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Correspondence 

Channel Shaping to Maximize Minimum Distance 

Michael L. Honig 

Abstract-Suppose that N inputs to a linear, time-invariant channel 
are designed to maximize the minimum L ,  distance between channel 
outputs. It is assumed that all inputs are zero outside the finite time 
window [ - T ,  TI and are constrained in energy. The jointly optimal 
inputs and channel frequency response H(f) for which the minimum 
distance is maximized is studied, subject to the constraint that the L ,  
norm of H(f) is bounded. This leads to an ellipse packing problem in 
which N - 1 axis lengths, which define an ellipse in RN-', and N 
points inside the ellipse are to be chosen to maximize the minimum 
Euclidean distance between points, subject to the constraint that the 
sum of the squared axis lengths is constant. An optimality condition is 
derived, and it is conjectured that the optimal ellipse in which the N 
points must lie is an n-dimensional sphere, where n I N. An approxi- 
mate volume calculation suggests that n increases as O(log N ) .  As 
T + x ,  this implies that an optimal channel response is ideal bandlim- 
ited with bandwidth 2R' Hz, where R' = (log, N ) / ( Z T )  is the informa- 
tion rate. 

Index Terms-Signal design, minimum distance, ellipse packing. 

I .  INTRODUCTION 
Linear equalizers in digital communications systems shape the 

channel frequency response to minimize distortion present in 
the channel output, given a particular modulation scheme. Here 
we investigate the possibility of simultaneously optimizing both 
the transmitted signals and the channel frequency response. The 
assumed optimality criterion is the minimum L ,  distance be- 
tween channel outputs. The performance of the optimized sys- 
tem serves as a benchmark to which the performance of (coded) 
modulation schemes with suboptimal channels can be compared. 

Two problems are considered. In the first, we wish to find a 
set of N time-limited channel inputs and a channel frequency 
response that jointly maximize the minimum L ,  distance be- 
tween channel outputs. Here we assume that all inputs and the 
channel impulse response are constrained in energy (L,). The 
analogous signal design problem assuming the channel response 
is fixed is considered in [l]. It is shown there that this (fixed- 
channel) problem is equivalent to packing N points in an ellipse 
in RN-' so as to maximize the minimum Euclidean distance 
between points. The same ellipse packing interpretation applies 
to the problem considered here; however, in addition, the lengths 
of the axes of the ellipse are to be optimized in addition to the 
placement of the N points. In general, this packing problem is 
quite difficult, although our interest here is only in the shape of 
the ellipse, and not in the placement of points within the ellipse. 

Optimality conditions are derived for the preceding packing 
problem, and it is conjectured that the optimal ellipse in which 
the points must lie is a sphere in n < N dimensions. For fixed 
information rate R = (log, N ) / ( 2 T ) ,  as the length of the inputs 
2T - x, the conjecture implies that an optimal channel transfer 
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function is an ideal low-pass (or bandpass) filter. The optimized 
channel bandwidth depends on the asymptotic rate of growth of 
n ( N )  with N. An approximate volume argument suggests that 
the optimized bandwidth is twice the information rate in 
nats/second, although currently there is no finite upper bound 
on this bandwidth. 

In the second problem, the channel H,( f )  is assumed to be 
fixed, and the objective is to find N time-limited channel inputs 
and a filter G( f )  that jointly maximize the minimum distance 
between the outputs of H o ( f ) G ( f ) ,  subject to energy con- 
straints on the inputs and on the impulse response of G ( f ) .  For 
example, G( f )  could be a preshaping filter at the transmitter, 
which does not affect the noise statistics at the receiver. This 
problem is approximated by an ellipse packing problem in which 
the optimal filter parameters are easily obtained. As T + CO, this 
solution implies that the optimal G( f )  is constant for all f such 
that IH,(f>l > /?, where p is independent of f ,  and /? - 0 as 
the information rate R - W. 

11. L,/L,  SIGNAL DESIGN 

The following problem was posed in [2]. (The discrete-time 
version of this problem is considered in [l].) Given a linear, 
time-invariant channel H ( f )  and information rate R (bits/sec- 
ond), find N = 22RT inputs u,(t);..,u,(t), where R and T are 
chosen so that N is an integer, and where u,( t )  = 0 for It1 > T ,  
i = l;.., N ,  to maximize the squared minimum distance between 
outputs 

d2 = min IW [ y , ( t >  - y,(t>12 d t ,  (1) 
l # ]  - r  

subject to the constraints 

where the channel output is y,( t )  = j T T  h(t - s)u,(s) ds, and 
h(t)  is the channel impulse response. 

Because the objective is to maximize the minimum L ,  dis- 
tance between channel outputs subject to an L ,  constraint on 
the channel inputs, we refer to this type of signal design as 
L,/L, signal design. (Of course, norms other than the L,  norm 
may be appropriate in some situations. A more detailed discus- 
sion is given in [I].) 

It is shown in [2] and [l]  that the preceding problem is 
equivalent to the following discrete packing problem. Find vec- 
tors U, E R N - ' ,  i = I,... 7 N ,  to 

subject to 

I I U , ~ ~ ~  I 2PT,  i = l;.., N (Cl) 

where A = diag[A,, A,;.., A,-,] and A:/,, i = l;.., N - 1 are 
the singular values of the channel. That is, j T T  R(t - S)+~(S) ds 
= A,+,(t), and R(r)  = /"h(s)h(s + t>ds, where +,(t) is the 
eigenfunction associated with A,. We will assume that A, z A, 
2 A, 2 ... . 
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If we define yr = A1/2ur,  then the preceding problem is equiv- 
alent to maximizing the minimum Euclidean distance of the set 
{y,} subject to the constraint I(A-1/2y,112 I 2PT. That is, the 
vectors yr must lie in an ellipse in RN-' with axes having 
lengths dm, i = l;.., N - 1. A particular U ,  is said to lie in 
the "input signal space," and a particular y, lies in the "output 
signal space." Similarly, a set of N vectors U, (yc), i = l;.., N 
will be referred to as an "input (output) signal set." A signal set 
which is a solution to (PO)-(Cl) will be referred to as an 
"optimal signal set." 

A. Channel Shaping Problems 
Referring to Fig. 1, suppose that at the transmitter (or re- 

ceiver), we add a filter G ( f ) ,  which changes the shape of the 
effective channel frequency response from H,( f )  to G(f)H,(f). 
Note that by adding the filter G(f) at the transmitter side, the 
noise statistics at the receiver remain the same. 

It is of interest to determine both the optimal channel shape 
G(f)H,,(f) and the optimal G(f) for fixed H,(f) ,  subject to 
suitable constraints. Here we assume an energy constraint on 
the impulse response of the filter to be optimized. Specifically, 
there are two problems of interest. The first is 

subject to the input constraints (CO) and the channel constraint 

/:mlH(f)lZ df s 1. (C2) 

In this case, H(f) = G(f )H , ( f ) ,  and the problem is to jointly 
select the channel inputs as well as the channel transfer function 
to maximize the minimum distance d2 given by (1). 

The second problem is 

(P2) 

subject to the input constraints (CO) and the filter constraint 

where the channel output y i ( t )  = g * h,  * ui( t ) ,  " * "  denotes 
convolution, and g( t )  and h,(t) are the impulse responses of 
G(f) and H,(f) ,  respectively. The second problem is therefore 
to jointly optimize the channel inputs as well as the transmitter 
filter G ( f )  for fixed H,(f) .  

In what follows, we first discuss only the first channel shaping 
problem (Pl)-(CO)-(C2). Since the arguments that apply to the 
first problem generally also apply to the second, discussion of 
the second problem is postponed to a later section. 

In analogy with the L2/L2 signal design problem (PO)-(Cl), 
we can relate the continuous-time channel shaping problem 
(Pl)-(CO)-(C2) to a discrete packing problem. Upon examining 
problem (PO)-(Cl), it becomes clear that the channel affects the 
minimum distance only through its N - 1 largest singular values 
AI;.., A N - l .  That is, any H(f) with the same set of N - 1 
largest singular values gives the same max-min distance (PO) 
corresponding to an optimal signal set. Consequently, (P1)- 
(CO)-(C2) is equivalent to a packing problem in which d given in 
(PO) is to be maximized over both the vectors u1;.- ,  uN- and 
the channel parameters, or axis lengths AI;.., AN-l.  From [3, 

Fig. 1. Channel transfer function H,,(f) with channel shaping filter 
G( f 1. 

Theorem 8.4.11, 

The problem (Pl)-(CO)-(C2) is therefore equivalent to the 
following problem: 

max ( d 2  = I $ I I A ~ / ~ ( U ~  - u,)II 
u1?' . ' ,uN 

A 

subject to the constraints (Cl) and 

N -  1 

Ai = 2T. 
i =  1 

Notice that (2) and the constraint (C4) imply that Ai = 0 for 
i > N - 1. That is, because the max-min distance is a nonde- 
creasing function of the axis lengths, and because the N signal 
points span N - 1 dimensions, the minimum distance is maxi- 
mized by confining the channel impulse response to no more 
than N - 1 dimensions. The optimal autocorrelation function 
can therefore be written as 

N -  1 

R ( t , s )  = Ai4 i ( t )4 i ( s )  (3) 
i= 1 

for some orthonormal set of functions (+;( t )}  (see [3, Theorem 
8.4.11). 

111. OPTIMALI~ CONDITIONS 

The preceding packing problems can be viewed as nonlinear 
optimization problems for which optimality conditions can be 
derived. This is complicated, however, by the fact that the 
max-min distance criterion is not differentiable. One technique 
for circumventing this problem is to approximate the max-min 
distance d by a potential function f which is a smooth function 
of the parameters to be optimized. For example, one possibility 
is to let 

Note that l imK+m f = d2. We now proceed to derive optimality 
conditions for the analogous packing problem to (P3)-(Cl)-(C4), 
in which f replaces d as the cost criterion. The Lagrangian in 
this case is 

N N - 1  

L ( u l ; . . , U N ;  A )  =f  - /.L,IIu,II~ - 5 A, (5) 
I =  1 r = l  

where the p,'s and 5 are Lagrange multipliers. Because d is not 
a differentiable function of the inputs, the derivative Vu, lim L 
does not exist in general. However, interchanging the limit and 
derivative operation, that is, setting Vu,L = 0 (the N - 1-vector 
of all zeros) and d L / d A ,  = 0 for i = l;.., N - 1, and subse- 

K+ a 
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quently letting K --f x gives the conditions 

A(u ,  - ui) = / J , ~ u ~ ,  i = l;.. , N (OC1) 
j t J ,  

N 

C ([U,], - [u,Ik), = 5, k = I,... , n  (OC2) 
i =  I jt/, 

where the sets of indexes J,, i = l;.., N are nearest neighbor 
sets, i.e., 

( 6 )  

and n I N - 1 is the number of dimensions spanned by the 
inputs U,. 

For any fixed K ,  the preceding procedure can be used to 
obtain necessary conditions for solutions to the modified packing 
problem in which f is maximized subject to the constraints (Cl) 
and (C4). Because of the preceding interchange of limit with 
derivative, (OCl)-(OC2) are not necessary conditions for solu- 
tions to (P3)-(Cl)-(C4), although (OCl)-(OC2) are optimality 
conditions in the following sense. 

Theorem: There exists at least one solution to (P3)-(Cl)-(C4) 
that satisfies (OCl)-(OC2). 

Proof The following argument has been previously used in 
[4] to prove a similar result. For fixed K and N, and for any fixed 
signal set u l ; . . ,  uN and singular value matrix A, it is easily 
shown that 

(7) 

Let f,,(K) be the maximum value of f, given the constraints 
(Cl) and (C4), and let d, be the corresponding minimum dis- 
tance of any signal set that achieves f,,. Also, let d,,, be the 
maximum achievable d in (P3)-(Cl)-(C4), and let f d ( K )  be the 
value of f in (4) evaluated for any particular signal set that 
achieves dmm.  Then, (7) implies that for all K ,  

f JK)  <fmax(K)  I d ; ( K >  Id : , , ,  (8) 

and letting K + cx implies that f d ( K )  - diaX.  Consequently, as 
K ---* m, the minimum distance df corresponding to a signal set 
that achieves f,,, converges to d;,,, and the corresponding 

The condition (OC1) was previously derived in [l], and applies 
to (PO)-(Cl) with fixed Ai's. The condition (OC2) governs the 
optimal choice of Ai's (i.e., the channel characteristics), and 
states a symmetry condition for the signal constellation about 
each axis. 

A. Example: N = 3 

To illustrate the preceding discussion, consider problem 
(P3)-(Cl)-(C4) when N = 3. That is, we wish to place three 
points within an ellipse in R2 to maximize d. A solution for a 
particular ellipse in the output space is shown in Fig. 2. In this 
case, y1 lies along the y-axis, and y, and y3 lie where the ellipse 
intersects a circle centered at y, with radius d. Transforming 
the space by the operator T :  y + K 1 I 2 y  gives the correspond- 
ing input constellation shown to the right in Fig. 2. It is easily 
verified that if the eccentricity of the ellipse is sufficiently large, 
then this is indeed the solution to (PO)-(Cl), and the constella- 
tion points satisfy the optimality condition (OC1). 

For any ellipse in R2 with the major and minor axes aligned 
along the x- and y-axes, respectively, it is apparent that a 
solution to the packing problem (PO)-(Cl) must have the follow- 

J ,  = {j: llu, - uill = d } ,  i = 1 > >  ... N 

f (u,; . . ,  U,; A )  I d2(u1; . . ,  U,; A ) .  

signal sets satisfy (OC1)-(0C2). U 

__ 

1959 

Input Constellation 
ation 

Fig. 2. Particular solution to (PO)-(Cl) for N = 3. 

ing properties: 1) one point (y , )  lies at the top (or bottom) of the 
minor axis, and 2) the remaining two points (y, and y3) are 
symmetrically placed about the y-axis. Taking 2PT = 1 in (Cl), 
this implies that the input constellation satisfies 

(x , , y , )  = (0,1), x, = -x3, y, =y3 (9) 

where U, = (x,, y,). 
We now use (OC2) to obtain an additional condition on the 

optimal shape of the ellipse. It is necessary, however, to assume 
a set of nearest neighbor points J, for each point U,. There are 
only two possible choices in this case. The first is that J ,  = 
{u2 ,  U,} and J ,  = J3 = (u1}. The second choice is that the points 
U, are equidistant from each other, that is, J, = (U,, j # i )  for 
each i = 1, 2, 3. For the first choice of nearest neighbors, (OC2) 
implies that 

(x, - X , Y  + (x, - x,), = ( y ,  - y,I2 -t (y1 - y3I2. (10) 

Combining (9), (lo), and the constraint x,' + y,' = 1, i = 1, 2, 3 
implies that y, =y ,  = 0. Consequently, there exists a solution 
to the optimality conditions (OCl)-(OC2) for which u1 = (0,1), 
U, = (- 1,0), and u3 = (l,O), as shown in Fig. 3. Clearly, this 
packing maximizes d only if A, = 0 and A, = 2T. That is, the 
output points are collinear with d = m, as shown to the right 
in Fig. 3. 

For the second choice of nearest neighbor sets, the input 
constellation must consist of the vertices of an equilateral trian- 
gle inscribed by the circle representing the input constraints. It 
is easily verified that this packing is optimal and satisfies 
(OCl)-(OC2) if A, = A, = T .  In this case, d = J6T, which is 
larger than the distance which resulted from the first assumption 
on nearest neighbor sets. Consequently, we conclude that a 
solution to (P3)-(Cl)-(C4) for N = 3 consists of a simplex in 
R2, and that the optimal ellipse (in the output space) is a circle. 
Because the number of possible nearest neighbor sets grows 
extremely fast with the number of points in the constellation, 
obtaining solutions to (OCl)-(OC2) analytically becomes quite 
difficult for N > 3. 

IV. CONJECTURED SOLUTION 

The following conjecture states that the optimal boundary 
ellipse (in the output space) is an n-dimensional sphere of radius 
r = 2 T m  for some n < N. 

Conjecture: There exists at least one solution to (P3)- 
(Cl)-(C4) for which 

A, = A, = ... = A,, n < N ( I l a )  

and 

A, = 0, m > n .  (lib) 
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Y1 Y3 
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u 2 e u 3  y; Output d2T Constellation d 2 T  
Input Constellation 

Fig. 3. Solution to (OCl)-(OC2) for N = 3 and 2PT = 1. 

It can be shown that the conjecture is consistent with 
(OC1)-(OC2) for at least one n. That is, (OCl)-(OC2) are 
satisfied by an N-point simplex in n = N - 1 dimensions, and by 
placing points at the end of each axis of an n = N/2-sphere. In 
the latter case, d = 4 T m .  One method by which the conjec- 
ture might be proved is to show that (OCl)-(OC2) do not have a 
solution if A, # A,, where A, > 0 and A, > 0. Whether or not 
this is true remains an open question. 

The conjecture is supported by the following elementary vol- 
ume argument. Rather than maximize minimum distance d for 
fixed N, as stated in the previous problems, we can alternatively 
maximize the number of points for which the minimum distance 
is at least d. That is, let 

For a channel with singular value matrix A ,  we can approximate 
N,,(T,d) as the volume of the ellipse in which the points lie 
divided by the volume of a sphere of radius d/2. The dimension 
of the signal set is n < N,,, and should be chosen to maximize 
the resulting estimate. That is, letting -yn be the volume of the 
n-sphere (sphere in R n )  with radius one, we have that 

Choosing the Ai's to maximize this expression subject to the 
constraint (C4) gives 

2T 
n (14) A, = A, = ... A = - 

and substituting into the approximation for N,, implies that 
the maximum d for given N is given by 

16PT2 4PT 
diax = max- = - (15) 

n nN2/" e R  

where r = 2T- is determined by the constraints (C1) and 
(C4). The lower bound is simply the volume of an 5-sphere of 
radius r divided by the volume of an 5-sphere of radius d,  where 
I! is the dimension for which the max occurs. This lower bound is 
valid whether or not the conjecture is true. The upper bound is 
the volume of an E-sphere of radius r + d/2 divided by the 
volume of an E-sphere of radius d/2, where Z is the II for which 
the max occurs. 

= 

4T2P/(d2e). In contrast, the upper bound in (17) is an increas- 
ing function of n. Notice, however, that n must be chosen so 
that d/2 I r is satisfied. With this restriction, it follows that 
Ti = 16T2P/d2. Substituting these values of n in (17) gives 

If the restriction that 5 be an integer is ignored, then 

(18) 

The conjecture therefore implies that the max-min squared 
distance increases linearly with T. 

For any number of messages N 2 2, we can define n * ( N )  as 
the dimension n in (11) for which the max-min distance be- 
tween the N points is maximized. That is, according to the 
conjecture, we wish to pack the N points in an n-sphere of 
radius r = 2 T m ,  which we denote as Sn(r) .  Letting 

then by definition, 

As an example, n*(2) = 1, and it is easily verified that n*(3) = 

n*(4) = 2. The preceding volume estimate (15) suggests that 
n*(N) increases as O(log N). Unfortunately, this type of argu- 
ment is too crude to provide useful upper or lower bounds on 
the asymptotic growth rate of n*(N).  

Assuming the conjecture is true, as T + m, an optimal chan- 
nel transfer function can be determined by applying Szego's 
Theorem (see [3, Lemma 8.5.21). Specifically, for any real, even, 
absolutely integrable function R( t )  with absolutely integrable 
Fourier transform F(f), let N,,(a,b) denote the number of 
squared singular values of F(f) satisfying a I A f  < b, where 
b 2 a > 0. If meas({f: F(f) = a} U {f: F(f) = b))  = 0, then 
Szego's Theorem states that 

For any fmed T and small E > 0, the conjecture states that 

(21) 

where 
1 1 

-N2T(0,1 - E )  = -N2,(1 + ~ , m )  = 0 (22) 
R ' = A = -  (16) 2T 2T log N R 

2T log, e 
and 

since the maximum in (15) occurs at n = 21og, N .  
Assuming the conjecture is true, it follows that 1 n*(N)  

(23) - 2TN,,(1 - ~ , 1  + E )  = - 
2T 

m F (  i )n  I N,,(T,d) I max 1 + - ( 2 ) n  (17) 
where N = 22RT. A channel transfer function that has this 
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asymptotic distribution of eigenvalues is 

where meas B = 2W and 

n * ( N )  
2W= lim - 

T-x 2T 
The volume approximation for d,,, given by (15) suggests 

that n * ( N )  = 21og, N as T + x ,  which would imply that the 
bandwidth 2W = 2R‘.  However, as stated previously, useful up- 
per and lower bounds on the asymptotic growth rate of n*(N) ,  
which would yield useful bounds on W,  have not been obtained. 

V. OPTIMIZATION OF TRANSMITER FILTER FOR FIXED H,(F) 

We now consider the second problem stated in Section 11-A in 
which the transmitter (or receiver) filter is optimized for fixed 
H,,(f). From the discussion in Section 11, it is apparent that the 
continuous-time problem (P2)-(CO)-(C3) is equivalent to the 
following finite-dimensional packing problem: 

subject to the constraints (Cl) and 
N -  1 

AY = 2T 
I =  1 

where the superscripts “GH” and “G” signify quantities associ- 
ated with the channels G(f)H,(f) and G(f), respectively. 

Because AGH is a very complicated function of AG for any 
fixed T ,  problem (P4)-(Cl)-(C5) is not a very useful restate- 
ment of the continuous-time problem (P2)-(CO)-(C3). However, 
for large T ,  the singular-value matrix AGH can be approximated 
by Ac’AH. That is, from Szego’s Theorem (21), it is straightfor- 
ward to show that 

1 n ; , ( N )  

lim - ( A ~ ; H  - A:A,H), = 0 (26) 
r - x  2T I = l  

provided that IC(f)l and IH( f ) l  are piecewise continuous and 
bounded, where n*,( N )  is the number of dimensions spanned by 
an optimal signal set for the channel H(f) containing N = 22RT 
signals. 

If we define the approximation error for a given optimal signal 
set U,;.’, uN as 

= Fin C ( A ~ ”  - A ; A , H ) ( ~ , ,  - (27) 

where U , ,  = [U,],, then it seems difficult to show that I&‘diax 
+ 0 as T --f x. However, if we approximate A‘;H in (P4) by 
AGAN, then optimizing the filter G ( f )  in this case becomes 
equivalent to maximizing nYIIi”)AF subject to the constraint 
(CS). In this case, AY = 2T/n*,(N) for i = l;..,n:,(N), and 
A, = 0 for i > n*,(N). As T + x, Szego’s Theorem then implies 
that the measure of the set of frequencies for which G ( f )  f 0 is 
given by 

r f m  

n*,( N )  
p = lim - (28) 

T-.: 2T ‘ 

Furthermore, since by assumption the largest singular values of 
G ( f )  multiply the largest singular values of H ( f ) ,  i.e., AFH = 
AFAY, i = l;.., n*,(N), Szego’s Theorem implies that G(f) = 

l /p  for f E B ( f ) ,  and G(f)  = 0 for f P B(f), where 

and p is selected so that meas B(f) = p. 
The asymptotic spectrum of optimal signal sets for a given 

channel H,, ( f )  as T -+ x is defined in [l], and the discussion 
there indicates that B(f) is the set of frequencies for which the 
asymptotic spectrum is nonzero. Furthermore, p decreases with 
R,  and R --f CC implies that p + 0. We therefore conclude, 
subject to the accuracy of the preceding approximation, that 
when the inputs are selected to maximize minimum distance, the 
optimum filter G ( f )  as T + x simply scales the transmitted 
spectrum. No additional improvement in minimum distance can 
therefore be obtained by choosing G(f)  to change the shape of 
the channel frequency response. 

VI. CONCLUSIONS 

The problem of jointly selecting optimal transmitted signals 
and the channel frequency response, assuming the channel is 
linear and time-invariant, has been considered where the mini- 
mum L ,  distance between channel outputs is the optimization 
criterion. Results indicate that for a fixed information rate, as 
the length of the inputs goes to infinity, the optimal channel 
frequency response is a constant wherever it is positive; how- 
ever, a proof of this does not currently exist. A crude but simple 
volume estimate suggests that the optimal channel bandwidth 
(2W)  is equal to twice the information rate (2R’). However, 
there currently is no finite upper bound on this optimal band- 
width. 

A second problem considered is the joint optimization of 
channel inputs and a transmitter filter given a fixed channel 
response. This problem also remains unsolved in general, al- 
though the discussion in the preceding section indicates that the 
optimal filter transfer function should simply be constant over 
the band where the asymptotic transmitted spectrum is nonzero. 
This seems intuitively reasonable since if the transmitted signals 
are optimized, then presumably, the transmitted spectrum is also 
optimized, eliminating the potential benefits of adding a filter at 
the transmitter or receiver. 

There are, of course, additional variations on the problems 
presented here that can be considered. As an example, one 
might choose to constrain the inputs to the channel in amplitude 
rather than energy, and/or constrain the channel impulse re- 
sponse in a different way. Different criteria (i.e., norms) for 
separating the channel outputs are also possible. However, in 
cases of interest, it seems likely that the associated packing 
problem will turn out to be intractable. 
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