  the 
algorithm  remains  stable.  This  initialization  is  analogous  to 
initializing  the  diagonal  elements of the  matrix  to 6. 

A description oL the  computationally  efficient  version of 
(2.13),  i.e.,  the  fast  Kalman  algorithm, is omitted since it was 
not used to  generate  the  results in the  next  section. Ignoring 
finite  word  length  effects,  the  performance of the fast  Kalman 
algorithm  should  be  identical to  that  of  the LS lattice given 
identical  startup  procedures,  since  both  minimize  the  sum 
(4.9). We point  out  that  both  startup  procedures described 
for  the LS lattice  can  also  ,be  used to  start  the  fast  Kalman 
algorithm.  In  particular,  the  diagonal  elements  of ,, can  be 
set to  a small constant,  or  the  coefficient  vector c can  be 
“built  up”  in  an  order-recursive  fashion  by  using  order  recur- 
sions  for  the  prediction  vectors f, b ,  and c in  analogy  with 
(4.15)  and  (4.19)  [16],   [17],   [20].   The  fast  Kalman  al- 
gorithm  often  diverges given a  random  input  sequence,  how- 
ever,  and  hence,  the  lattice  algorithm  is to  be  preferred  for 
most  applications.  Recently,  new  fixed-order  recursive LS 
algorithms  have  been  presented  which  require  somewhat 
less computation  than  the  fast  Kalman  algorithm,  and  have 
superior  numerical  properties [ 201 , [ 21 ] . Th.ese algorithms 
were  not  simulated. 

The  simulated SG algorithms  are  now  described,  The  simu- 
lated SG transversal  algorithm  is given by  (2.26)  with  the 
additional  recursion 

1 p=- 
wR(i - 1) + ai2 

R(O)=6 (4.25) 

where w is an  exponential  weighting  constant  close to  unity,  
and 6 is a small  constant.  The  step  size f l  is  therefore  inversely 
proportional  to  a time-varying  estimate of the  input  variance. 
The  reason  for  this  modification  is  that  the  optimal  step 
size is inversely  proportional to  the  expected value of the 
signal  energy  present  in  the  transversal  filter [ 4 ] ,  which  is 
increasing  for i < N. 

SG lattice  algorithms  can  be  obtained  by  replacing  the 
expectations  in  (4.4)  and  (4.7)  with  time  averages.  There  are 
numerous  ways of doing  this [ 151,  [22] -[ 251, all  of  which 
are  heuristic.  The SG lattice  algorithm  simulated in the  next 
section is given by  the LS recursions  (4.10)-(4.19)  where  the 
LS gain yil n ,  0 < n < N, is set to  zero,  and  the  order  recur- 
sions  (4.16)  are  replaced  by  the  time  averages 

R f ( i  I n )  = w R f ( i  - 1 I n )  + e f 2 ( i  I n )  (4.26a) 

and 

This  algorithm is almost  identical to’ an SG algorithm 
which  adapts K i - l  and K,b- independently  to  minimize 
E[eb2( i l  n)]  and E[ef2(il n)] , respectively  1221.  The  essen- 
tial  difference is that  here  the  lattice  coefficients  are  up- 
dated before the  order  updates  (4.15b),  (4.15c),  and  (4.19b), 
whereas  in  [22]  -[25]  they  are  updated after these  order 
updates.  The SG algorithm  used  here  more  closely  parallels 
the LS lattice  algorithm,  but  may  in  fact give inferior  per- 
formance  relative to  alternative SG lattice  algorithms, 

V. SIMULATION RESULTS 
This  section  presents  simulation  results  comparing  the 

performance  of  the  (prewindowed) LS lattice, SG trans- 
versal,  and SG lattice  algorithms  described in the  last  section. 
In  all  cases  the  input  data  are  assumed to  be  independent 
binary  samples (+I) ,  the  channel  impulse  response is given 
by 

and  the signal-to-noise ratio i s  
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Fig. 5 .  (a) Averaged  output  squared  error  versus  time  obtained  from  the SG 
transversal  algorithm,  the SG lattice  algorithm,  and  the LS lattice 
algorithm in the context of Fig. 2 for N = 30 and w = 1. (b) Averaged 
output  squared  error  versus  time  obtained  from  the SG transversal and 
lattice  algorithms  and  the LS lattice  algorithm  for N = 30 and w = 0.967. 

Fig. 5 shows  plots  of  output  squared  error versus time 
averaged  over 200 individual  runs of each  of  the  algorithms 
mentioned  above.  The  filter  order N in  each case  was 30. 
The  exponential  weighting  constant  for  the  lattice  algorithms 
was 1.0 in Fig.  5(a),  whereas  in  Fig.  5(b), 1 - w = 1/30, 
the  optimal  SG transversal step size.  Fig. 6 shows  analogous 
plots  for N = 100. The value of w used in  the  lattice algo- 
rithms was  again 1.0 in  Fig.  6(a),  and  1 - w = 0.01 in Fig. 
6(b).  In all  cases the value  of w in (4 .25)  was selected to  ensure 
that  the  step size 0 converged to  the  optimal  step size 1/N. 
The  SG  transversal  convergence  curves  in Figs. 5 and  6  were 
also  compared t o  curves  obtained  using  a  constant  optimal 
step size p = 1/N. Both  the  constant  and  time varying step size 
algorithms  yield  approximately  the  same  performance. 

The  order-recursive  startup  procedure  described  for  the 
lattice  algorithms  in  Section IV often  caused  the LS algo- 
rithm t o  diverge. The  reason  for  this  stems  from  the  poor 
estimate of the  coefficient  vector c, which is obtained  by 
inverting  the  triangular  set  of  linear  equations  (2.16)  with 
additive  noise. To alleviate  this  problem,  the  initialization 
(4.24) was  used. 

The  error  plotted  for  each of the  three  algorithms is the 
causal  error e,'(ilN) defined  by (2.14). Notice  that E [ e c f 2 ( i ) l  
decreases  monotonically  from  its  maximum  value to   i ts  
minimum value  as i increases. In contrast, E [ e C 2 ( i ) l ,  which 
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Fig. 6. Averaged  output  squared  error  versus  time  obtained  from  the SG 

transversal  and  lattice  algorithms, and the LS lattice  algorithm. (a) N = 
100 and w = 1. (b) N = 100 and w = 0.99. 

results  from  an LS algorithm  with  an  exact  order-recursive 
startup, is zero  for i < N,  jumps  to  some  positive value at  i = 
N, and  then decreases  monotonically. Also, when  exponential 
weighting is used,  recent  errors  are  weighted  more  than  past 
errors, so that  the  current  error is  small  relative to past  errors. 
The  asymptotic value  of E [ e C 2 ( i ) ]  with  exponential  weighting 
can'  therefore  be less than  the  channel  noise variance and, 
hence, is physically less meaningful  than E[e,"(i)] . 

It  is  straightforward  to  show  that  for  the LS lattice  algo- 
rithm  [171, [ 2 0 1 , [ 2 1 1  

(5.3) 

Unfortunately, no such  simple  relation  exists  for  determining 
the  error e, , which  results  from  the SG lattice  algorithm 
simulated  here.  Consequently,  this  error  must  be  obtained  at 
iteration i by  freezing  the  filter  coefficients K,f, K n b ,  and 
K n C ,  1 < n < N ,  at  iteration i - 1, and  computing  the  error 
e,(ilN) that  results  from passing the  data  samples Y ~ - N + ~ ,  
-, y i+l  through  the  fixed  coefficient  lattice. For large  values 
of N this  procedure  becomes  computationally  infeasible; 
however,  for N = 30, averaged  plots of the  following  squared 
error, 

(5 .4)  
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were  found to  be  nearly  identical  to averaged  plots  of 
(Notice  that eir r  is not the  same  as  eir,  since  eb(ilj)  depends 
upon  the  current  lattice  coefficients K L ( i )  and K A ( i ) ,  
for 0 < m < j . )  Consequently,  for  computational  convenience, 
the SG  lattice  curves  correspond t o  averages  of e i r 2  rather 
than e i 2 .  

The LS lattice  output MSE plots  in Figs. 5  and  6  indicate 
that  the  output MSE is  less  than 3 dB  from  its  asymptotic 
value after  2N  ite,rations,  which  is  consistent  with  the dis- 
cussion in Section 11. The value of 6 in  (4.24) was 0.1. The 
fast  Kalman  algorithm  was  also  simulated;  however,  it was 
found  that  the value  of 6 required to  ensure  that  the  algorithm 
remains  stable is quite large  (i.e., 6 = lo). The  resulting  con- 
vergence  of  the  output MSE is  considerably  slower  than  the 
simulated LS lattice  curves  in Figs. 5 and  6. 

To  see  why  the LS lattice  algorithm  should  have  superior 
numerical  properties  in  comparison to  the  fast  Kalman algo- 
rithm  during  startup,  consider  the case  where i < N data  sam- 
ples  are  used to   compute   an  LS filter.  If  the transversal  struc- 
ture is used,  then  the  triangular  set of equations  (2.16)  applies. 
As  discussed in Section 11, as i  increases,  the  estimate ci de- 
grades  rapidly  in  the  presence of additive  noise.  This  estimate 
may in fact  become  numerically  very  large,  in  which  case 
a  very  high  degree of numerical  precision  is  required to  accu- 
rately  compute successive  coefficient  vectors. Also, once N + 
1  data  values  are  available,  (2.16) no longer  yields  an LS 
solution  and  the LS estimate CN may  be  drastically  different 
from C N -  1 .  Because the  fast  Kalman  algorithm  consists  of 
a  large number  of  recursions,  some  of  which  involve N adds 
and  multiplies,  it  contains  numerous  sources of roundoff 
error.  This  roundoff  error  can easily lead to instability,  due  to 
the  extreme  sensitivity  to  noise  exhibited  by  the  estimate 
c, for m < N and  the large  range  in  values  which  it  may 
assume. 

If i < N data  samples  are  used  to  compute an LS lattice 
filter,  the  first m stages  of the  lattice,  where m < i, constitute 
an  mth-order LS filter  based  upon  i  data  samples.  Computa- 
tion of the  mth-order  coefficients is therefore  well  determined 
(Le,,  the  sequence of mth-order  output  errors  cannot  be  zero) 
and  does  not  exhibit the numerical problems associated with 
computing c, via (2.16). Given  i data  samples,  it  follows  that 
only  the  ith-order  lattice  coefficients  may  be  ill-determined 
(i.e.,  the  ith-order  residuals  are  zero),  and  that  when  the ( i  4- 
1)st  data  sample  is  received,  the  estimated  ith-order  coeffi- 
cients  are  well-behaved.  Because  the  estimate c,, obtained 
via (2.16)  may  be  extremely poor given i data  samples,  how- 
ever,  it  must  be  expected  that  the  estimated.ith-order  lattice 
coefficients  will  also  be  poor,  and  that  numerical  instability 
may  result  in  analogy  with  the  fast  Kalman  algorithm.  This 
was in  fact  found  to  be  the case,  and  hence,  the  order-recur- 
sive lattice  startup  procedure  described in Section IV cannot 
be used in  this  application.  Because  the  lattice  structure is 
order-recursive,  however, latter  stages  can  diverge  without  affect- 
ing  preceding  stages,  and  hence,  the  value  of 6 in  (4.24)  needed. 
t o  ensure  stability  is  much less than  that  needed  for  the  fast 
Kalman  algorithm.  The  fast LS convergence  described  in 
Section I1 can  therefore  be  obtained  by  using  the  lattice  struc- 
ture.  An analysis  of roundoff  error in the  fast  Kalman  and LS 
lattice  algorithms is given in [ 261 . 

and  6 is due  to  their  reliance  upon  time averages,  such  as 
(4.26), to  compute  second-order  statistics.  The  poor  per- 
formance of the SG lattice  algorithm  relative  to  the SG trans- 
versal  algorithm is due  to  statistical  fluctuations  in  the  coeffi- 
cients Kif and Kib ,  1 < j < N. Since the  data  sequence { a i }  is 
uncorrelated,  the  optimal value  of  these  coefficients, given by 
(4.4), is zero.  Adapting  these  coefficients  to  estimate  the 
second-order  statistical  properties of the  input-ui,  therefore, 
cannot  improve  upon  the  performance of the SG transversal 

The  slower  convergence of the SG algorithms  in  Figs. ? 

cients to zero.  The  effect of these  coefficient  fluctuations  is 
t o  increase the variance of the  backward  errors  which  are 
used in  the  tapped  delay  line  (bottom half  of the  filter  struc- 
ture)  shown  in  Fig.  4(b).  This  in  turn  increases  the  output 
MSE. (This  increase  in  output MSE due to lattice  coefficient 
fluctuations  can  be  approximated  analytically [ 231, [241.) 
In other  studies,  which  have  reported  improved  performance 
of the SG lattice  relative to   t he  SG transversal  algorithm, 
the  input  to  the  predictor  part of the  lattice is correlated 
[25],  [27].  The  coefficients Kif and Kjb in this  case  are 
adapted  to  decorrelate  the  input  sequence  and,  therefore, 
have  nonzero  optimal  values. 

It is emphasized  that  the  previous  argument  does nor hold 
when  comparing  the LS lattice  to  the SG transversal  algorithm. 
In particular,  the LS coefficients K,f and K n b ,  1 < n < N, 
are not adapted tb  estimate  second-order  statistical  proper- 
ties.  Instead,  they  are  adapted  to  orthogonalize  the  input  in 
an algebraic  sense.  The SG, or  statistical  property  (4.5),  is 
replaced  by  the  following LS property: 

1 

~ e b * ( j l m ) e b * ( j I n ) = 6 , n R b ( i I n ' )  (5.5) 
;=0 

where eb* and R b  are  defined as in  Section IV. The  optimal 
Ls values of Kif and Kjb  in  this case  are  therefore not equal 
to zero  at  any given time  instant,  although  the  asymptotic 
mean values of Kif and Kjb are  zero. 

VI. CONCLUSIONS 
The  performance of the  SG  transversal,  SG  lattice,  fast 

Kalman,  and LS lattice  algorithms  has  been  studied  in the  
context of echo  cancellation of voiceband  data  signals.  Ignor- 
ing  finite  precision  problems, LS algorithms  converge  in 
approximately 2N iterations  in  the  presence of channel  noise, 
where N is the  order of the  filter.  This is 4-5 times  faster 
than  the  convergence  speed of the SG algorithms  considered. 
Due  to  the  poor  numerical  properties of the  estimated  channel 
impulse  response given m < N data  samples,  the  fast  Kalman 
algorithm often diverges given a random  training  sequence. 
This  problem  can  be  circumvented  by  using  the  lattice  struc- 
ture.  Finally,  the SG lattice  exhibits  the  poorest  performance 
of the  four  algorithms  compared,  since  the  lattice  PARCOR 
coefficients  are  a,dapted to  optimal values  of  zero via statistical 
averaging. 

Some of the  results  presented in this  paper  may  not  carry 
over to  other  applications  (such as time series  prediction) 
because of the  special  properties of the  application  considered. 
Nevertheless,  this  particular  application  has  provided  insight 
into  the  behavior of LS and SG algorithms  which  has  thus 
far  been  absent  in  the  literature. 

APPENDIX 
We wish to  approximate  output MSE using  the LS estimate 

(2.13)  with  exponential  weighting.  Combining  (2.19)  and 
(2.21) gives 

To  compute  the  unconditional  output MSE, the average 

algorithm,which  obtaineh  by  arbitrarily  setting  these  coeffi-  (A.2) 
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must be computed over all possible 2 i+l sequences (ao, 
..., ai). For large i we  approximate  

1 i x WjajlNajlNT wjE[aj lNaj lNT]  = I  2: W j .  (A.3) 
j =  0 j =  0 j = O  

% 

Using this approximat ion  in (A.2) gives 

(2 j = O  w j ) 2  

(A.4)  

Subst i tut ing wj = wi-j ,  where w is constant,   gives 

I I 

I -  \ 

and  subs t i tu t ing  (A.5)  into ( A . l )  gives (2.22). 
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