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SUMMARY

1. Introduction

Minimum Mean Squared Error (MMSE) detection has been recently pro-
posed for Direct Sequence-Code Division Multiple Access (DS-CDMA) systems [1]-[3].
MMSE detectors are near-far resistant, in contrast with the conventional matched filter,
and can be adapted with standard adaptive algorithms without knowledge of user parame-
ters (i.e., spreading codes). In principle, MMSE detection can therefore alleviate the
necessity of tight closed-loop power control in DS-CDMA. However, a remaining prob-
lem is that standard adaptive algorithms, such as Least Mean Square (LMS) and Recur-
sive Least Squares (RLS), may not be able to track rapid changes in the interference envi-
ronment, such as when a new strong user begins transmission. This problem may become
critical if power control is relaxed and the algorithm is running in decision-directed
mode. In this case, decisions may occasionally become so unreliable that the adaptive
algorithm ‘‘derails’’, and fails to converge to the new interference environment. A new
training sequence must then be transmitted to guide the adaptive algorithm.

Because of the preceding problem, a blind adaptive interference suppression
algorithm, which does not require a training sequence, is desirable for DS-CDMA. Such
an algorithm has been recently presented in [4]. This algorithm assumes knowledge of
the desired user’s pulse shape and associated timing. The basic approach is to decompose
the linear MMSE detector into the sum of two orthogonal components: the matched filter
(referred to as the anchor) and an adaptive filter. The adaptive filter coefficients are
adapted to minimize output variance, subject to the orthogonality constraint. An advan-
tage of this technique is that the cost function has a unique minimum which corresponds
to the MMSE solution. However, a disadvantage is that when the desired user’s pulse
shape not precisely known, such as when multipath is present, the filter will suppress the
desired signal as well as the interference. In addition, the excess MSE produced by a
stochastic gradient algorithm based on this approach is significantly greater than that pro-
duced by the LMS algorithm with a training sequence [4].

This work is a continuation of the work in [4], and assumes the same orthog-
onal decomposition of the linear detector. Howev er, instead of using the minimum vari-
ance (MV) criterion, we consider an alternative cost function which is more closely
related to the actual MSE. This cost criterion was proposed by Sato and Godard [5] for
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blind equalization of a single-user channel. However, without the orthogonal decomposi-
tion presented in [4], this cost function is not suitable for the multi-user application due to
the presence of a local minimum associated with each user.

The orthogonally anchored Sato cost function leads to a stochastic gradient
algorithm that performs significantly better (i.e., less asymptotic MSE for the same speed
of convergence) than the MV algorithm in [4]. Furthermore, the algorithm coherently
combines multipath in the presence of mismatch, unlike the MV algorithm. This cost
function does have a local minimum associated with each user. Howev er, if the crosscor-
relation between any pair of pulse shapes is small, then the orthogonal anchor ensures
that the norm of the coefficient vector that achieves any of these local minima must be
large. These local minima can then be excluded by an appropriate norm constraint.

2. Orthogonally Anchored Sato Cost Function

For simplicity we consider a synchronous DS-CDMA system. The adaptive
algorithms that follow apply to an asynchronous system as well; however, the analysis
becomes much more tedious. Assuming a baseband model, the vector of received sam-
ples corresponding to the ith transmitted bit at the output of the chip matched filter is
given by

r[i] =
K

k=1
Σ bk[i]Aksk + n[i] (1)

where K is the number of users, r has N components, N being the processing gain,
{bk[i]} is the sequence of binary symbols corresponding to user k, sk is the spreading
code for user k where ||sk || = 1, Ak is the amplitude for user k, and n is a noise vector.

The linear MMSE detector for user 1 consists of the coefficient vector c1
where c1 minimizes E[(b1[i] − c1′r[i])2]. Here we constrain c1 to be of the form

c1 = ŝ1 + w1 (2)

where ŝ1 is an estimate of s1, and w1 is orthogonal to ŝ1. Alternatively, we express this
constraint as

c1′ŝ1 = 1. (3)

Rather than select c1 to minimize output variance, as in [4], we choose c1 to minimize the
Sato cost function

F(c1) = E





c1′r[i] − sgn (c1′r[i])



2



(4)

where sgn (x) = x/|x|.
If reliable detection of user 1 is possible, then selecting c1 to minimize the

MSE for user 1 means that with high probability sgn (c1′r[i]) = b1[i], so that F(c1) is
nearly equal to the MSE for c1 in the neighborhood of the MMSE solution. Notice, how-
ev er, that a local minimum exists for each user. To achieve the local minimum associated
with user k, w1 must be selected so that ŝ1 + w1 is nearly coincident with sk . Conse-
quently, if ŝ1′s1 is close to one and if sk ′sm is small for each pair of k and m, then ||w1|| in
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(2) must be very large to achieve this local minimum. We can therefore exclude local
minima associated with interferers by enforcing an appropriate norm constraint on the
coefficient vector c1.

3. Cost Function for Two Users

For the case K = 2 the cost function (4) can be evaluated explicitly in terms
of the signal vectors and associated amplitudes, assuming Gaussian noise. Because this
cost function is complicated, it appears to be difficult to show that only two local minima
exist for any combination of signal vectors and background noise level. However, if the
background noise level is small, then we show that all local minima for the vector c1 must
be confined to two small neighborhoods, each of which corresponds to the MMSE solu-
tion for a particular user. This is shown in the presence of a mismatched anchor. As the
noise level goes to zero, these neighborhoods shrink to the MMSE solutions, where the
orthogonal decomposition (2) is assumed.

4. Adaptive Algorithms

A stochastic gradient algorithm that minimizes (4), subject to the orthogonal
decomposition (2), is given by

w[i] = w[i − 1] − µe[i]

r[i] − (r′[i]ŝ1)ŝ1




(5)

where
e[i] = c1′r[i] − sgn (c1′r[i]), (6)

and µ is the step-size. (The MV stochastic gradient algorithm presented in [4] simply
replaces e[i] by the output sample c1′r[i].) We show that the excess MSE associated with
this algorithm is considerably less than that associated with the MV stochastic gradient
algorithm. This is due to the smaller stochastic driving term in (5).

A least squares adaptive algorithm based on the preceding approach chooses

c[i] to minimize
i

m=0
Σ e2[m] subject to c1′[i]ŝ1 = 1 and ||c[i]|| ≤ C. In this case c1[i] must

satisfy

c1[i] =




i

m=0
Σ r[m]r′[m] + λ1I





−1



i

m=0
Σ sgn (c1′[i]r[m]) ⋅ r[m]


+ λ2ŝ1 (7)

where λ1 and λ2 are Lagrange multipliers selected to satisfy the constraints. In general,
because the right hand side depends in a complicated way on c1[i], solving this set of
equations is computationally expensive. Howev er, an "approximate" solution can be
obtained by replacing sgn (c1′[i]r[m]) by past decisions.

The performance (convergence speed and excess MSE) of the preceding
algorithms will be illustrated numerically for some specific system models. The transient
behavior of averaged signal-to-interference ratio in response to the onset of a new strong
user will be presented, and will be compared with the performance of the MV algorithm
in [4] and with the conventional LMS algorithm.
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