
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-34,  NO. 8, AUGUST 1986 82 1 

10 
0 

$4 
0 
$4 -1 

Histogram a) 
)j 10 

1 
m 
'u -3  
0 10 
x 
.Pi U 

i/ 
2 
04 

- 6  
10 

0. 2 .  4 .  6 .  8 .  10. 12. 14. 16.  18.  20. 

Histogram b) 

- ps 

. I  I , -  
0 .  2. 4. 6 .  8 .  10. 12. 14. 16. 18.  20. 

0 
10 

$4 Histogram c) i lo-' 

$j 1i2 
m 
w - 3  
0 10 
>I 
.-I : 164 
pm 
5 -5  

a u 10 

-6 
10 

0. 2 .  4. 6 .  8. 10. 1 2 .  14. 16. 1 8 .  20. 

0 
10 

E 16' 
Histogram d) 

m 
4 

i 
- 3  

'u 10 

>I 
U 

d ..I 
.Pi 10-4 

9 2 
a 

-6 
10 

0. 2 .  4. 6 .  8 .  10. 1 2 .  14. 16. 18.  20. 

Fig. 3. Probability of error versus  signal-to-noise  ratio per information  bit 
corresponding to the situation  of  interference as shown in Fig. 2(a)-(d). 
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typically used in voiceband modem applications are considered. The 
signal levels that minimize the error probability bound subject to  an 
average power constraint are presented for  some specific codes. 

I. INTRODUCTION 
Binary convolutional coding combined with  multilevel/ 

phase modulation  has been proposed as a means for reducing 
the signal-to-noise ratio (SNR) necessary to achieve a desired 
error rate in  high  speed data transmission. A rate m/n, n > 
m, multilevel trellis coder combines a rate m/n  binary 
convolutional coder with a multilevel mapper, which maps the 
n output bits to one of 2" points in a signal  constellation, 
specifying in-phase and quadrature amplitudes. A union  bound 
on the event error probability of a communications  system 
with a multilevel trellis code, assuming an additive white 
Gaussian noise (AWGN) channel and Viterbi decoding, can be 
computed by using the error-state transition matrix [2], or the 
equivalent transfer function method [3] ,  [4]. We show that if 
the mapping  of coder output bits to signal constellation points 
is by set-partitioning [I], the computation required by  this 
bound can be reduced substantially  by eliminating the average 
over  the transmitted source sequence. A search is performed to 
find codes that minimize the bound for a given SNR. Only 
amplitude modulated signals with one of eight levels (the 8- 
AM signal constellation) are considered, since this constella- 
tion has received much attention in voiceband data transmis- 
sion applications [5], [6]. Nevertheless, consideration of other 
signal constellations presents no conceptual difficulties. The 
dependence of the union bound on the signal levels is also 
studied. Spacings between levels in 4-AM and 8-AM constel- 
lations that minimize the bound, assuming specific rate 112 and 
213 codes, are found via a gradient search procedure. 

11. ERROR PROBABILITY BOUND FOR MULTILEVEL TRELLIS CODES 
A four-state, rate 213, 8-AM trellis code is shown in Fig. 

l(a).  The representation as a binary convolutional code and 
multilevel mapper is shown in Fig.  l(b). Without coding the 
two input bits would select one of the levels in the 4-AM 
constellation shown in Fig. 2(a). With coding the three output 
bits of the convolutional coder are mapped to a point  in the 8- 
AM constellation, shown in Fig. 2(b). The symbols in Fig. 2 
are assumed to  be scaled to a peak transmitted power of unity. 
The uncoded bit in Fig. l(b) corresponds to the parallel 
transitions shown in Fig.  l(a). Throughout the rest of this 
section, a rate m/(m + 1) trellis code  is assumed in  which the 
m + 1 coded bits are mapped to a point in some one- 
dimensional signal constellation. 

Assuming an  AWGN channel, the output of the matched 
filter at the receiver at time T is 

r T = S T +  nT (1) 

where ST is  the selected signal level at time T [i.e., uj from  Fig. 
2(b)]  and nT is a Gaussian random variable. (Consideration of 
channel impairments such as intersymbol interference and 
phase jitter  is given in a related paper [7].) A maximum 
likelihood estimate of the transmitted symbols sl, s2, * ,  ST 
given the received symbols r l ,  r2, * * . , rT chooses the 
estimated sequence $1, 32,  * . * , Ŝ T to minimize the sum 

T 

i=  I 

over all possible estimates. This  is usually accomplished via 
the Viterbi algorithm [3]. The Viterbi algorithm will choose 

I Although  one-dimensional  signaling is assumzd, this  discussion is easily 
generalized to two dimensions by assuming  that the variables  in (1) are 
complex valued. 
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Fig. 1 .  Four-state, 8-AM trellis code. (a) Trellis  diagram. (b) Convolutional 
code. 

the incorrect path P' = { S; , si , . e ,  s;} rather than the 
transmitted  path P = {SI, s2, * . , S T }  if the metric of P' is 
smaller than the metric of P .  Let A ( P )  denote the metric of 
path P = {SI, sz, . e . ,  S T } ,  i.e., 

T 

i =  1 

Then the path metric difference is 

A ( P ' ) - A ( P ) = D 2 + A  (4) 

whereD2 = C c l  (si - s / )2andA = 2CiT_, (si - s ; )n i .  Ais 
a zero mean Gaussian random variable with variance 4a2D2. 
The probability that the  decoder will select path P' rather than 
path P is therefore 

e - t 2 / 2  dt < - e - D 2 / 8 0 2 .  
1 

- 2  
Prob (A( P) > A( P ' )) = - 

The probability of at least one  error event, given that path 
PT of length T i s  transmitted starting at some arbitrary time in 
the trellis, is 

MT 

5% Prob (A(P;, , )<A(PT))  (6)  
i= 1 

where P;,;, i = 1, * * . , MT are all paths, which diverge from, 
and in less than or equal to T iterations later merge with, PT. 
Denoting the set of  all possible transmitted sequences as PT, 
the number of elements in PT as 1 PTI, and the distance 
between the paths Pi,; and PT as  D(PT, Pi,;), as defined in 
(4), the probability of at least one error event is 

1 

The inner sum assumes a specific incorrect path and averages 
over all possible transmitted sequences of length T. This 
bound is straightforward to compute; however,  it is computa- 
tionally intensive. 

Let yi be the binary output vector of the coder (m + 1 bits) 
at the ith interval, which is mapped to the channel symbol si, 
and suppose that path PT corresponds  to outputs { y,, y 2 ,  * e ,  

Y T } ,  and P;,; corresponds to outputs { yl e;, . * , y~ 0 
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(b) 
Fig. 2. (a)  4-AM  constellation. (b) 8-AM  constellation  showing  mapping of 

coded bits  to  levels by set-partitioning. 

e & } ,  where e: is an error  vector of rn + 1 bits, 1 I k .( T. It 
can easily be shown that the outer sum in (7) is over  -all 
possible error sequences { e l ,  ez; * * e ,  e r } ,  which correspond 
to  diverging paths from  a  transmitted path of all zeros  (Le.,  the 
elements of the output  vectors y are  zero), and the inner sum is 
over  all  possible  source  sequences {b l ,  62, * ,  b ~ } ,  which 
produce the outputs {yl, . * ,  Y T } .  Let d ( y ,  y ' )  be the 
Euclidean distance between the channel symbols correspand- 
ing to y and y ' . Then 

and (7) can be rewritten  as 

where the  factor 2-"' accounts  for  the number of equally likely 
source bit sequences, and the inner sum is  over the 2"' possible 
coder  outputs that can be generated  at thejth interval. Because 
yj in general  can  take  on  one of 2m+1 possible  values, it is not 

immediately clear how the  average  over the output symbols yj 
can be computed without enumerating all possible source 
sequences, (An upper bound for the last  expression (9) is 
given in [8].) 

Mapping coded output bits  to constellation points by set- 
partitioning  is  described in [l] and [4]. Fig. 2 illustrates this 
procedure  for the 8-AM constellation. If mapping by set- 
partitioning is assumed, then it is easily shown that the 
expression (9) is equivalent to 

where the inner sum is  over all possible (2m+1) channel 
symbols, and does not depend on a  particular transmitted path. 
This  expression holds for some (but not all) nonuniformly 
spaced constellations  (i.e., the constellations shown in Fig. 2), 
as well as  for uniformly spaced higher dimensional constella- 
tions.  The  average  over y can only take on 2#+ values, 
corresponding  to  the  different values of e j .  The sum is easily 
computed using the  error  state  transition  matrix [2]. 

111. SEARCH FOR OPTIMAL CODES 
The  search  procedure used here is analogous to that used by 

Ungerboeck [l], except that here the union bound (10) is the 
optimality criterion,  rather than minimum distance (i.e.,  the 
minimum Euclidean distance between two distinct paths in the 
trellis).  Nevertheless,  for  a fixed number of trellis  states it is 
assumed that a  code which minimizes (10) is also optimal in 
the sense of having the maximum possible minimum distance. 
The  search  procedure  therefore seeks those codes with 
maximum free  distance and then evaluates the union bound at  a 
specific SNR (17- 18 dB, depending on ihe number of states in 
the trellis). As in [ 11, the search  procedure  is  exhaustive with 
exclusion rules (although not all of the exclusion d e s  stated in 
[ 11 are  applicable  here).  The  heuristic  code design rules in [ 11 
reduce the number of codes in the  search  to approximately 
22(v-2), where v is the  coder  memory, and 2" is the number of 
states in the trellis. 
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A  rate m/(m + 1) binary convolutional coder  (i.e., m input 
bits, m + 1  output bits) can be described by the input-output 
relation 

y =  GX (1 1) 

where 

Y’=[YlYZ . * *  Y m + l l  ( 124  

is the  vector of output  bits  at  a  particular time interval T,  

x ’  = [x,x2 - - x*+,] ( 12b) 

is  the  vector of source  bits in the  shift  register at time T,  G is 
an (rn + 1) X (m + v) matrix that represents the location ,of 
shift  register  taps, and “prime”  denotes  transpose.  The 
optimal codes  have  parallel  transitions, or one uncoded bit,  for 
v 5 7. Consequently, G has dimension 2 X (v + l), 
corresponding  to  a  rate 1/2 convolutional  code.  Table  I shows 
the  first  and’second  rows of G ,  denoted  as g(0) and g(l), 
respectively, in octal  for  the  optimal  codes found in the  search. 
The  16-state  code (v = 4) is shown in Fig. 3. Parallel 
transitions  limit  the  squared minimum distance  for  codes with 
v L 7 to  16fi2. Additional results  [9]  indicate that 2 I ’  states  are 
needed in order  to  provide  a  squared minimum distance of 
17fi2. 

Fig. 4 shows  the bound on error probability versus SNR for 
the codes shown in the  table and for uncoded 4-AM 
transmission.  The  curyes  shown  here  were  compared  to the 
analogous  curves  for  the  codes found in [l]. The  comparison 
indicates that for v = 4 and v = 6 the  codes shown here  offer 
a  slight  relative  gain in SNR (approximately 0.2 dB). It should 
be  mentioned,  however, that.the code  listed in [l] for v = 4 
has  a coding gain of 4.2  dB,  whereas  the  code shown here  has 
a coding gain of 4.6 dB.2 The  curves in Fig. 4 for v = 2, 3,  5 ;  
and 7 were  found ,to be nearly the  same  as  the  analogous 
curves  for the codes  listed in [l]. The  table  indicates that the 
savings in SNR due to coding at  an  event  error probability of 

is  significantly  less than the  coding  gain.  This  is partially 
due  to  the  fact that the bound (5) used to  derive (10) is 
pessimistic by approximately 0.5 dB at PE = Neverthe- 
less,  the relative gain in SNR shown in the  table  for  codes with 
different values of v should be  accurate. 

IV. CONCLUSIONS 
An upper bound on the  event  error  probability,  rather than 

minimum distance,  has been used as  the optimality criterion 
for  code  searching.  The  codes found here  offer only a slight 
savings in SNR compared  to  the  codes found in [l] (less than 
0.2 dB). A gradient  search  procedure  has  also been used to 
optimize  the spacing between 4-AM and 8-AM signal levels 
assuming the  specific  four-state and 16-state codes shown in 
the  table.  The  optimal  value of a shown in Fig. 2(a) was found 
to vary with SNR and v, ranging  from  just  less than 0.4  to 0.8. 
The  savings in SNR due  to optimization of the signal levels 
was found to be about 0.2 dB for the four-state  code and 
slightly less than 0.2 dB for  the  16  state code at PE = 
Because of the  smaller  spacings between points in the 8-AM 
constellation,  the  reduction in error  probability that results 
from  optimizing  the signal levels is very small (less than 0.1 
dB).  The  optimized 8-AM spacings  are  close  to  uniform in all 
cases.  Optimization of signal  levels with respect  to minimum 
distance  has  also been studied in [lo]. It is expected that the 
potential gains  to be realized by optimizing other (two- 
dimensional)  constellations  are  also  minor. 

Also, the code  listed in [I] for Y = 5  has  the  same  coding  gain  as  the  code 
shown  here (4.9 dB), rather  than  5 dB,  as  shown in [l]. 

TABLE  I 
8-AM  CODES 

v SNR Gain (P,r~10-6) Coding Gain (dB) g(1) g(0) 
2 

3.8 5.81 323 152 7 
3.5 5.23 161 54 6 
3.1 4.91 55 10 5 
2.8 4.56 35  12  4 
2.5 3.77 13 4  3 
2.1 3.31 7 2 

A 

MINIMUM DISTANCE SOURCE SEQUENCE: I 0 1 1 0 0 0 0  
EUCLIDEAN DISTANCE INCURRED ATEACH TRANSITION: 28 8 D O  8 8 8 28 

Fig. 3. 16-state,  8-AM  trellis  code. 
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Fig. 4. PE bound  versus SNR for best  8-AM codes. 
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Correlation Properties of Integrated Random Variables 

SHERMAN KARP 

Abstract-In general one  does  not measure point processes, but  rather 
measures an integral of the process  over a specific interval. In this note we 
have investigated how the covariance  of  a  specific  class of processes is 
altered by a  finite  measurement. 

In certain  sensor  systems  it  is common to  compare  outputs, 
each of  which occurs at a  different point but  is averaged  over 
the  same  interval. An example is the  detection of a moving 
target.  The moving target indication (MTI) is determined by 
taking the  difference of each  cell  output  at consecutive time 
intervals.  The time intervals  are adjusted so that the target 
moves one resolution cell  during  the  integration.  It is also 
assumed that the clutter background is slowly varying so that 
the only difference is due  to  the  presence  or absence of a 
target.  Since  there  can  never be perfect  cancellation,  there will 
always be a level of clutter  leakage  into  the  difference channel 
and the  correlation of the noise in the two channels will be less 
than unity.  In this note we  will consider  a  class of covariance 
functions and compute  the  correlation of the two outputs as  a 
function of time  difference and time  interval. Another example 
is the finite window opening  during any sampling time. 

Consider  the  intervals (0, t l) ,   ( t l ,   t2),  ( t2,  t2 + t l )  with 0 < 
t ,  < t2. Let the random variable x, be defined on (0, t l )  and the 
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random variable y ,  be defined on (t2, t2 + t l ) .  Let 

1 
xtl =- 1“ x, dt 

tl 0 

and form 

E[xl,  y12] = E  [ 1‘’ ~‘zi‘l xtytt dt dt 
t ;  0 12 

Consider  the  covariance  function 

E[x,Y, , ]  =e-+‘ -11 cos P(t’ - t ) .  

For this case we have 

Notice that as tl + 0 the two variables  decorrelate  as 

cos Pt2 

as  expected.  ‘Also notice that p = 0 corresponds  to the 
covariance function of a  first-order Markov process,  for which 

and falls  more rapidly than e-OL1Z, as one might expect. 
Similarly for CY = 0 

and we have a windowing effect  due  to the integration time t l .  
One might also  consider  exploiting  different  properties of 

the  target  process with two sensors,  each  observing  one of the 
properties.  In this case  it is possible to have overlapping time 
intervals  where now 0 I t2 I tI  and  we have (0, t2), (t2, t l ) ,  
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