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ABSTRACT

This paper studies the M /G/1 queue where a special (test) customer can get service only if he has
simultaneous access to the server and a second resource. All other customers only need access to the server.
The second resource becomes available after an exponentially distributed amount of time. The ordinary
customers are served according to the FIFO discipline. The test customer has the freedom to leave his place
in the queue at any time and join the end of the queue. If he reaches the server before the second resource
becomes available, he then must return to the back of the queue.

We derive the waiting time distribution of the test customer given that he always maintains his position in
the queue until he reaches the server. A number of conditions are given under which this "move-along"
policy is optimal, i.e., minimizes the test customer’s mean delay until service. These conditions depend on
the amount of information and freedom of action available to the test customer.
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1. PROBLEM DESCRIPTION, AND OUTLINE

The problem studied in this paper is derived from the scheduling problems which occur in a

service system with multiple resources, where a customer can get service only when all the resources it

needs are simultaneously available. The prototype multi-resource service system can be thought of as a

multi-processor computer system or a database system with locking mechanisms for integrity protection.

The simplified problem considered here is described in [Gopinath, 1984], and has become known as the

"Waiting for Godot" problem. This simplification still captures some of the effects of waiting for

simultaneous availability of multiple resources, and, as is seen in this paper, is reasonably tractable.

In the model studied there is one special customer, called the test customer, who is waiting for

simultaneous availability of two resources: the server and an "extraneous" resource. All other customers

only need the server. The other customers arrive according to a Poisson process with intensity λ and have

service times (with the server) which are i.i.d. random variables with distribution function F(⋅), Laplace

Stieltjes Transform (LST) φ (⋅) and expected value m. For these other customers the service discipline is

First In, First Out (FIFO). The time until the extraneous resource becomes available is an independent,

exponentially distributed random variable with parameter α (expected value α −1). At the time the

extraneous resource becomes available we say that the event E occurs, and once E has occurred the

extraneous resource remains constantly available.

At any time the test customer has two options. He can either maintain his place in the queue, or

he can voluntarily leave his place in the queue and move to the end of the queue. Whenever he reaches the

server after event E has occurred, service starts. If the test customer reaches the server before event E has

occurred, however, he must go back to the end of the queue. An interesting question, which will be

partially answered, is whether and why it is ever profitable for the test customer to use the option of moving

to the end of the queue without being forced to do so.

For a further study of waiting for simultaneous access to multiple resources it will be necessary

to consider situations where there is competition for the external resources, or where many other customers

are also waiting for their own (possibly different and independent) resources, or both.
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As stated before, the test customer has the freedom to give up his place in the queue and go

back to the end of the line even when he is not facing the server. The move-along policy is the policy where

the test customer never uses that option. With that policy he maintains his place in the queue until he

reaches the server. At that point either service starts (if in the meantime event E has occurred), or he goes

back to the end of the line.

Our first results, stated in Section 2, are expressions for the distribution (in fact its LST) and

the expected value of the time until service starts for the test customer, giv en that he uses the move-along

policy, and given that at time t = 0 there is a random variable X representing the total amount of work in

front of him in the queue, and a random variable Y representing the total amount of work behind him in the

queue. These expressions of course are in terms of the joint distribution of X and Y . Other results, also

stated in Section 2, describe under what circumstances the move-along policy is better than competing

policies. The competing policies depend on the information and degree of freedom available to the test

customer. The test customer always knows λ and F(⋅). A policy is said to be optimal if it minimizes the

expected value of the test customer’s delay until service, starting from an arbitrary state. The situations

considered are:

1.1 Complete Information and Freedom

In these policies the test customer always knows the (remaining) service times for all

customers in the system. He therefore exactly knows the total amount of work in front of him in the queue

(t f ) and the total amount of work behind him in the queue (tb). At any time he can decide (based on t f and

tb) to giv e up his place and join the end of the line. It will be proved that as long as

(1.1)λ ≤
1
m

=
1

absφ ′(0)abs

the move along policy is the best among all such "complete information and freedom" policies.

1.2 Partial Information and Complete Freedom

In these policies the test customer knows, at any time, the (remaining) service times of the

customers in front of him, but only the number of customers behind him. As a result he knows the total

amount t f of work in front of him and the total number j of customers behind him. At any point in time he
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can decide (based on t f and j) to giv e up his place and join the end of the queue. It will be proved that if

(1.2)λ ≤
α

1 − φ (α )
then the move-along policy is the best among all such "partial information and complete freedom" policies.

1.3 Minimal Information and Complete Freedom

In these policies the test customer only knows the numbers i and j of customers in front of

him, respectively behind him, and for the customer currently being served he also knows the elapsed

service time τ . At any point in time he can decide (based on i, j, and τ ) to giv e up his place and join the

end of the queue. It is clear that if (1.2) holds then the move along policy is the best of all "minimal

information and complete freedom " policies. It is possible (because of the smaller amount of information

available) to replace (1.2) with a weaker (larger) upper bound for λ (see (2.26)).

1.4 Minimal Information and Limited Freedom

In these policies the test customer only knows the numbers i and j of customers in front of him

and behind him, and is allowed to leave his place and go to the end of the queue only at service completion

epochs. This situation is called the discrete-epoch situation. It will be proved that if

(1.3)λ ≤
1

absφ ′(α )abs

then the move along policy is the best among all discrete-epoch policies.

It is shown in [Li, 1987] that the move-along policy is the best among all discrete-epoch

policies if λ ≤ 1/[mφ (α )] where m is the expected service time of a customer given that event E did not

occur during (or before) his service. Since

(1.4)
m =

absφ ′(α )abs

φ (α )
,

the two results are equivalent, although the proof given by Li is different from that given in Section 3.

In [Honig, 1987] it is shown for deterministic service that there exists a threshhold λ0, which

depends on α and m, such that for λ > λ0, the move along policy is not optimal. In Section 3 it will be

proved that in the case of a general service time distribution there exists a threshhold λ*
0 such that for

λ > λ*
0 the move along policy is not the optimal discrete-epoch policy. This result is easily explained by the
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following simple intuitive argument. Assume that λ is quite large (e.g., 200), m = 1, and that α = 0. 1, so

that the expected time until E occurs is on the order of 10 service times. Suppose that initially there is one

person ahead of the test customer. While the test customer is waiting for the customer ahead of him to

finish service, new arrivals are rapidly joining the queue behind him. Consequently, if the test customer

chooses to maintain his position until he reaches the server, he will most likely have to wait in back of all of

the (approximately 200) new arrivals. Alternatively, if the test customer decides to join the back of the

queue after, say, the first 100 new arrivals, which most likely occurs during the service epoch, he will

almost certainly reduce his delay.

The previous results suggest the following conjecture:

Conjecture: Given α and F(⋅) there exist critical levels λ*
k , 1 ≤ k ≤ 4, k = 1 for "complete information,

complete freedom", k = 2 for "partial information, complete freedom", k = 3 for "minimal information and

complete freedom", and k = 4 for "minimal information and limited freedom", with

(1.5)1
m

< λ*
1 ≤ λ*

2 ≤ λ*
3 ≤ λ*

4 ,

such that in situation k ( k=1,2,3,4) the move-along policy is the best of all situation k policies if and only

if

(1.6)λ ≤ λ*
k .

From (1.3) it is apparent that λ*
4 ≥

1
absφ ′(α )abs

.

In Section 2 we give, without proofs, the main results of this paper. The proofs of these results

are given in Section 3. Section 4 discusses a related problem, where the test customer can decide to wait

outside the queue before joining the end of the line. Finally, some specific service distributions are

considered in Section 5, and Section 6 discusses some other related problems.

2. NOTA TION AND THE MAIN RESULTS

At time zero the test customer has a total amount of work X in front of him and a total amount

of work Y behind him in the queue. The joint distribution of X and Y is given by

(2.1)P(x, y) = Pr {X ≤ x, Y ≤ y}
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and the marginal distributions of X and Y are denoted as

(2.2b)G(x) = Pr {X ≤ x} ,

H(y) = Pr {Y ≤ y} .

Given any distribution R(⋅), the LST of R is denoted by ψ R(⋅). In particular,

(2.3b)
ψ P(s1, s2) =

∞

0−
∫

∞

0−
∫ exp(−s1 x − s2 y) P(dx, dy) ,

ψG(s) =
∞

0−
∫ e−sx dG(x), ψ H (s) =

∞

0−
∫ e−sy dH(y) .

The distribution of T , the time until the test customer starts service, of course depends on P(⋅, ⋅) and on the

policy used. η P(⋅) denotes the LST of T given that the move along policy is used:

(2.4)η P(s) = E

e−sT vbar P(x, y), move along


.

If X and Y are independent we denote this as ηG,H (s). By a (hopefully not confusing) abuse of notation we

define

(2.5)η t f ,tb
(s) = E


e−sT vbar X = t f , Y = tb, move along


,

and

(2.6)η i, j(s) = ηF*i ,F* j (s)

(where F*i(⋅) denotes the i-fold convolution of F(⋅)). Finally, we define:

(2.7)η i(s) = η i,0(s)

(where η i,0(s) is defined as in (2.6)), and we write ηG(s) for ηG,H (s) when Pr {Y = 0} = 1 (no customers are

behind the test customer).

2.1 Waiting Time Distribution and Move-Along Mean Delay

Theorems 1 and 2, which follow, giv e explicit expressions for η i(s) and η P(s) in terms of λ , m,

α , φ (s), and ψ P(s1, s2), and will be proved in Section 3. The basic idea of the proofs is as follows: If there

is a deterministic amount t f of work in front of the test customer, and a random amount Y of work behind

him, then the test customer first waits for an amount of time t f . If by that time event E has occurred,

T = t f . If not, at time t f the test customer is at the end of the queue with an amount of work in front of him

equal to Y plus the service times of all customers who arrived in the time interval [0, t f ]. Averaging over
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the distribution of t f expresses ηG,H (s) in terms of the sequence {η HstarF stark (s)}∞
k=0.

Choosing Y = 0 and G = F stari expresses η i(s) in terms of {ηk(s)}∞
k=0, and makes it possible to

compute η i(s) and thus prove Theorem 1. Theorem 2 is then proved by repeated use of the same idea.

Section 3 not only contains the proofs of Theorems 1 and 2, but also a number of intermediate results such

as expressions for ηG,H (s) and η t f , tb
(s). Some readers may prefer to read Section 3 before reading the

remainder of this section.

The results in this section are expressed in terms of the sequences {xk(s)}, {xTildek(s)},

{yk(s)}, and {yTildek(s)}, which are defined as:

(2.8a)x0(s) = s, xTilde0(s) = 0,

(2.8b)xk+1(s) = s + α + λ{1 − φ [xk(s)]}, xTildek+1(s) = s + α + λ{1 − φ [xTildek(s)]},

(2.8c)yk(s) = φ [xk(s)], yTildek(s) = φ [xTildek(s)] .

For s ≥ 0 it is easily shown that

(2.9a)0 = xTilde0(s) ≤ x0(s) < xTilde1(s) ≤ x1(s) < . . . < xTilde∞(s) = x∞(s) < ∞,

and

(2.9b)1 = yTilde0(s) ≥ y0(s) > yTilde1(s) ≥ y1(s) > . . . > yTilde∞(s) = y∞(s) > 0,

where the ‘less than or equal to’ signs are equalities if and only if s = 0. The sequences xk(s) and yk(s) are

shown graphically in Figure 1. x∞(s) and y∞(s) satisfy

(2.10b)x∞(s) = s + α + λ{1 − φ [x∞(s)]},

y∞(s) = φ{s + α + λ[1 − y∞(s)]} = β (s + α ),

where β (s) is the LST of the lengths of the busy periods in the M /G/1 queue with λ , F(⋅), φ (⋅). In section 3

a number of results related to (2.9) and (2.10) will be derived which show that the infinite series in

Theorems 1, 2, and 3 below converge uniformly for Re(s) ≥ 0.

Theorem 1:

(2.11)
η i(s) = η0(s)yi

∞(s) +
∞

k=0
Σ [yi

k(s) − yTildei
k+1(s)]

= φ i(s) − [1 − η0(s)]yi
∞(s) −

∞

k=1
Σ [yTildei

k(s) − yi
k(s)],

where
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(2.12)

η0(s) = 1 −

∞

k=0
Σ [xk(s) − xTildek(s)]

x∞(s)
.

Theorem 2:

(2.13)

η P(s) = η0(s)ψ P[x∞(s), x∞(s)] +
∞

k=0
Σ (ψ P[xk(s), xk−1(s)] − ψ P[xTildek+1(s), xTildek(s)])

= ψ P(s, 0) − [1 − η0(s)]ψ P[x∞(s), x∞(s)] −
∞

k=0
Σ (ψ P[xTildek+1(s), xTildek(s)] − ψ P[xk+1(s), xk(s)]),

where x−1(s) ≡ 0.

The expected value of the time until the test customer starts service, assuming the move-along

policy is adopted and that the joint distribution of work in front of and in back of the observer is given by

(2.1), is denoted as

(2.14)
T
_

P = −
d

ds
η P(s)vbars=0 .

In analogy with the notation introduced before, T
_

G,H denotes the expected delay when P(x, y) = G(x)H(y),

T
_

t f ,tb
denotes the expected delay given that X = t f and Y = tb, T

_
ij denotes the expected delay when

G(t) = F*i(t) and H(t) = F* j(t), and T
_

i denotes the expected delay when G(t) = F*i(t) and Pr {Y = 0} = 1.

Taking the derivative of the expression in (2.13) gives the next Theorem.

Theorem 3:

(2.15)

T
_

P = T
_

0ψ P(x∞, x∞) + X
_

+
∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs





−

∂ψ P(s1, s2)
∂s2

vbars1=xk+1,s2=xk
+ λφ ′(xk)

∂ψ P(s1, s2)
∂s1

vbars1=xk+1,s2=xk




,

where

(2.16)T
_

0 =
1

x∞




1 +

∞

k=0
Σ λ k+1

k

m=0
Π absφ ′(xm)abs





is the mean delay delay given that X = Y = 0. X
_

is the expected value of X , and xk ≡ xk(0), where xk(s) is

defined in (2.8).

If G(t) = F*i(t) and H(t) = F* j(t), i.e., there are i customers ahead of the test customer, none
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of whom have received any service yet, and j customers in back of the test customer, (2.15) becomes

(2.17)
T
_

ij = T
_

0 yi+ j
∞ + im +

∞

k=0
Σ 


λ k

k

m=0
Π absφ ′(xm)abs





jy j−1
k yi

k+1 + iλ absφ ′(xm+1)absy j
k yi−1

k+1


,

where yk ≡ yk(0), and yk(s) is defined in (2.8).

2.2 Conditions for Move-Along Optimality

A policy is a sequence of actions which the test customer may take, and in general each action

depends on the entire history of states visited. The only allowable action the test customer may take is to

give up his current position in the queue, and move to the back of the queue. A policy is said to be optimal

if it minimizes (over the entire class of allowable policies) the test customer’s expected delay until the start

of service, given some arbitrary initial state.

Let D(X , Y ; Π) denote the expected time until the start of service for the test customer given

that initially the amounts of work in front of him and behind him are X , respectively Y , and given that

consistently policy Π is used. Let ΠMA denote the move along policy. The maximum principle from

dynamic programming suggests that ΠMA is optimal if and only if

(2.18)D(X , Y ; ΠMA) ≤ D(X + Y , 0; ΠMA)

for all (nonnegative) random variables X and Y . This is a consequence of well known results in Markov

Decision theory. Intuitively, it can be seen as follows: suppose there is a time t = L such that for t > L the

move-along policy will be used. The problem is to find the optimal policy for t ≤ L. But this now is a finite

horizon dynamic programming problem, and (2.18) implies that the move-along policy is always optimal.

By choosing L sufficiently large, the probability that T > L, where T is the time until the test customer

starts service, can be made arbitrarily small. This implies that the "end effect" of what happens after time L

becomes irrelevant, and that the move-along policy is optimal. This argument can be made rigorous by

observing that in the worst case (ρ > 1), the expected amount of work in the system at time t grows linearly

with t, while the probability that the extraneous resource is not yet available at time t is e−α t , and

L → ∞
lim ∫

∞

L
cte−α t dt = 0 for any constant c.

If X = t f and Y = tb, then (2.18) becomes
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(2.19)T
_

t f ,tb
≤ T

_
t f +tb,0 .

For the case G(t) = F*i(t) and H(t) = F* j(t), the condition (2.18) becomes

(2.20)
T
_

ij ≤ T
_

i+ j

for all positive integers i and j. It is therefore of interest to study T
_

t f +tb,0 − T
_

t f ,tb
as a function of λ , α , and

m. The next corollary is obtained from Theorem 3.

Corollary 1:

(2.21)
T
_

t f +tb,0 − T
_

t f ,tb
=

∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs



×

tbe−xk tb (e−xk t f − e−xk+1t f ) − λ absφ ′(xk)abst f e−xk+1t f (e−xk tb − e−xk+1tb )



Av eraging over t f and tb for the case where X and Y are independent gives

(2.22)

T
_

G*H − T
_

G,H =
∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs



×

absψ H ′(xk)abs[ψG(xk) − ψG(xk+1)] − λφ ′(xk)ψG ′(xk+1)[ψ H (xk) − ψ H (xk+1)]


.

If G(t) = F*i(t) and H(t) = F* j(t), (2.22) becomes

(2.23)
T
_

i+ j − T
_

ij =
∞

k=0
Σ λ k


k

m=0
Π absφ ′(xm)abs





jy j−1
k (yi

k − yi
k+1) − λ iabsφ ′(xk+1)absyi−1

k+1(y j
k − y j

k+1)


.

The expressions (2.21)-(2.23) are used to prove the following four Theorems, which imply the results stated

in Sections 1.1 - 1.4. The condition on λ in each case ensures that every term in the corresponding sum in

(2.21)-(2.23) is positive. The following theorems therefore give sufficient, but not necessary, conditions for

the move-along policy to be optimal.

Theorem 4: If λ m ≤ 1, the condition T
_

t f ,tb
≤ T

_
t f +tb,0 holds for all t f , tb ≥ 0.

Theorem 4 applies to the "complete information and freedom" situation and establishes the

statement made in subsection 1.1.

Theorem 5: If λ ≤
α

1 − φ (α )
, the condition T

_
G,H ≤ T

_
G*H holds for all G, H such that X = t f and
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H(t) = F* j(t), for any t f > 0, j ≥ 0.

Theorem 5 establishes the statement made in subsection (1.2). To prove the statement in

subsection (1.3) some more notation is needed. Let

(2.24)
Fτ (t) = Pr(W ≤ t + τ abs W ≥ τ ) =

F(t + τ +) − F(τ −)
1 − F(τ −)

,

(where superscript "+" denotes limit from the right and superscript "-" denotes limit from the left), i.e.,

Fτ (t) is the probability distribution of the remaining service time given that the customer has been in

service τ − time units, and let

(2.25)φτ (s) =
∞

0−
∫ e−st dFτ (t) .

Suppose that initially there are i customers ahead of the test customer, and j customers behind the test

customer, and that the elapsed time since the customer at the front of the queue started service is τ . For this

case ψG(s) = φ i−1(s)φτ (s) and ψ H (s) = φ j(s). The next theorem gives a weaker condition on λ than that

given in Theorem 5.

Theorem 6. If there are initially i customers in front of the test customer, and j customers in back of the

test customer, then the condition T
_

G,H ≤ T
_

G*H , where ψ H (s) = φ j(s), ψG(s) = φ i−1(s)φτ (s), and φτ (s) is

defined in (2.25), holds for all i, j, and τ if

(2.26)λ ≤
1

1 − φ (α ) i>0, τ ≥0
inf

1 − ψG(α )
absψG ′(α )abs

.

This condition on λ is weaker than the condition stated in Theorem 5 since
1 − ψG(α )

absψG ′(α )abs
≥ α

for any distribution G(t) over [0, ∞). If τ , the elapsed time since the customer at the front of the queue

started service, is taken to be zero, then ψG(s) = φ i(s), and the upper bound on λ in (2.26) can be evaluated

to give:

Corollary 2: If λ ≤
1

absφ ′(α )abs
, the condition T

_
ij < T

_
i+ j holds for all positive i and j.

The move-along policy is therefore optimal for the discrete-epoch problem if λ ≤ 1/absφ ′(α )abs.
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It will be shown in the next section that

(2.27)1
m

<
α

1 − φ (α )
≤

1
1 − φ (α ) i>0,τ ≥0

inf
1 − ψG(α )

absψG ′(α )abs
≤

1
absφ ′(α )abs

,

so that Theorems 4, 5, 6, and Corollary 2 give progressively weaker conditions on λ corresponding to less

information or freedom available to the test customer.

We also have the following conjecture about the expression in (2.26):

Conjecture:

(2.28)
i≥1, τ ≥0

inf
1 − ψG(α )

absψG ′(α )abs
=

τ ≥0
inf

1 − φτ (α )
absφτ ′(α )abs

.

Namely, we believe that for τ ≥ 0 fixed the expression [1 − ψG(α )]/absψG ′(α )abs is increasing in i. We

have not succeeded in proving this. Neither have we succeeded in proving the even stronger statement

(which probably is not always true) that [1 − ψG(α )]/absψG ′(α )abs is increasing if G(⋅) is stochastically

increasing.

To show that the move-along policy is not optimal for a given λ , m, and α , it suffices to find a

particular i and j such that T
_

ij > T
_

i+ j . As an example, if i = j = 1, then (2.23) becomes

(2.29)
T
_

2 − T
_

1,1 =
∞

k=0
Σ λ k


k

m=0
Π absφ ′(xm)abs


[1 − λ absφ ′(xk+1)abs](yk − yk+1) .

If λ >
1

absφ ′(α )abs
, then the first term in the sum in (2.29) will be negative. Howev er, it is not true that all

of the remaining terms become negative for large enough λ . In particular,

(2.30)absφ ′(x2)abs =
∞

0−
∫ te−[λ(1−y1)+α ]t dF(t) <

1
[λ(1 − y1) + α ]2 ,

so that λ absφ ′(x2)abs < 1  for large enough λ , and

λ absφ ′(x2)abs > λ absφ ′(x3)abs > . . . > λ absφ ′(x∞)abs > 0  (see Lemma 2 in Section 3). It therefore is

conceivable that the sum (2.29) is positive for all λ . Nev ertheless, the following theorem states that in fact

for any α , the move-along policy is not optimal if λ is large enough.

Theorem 7: Given any α and j there exist two numbers i0 and λ0 such that T
_

i+ j < T
_

ij for λ > λ0 and i > i0.

The previous results suggest that for any of the situations considered, there exists a threshhold,



-13-

λ0, such that the move-along policy is optimal if and only if λ ≤ λ0. To prove this result one must show

that if for some λ = λ ′, T
_

t f ,tb
≤ T

_
t f +tb,0 for all positive t f and tb, then it must also be true for all λ < λ ′.

(Alternatively, one could show that if for specific t f and tb, T
_

t f ,tb
≥ T

_
t f +tb,0 for λ = λ ′, then T

_
t f ,tb

≥ T
_

t f +tb,0

for any λ > λ ′.) This appears to be difficult, and it is as yet undetermined whether or not this is true.

3. PROOFS

The sequences xk(s), xTildek(s), yk(s), yTildek(s) are based on the map fs defined by

(3.1)fs(z) = s + α + λ[1 − φ (z)].

In particular,

(3.2)
xk(s) = f (k)

s (0), xTildek(s) = f (k)
s (s),

where f (k)
s is the k times iterated map.

If Re(s) ≥ 0, then fs maps the half plane Re(z) ≥ 0 into the half plane Re(z) ≥ α + Re(s). If

ρ = λ m < 1 then, for Re(s) ≥ 0, fs is a contraction map on Re(z) ≥ 0:

(3.3)absfs(z1) − fs(z2)abs = absλ[φ (z2) − φ (z1)]abs ≤ λ mabsz2 − z1abs,

where the fact that absφ ′(z)abs ≤ absφ ′[Re(z)]abs, which is decreasing in Re(z), has been used.

Suppose now that ρ = λ m ≥ 1. Since for real s ≥ 0, φ (s) is decreasing in s, xk(s) and

xTildek(s) in (2.8) are increasing in s, and yk(s), yTildek(s) are decreasing in s. Hence, for Re(s) ≥ 0, fs

maps the half plane Re(z) ≥ xk(0) into the half plane Re(z) ≥ xk+1(0). Since (see Figure 1)

λ absφ ′[x∞(0)]abs < 1, there exist a ρ *, 0 < ρ * < 1, and a k0, with the property that if k ≥ k0 then

(3.4)
absf (k+1)

s (z1) − f (k+1)
s (z2)abs < ρ * absf (k)

s (z1) − f (k)
s (z2)abs

for all s, z1, z2 with Re(s) ≥ 0, Re(zi) ≥ 0. For ρ * we could choose

(3.5)
ρ * =

1
2

(1 + λ absφ ′[x∞(0)]abs).

and for k0 we choose

(3.6)k0 = min {k ≥ 0 : λ absφ ′[xk(0)]abs < ρ * }.

(3.6) uses the fact that for s ≥ 0, xk(s) is increasing in both k and s (see Figure 1).

As a straightforward application of (3.2)-(3.4) we can obtain relations such as
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(3.7)absxk0 + k(s) − x∞(s)abs = absf (k0+k)
s (0) − f (k0+k)

s [x∞(s)]abs

≤ (ρ*)k absf (k0)
s (0) − f (k0)

s [x∞(s)]abs

≤ (ρ*)k ρ k0 absx∞(s)abs,

where ρ , ρ *, k0, do not depend on s. The series in Theorems 1, 2, and 3 therefore converge uniformly on

compact subsets of {s : Re(s) ≥ 0}. In the remainder of this section we will mostly disregard convergence

issues.

The following lemma is needed to prove Theorems 1 and 2.

Lemma 1.

(3.8)ηG,H (s) = ∫
∞

0
e−st (1 − e−α t) dG(t) +

∞

k=0
Σ ∫

∞

0
e−st e−(α +λ)t (λ t)k

k!
η HstarF stark (s) dG(t) .

Proof:. Suppose that initially the amount of work in front of the test customer is exactly t. If by the time

this work has been done by the server event E has occurred, then T = t. Otherwise, the test customer first

waits time t, and then becomes the last customer in a queue with an amount of work in front of him equal to

Y , the initial amount of work behind him, plus the work required by customers who arrived in the

meantime. (3.8) is a formal statement of this observation, and allows the amount of work in front of the test

customer to be random, as long as it is independent of the amount of work behind the test customer.

Remark. By defining

(3.9)
p(G)

k (s) = ∫
∞

0
e−(λ+α +s)t (λ t)k

k!
dG(t)

=
(−λ)k

k!



d

ds



k

ψG(λ + α + s) ,

we can rewrite (3.8) as

(3.10)ηG,H (s) = ψG(s) − ψG(s + α ) +
∞

k=0
Σ p(G)

k (s) η HstarF stark (s) .

This result makes it easy to prove Theorems 1 and 2. Theorem 1 is obtained by choosing

Y = 0 (H(x) = 1 for x ≥ 0) and G = F stari .

Proof of Theorem 1: Assume that at time zero there is no work behind the test customer, and there are i

customers in front of him, none of whom have received any service yet, so that Y = 0 and G = F stari . From
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(3.10) we have for i ≥ 1:

(3.11)η i(s) = φ i(s) − φ i(s + α ) +
∞

k=0
Σ (−λ)k

k!








d

ds



k

φ i(λ + α + s)




ηk(s) .

In addition to (3.11) we also have the boundary condition

(3.12)
η0 (s) =

α
λ + α + s

+
λ

λ + α + s
η1 (s) .

Namely, if the test customer is alone in the system, then the first event to occur is either E, or the arrival of

an ordinary customer.

To prove Theorem 1 we must show that (2.11), (2.12) are the unique solution to (3.11), (3.12).

First we substitute (3.12) into (3.11), and obtain for i ≥ 1,

(3.13)η i(s) = φ i(s) − φ i(α + s) +
α + λη1(s)
λ + α + s

φ i(λ + α + s) +
∞

k=1
Σ (−λ)k

k!








d

ds



k

φ i(λ + α + s)




ηk(s) .

This can be rewritten as

(3.14)η i(s) = bi(s) +
∞

k=1
Σ Pi,k(s) ηk(s) ,

where

(3.15)Pi,k(s) =









λφ i(λ + α + s)
λ + α + s

− λ
d

ds
φ i(λ + α + s) ,

(−λ)k

k!



d

ds



k

φ i(λ + α + s)

if k = 1

if k ≥ 2 .

From (3.9) and (3.15) we see that

(3.16)

∞

k=1
Σ Pi,k(s) =

∞

k=0
Σ

∞

0
∫ e−(λ+α +s)t (λ t)k

k!
dF stari(s) −

(α + s) φ i(λ + α + s)
λ + α + s

= φ i(α + s) −
(α + s) φ i(λ + α + s)

λ + α + s
,

and for i ≥ 1, Re(s) ≥ 0,

(3.17)
∞

k=1
Σ Pi,k (s) ≤ φ i[α + Re(s)] −

[α + Re(s)] φ i[α + λ + Re(s)]
λ + α + Re(s)

< φ i(α ) ≤ φ (α ) < 1 .
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Hence, the solution to (3.14) is unique. Moreover, the solution to (3.14) can be obtained by choosing

η(0)
i (s) arbitrarily, and then iterating the contraction map (in  ⋅ ∞)

(3.18)η(n)
i (s) = bi(s) +

∞

k=1
Σ Pi,k(s) η(n−1)

k (s) .

Clearly,
n→∞
lim η(n)

i (s) = η i(s). This is one of the ways (2.11), (2.12) can be derived. Our original derivation

was a form of "clever trying". Since the solution is available, it suffices to verify that (2.11), (2.12) indeed

form a solution to (3.11), (3.12). It is easily seen that for any distribution G on [0, ∞), and with p(G)
k (s)

defined as in (3.9), and xm(s) and ym(s) as in (2.8):

(3.19)∞

k=0
Σ p(G)

k (s)yk
m(s) = ψG[xm+1(s)] .

It now is easy to verify that (2.11), (2.12) indeed is a solution to (3.11) - (3.13). This completes the proof

of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 consists of the following steps: (1) Use Theorem 1 and

(3.9), (3.10) to obtain an expression for ηG(s). (2) Use this expression for ηG(s) and (3.9), (3.10) to get an

expression for ηG,H (s) for general G, H . This gives η t f ,tb
(s) as a special case, which immediately gives

η P(s).

From (3.9), (3.10), and Theorem 1,

(3.20)

ηG(s) = ψG(s) − ψG(s + α ) +
∞

k=0
Σ p(G)

k (s)ηk(s)

= ψG(s) − ψG(s + α ) +
∞

k=0
Σ p(G)

k (s)




∞

m=0
Σ [yk

m(s) − yTildek
m+1(s)] + η0(s)yk

∞(s)




= ψG(s) − ψG(s + α ) +
∞

m=0
Σ (ψG[xm+1(s)] − ψG[xTildem+2(s)]) + η0(s)ψG[x∞(s)]

= η0(s)ψG[x∞(s)] +
∞

m=0
Σ (ψG[xm(s)] − ψG[xTildem+1(s)])

= ψG(s) − [1 − η0(s)]ψG[x∞(s)] −
∞

m=1
Σ (ψG[xTildem(s)] − ψG[xm(s)]) ,

which is the promised expression for ηG(s). Substituting for η H*F*k (s) in (3.10), and noting that

ψ H*F*k (s) = ψ H (s)φ k(s), gives
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(3.21)ηG,H (s) = ψG(s) − ψG(s + α )

+
∞

k=0
Σ p(G)

k (s)



η0(s)ψ H [x∞(s)]φ k[x∞(s)] +

∞

m=0
Σ 


ψ H [xm(s)]φ k[xm(s)] − ψ H [xTildem+1(s)]φ k[xTildem+1(s)]






= ψG(s) − ψG(s + α ) + η0(s)ψG[x∞(s)]ψ H [x∞(s)]

+
∞

k=0
Σ (ψG[xk+1(s)]ψ H [xk(s)] − ψG[xTildek+2(s)]ψ H [xTildek+1(s)])

= η0(s)ψG[x∞(s)]ψ H [x∞(s)] + ψG(s)

+
n→∞
lim




−ψG[xTilden+1(s)]ψ H [xTilden(s)] +

n−1

k=0
Σ (ψG[xk+1(s)]ψ H [xk(s)] − ψG[xTildek+1(s), xTildek(s)])





= ψG(s) − [1 − η0(s)]ψG[x∞(s)]ψ H [x∞(s)] −
∞

k=0
Σ (ψG[xTildek+1(s)]ψ H [xTildek(s)] − ψG[xk+1(s)]ψ H [xk(s)] .

For the case Pr {X = t f } = 1 and Pr {Y = tb} = 1, ψG(s) = e−st f , and ψ H (s) = e−stb , and (3.21) specializes to

(3.22)η t f ,tb
(s) = η0(s)e−x∞(s)(t f +tb) +

∞

k=0
Σ 


e−xk(s)t f −xk−1(s)tb − e−xTildek+1(s)t f −xTildek(s)tb 



where x−1(s) ≡ 0. Averaging over t f and tb gives (2.13).

Proof of Theorem 3: To compute the derivative of the expression (2.13), it is necessary to compute

(3.23)

d

ds
[xk(s) − xTildek(s)]vbars=0 =

d

ds
(λ[yTildek−1(s) − yk−1(s)])vbars=0

= − λφ ′(xk−1)
d

ds
[xk−1(s) − xTildek−1(s)]vbars=0

= λ k
k−1

m=0
Π absφ ′(xm)abs

d

ds
[x0(s) − xTilde0(s)]vbars=0

= λ k
k−1

m=0
Π absφ ′(xm)abs

where xk ≡ xk(0). From (2.13),

(3.24)

d

ds
η P(s)vbars=0 = ψG ′(0) + [η0(0) − 1]

d

ds
ψ P[x∞(s), x∞(s)]vbars=0 − T

_
0ψ P(x∞, x∞)

+
∞

k=0
Σ d

ds
(ψ P[xk+1(s), xk(s)] − ψ P[xTildek+1(s), xTildek(s)])vbars=0

= ψG ′(0) − T
_

0ψ P[x∞(s), x∞(s)] +
∞

k=0
Σ d

ds
(ψ P[xk+1(s), xk(s)] − ψ P[xTildek+1(s), xTildek(s)])vbars=0 .

Using the fact that xk(0) = xTildek(0) = xk ,
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(3.25)∞

k=0
Σ d

ds
(ψ P[xk+1(s), xk(s)] − ψ P[xTildek+1(s), xTildek(s)])vbars=0

=
∞

k=0
Σ 


∂ψ P(s1, s2)

∂s2
vbars1=xk+1,s2=xk

d

ds
[xk(s) − xTildek(s)]vbars=0 +

∂ψ P(s1, s2)
∂s1

vbars1=xk+1,s2=xk

d

ds
[xk+1(s) − xTildek+1(s)]vbars=0




=
∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs





∂ψ P(s1, s2)
∂s2

vbars1=xk+1,s2=xk
+ λ absφ ′(xk)abs

∂ψ P(s1, s2)
∂s1

vbars1=xk+1,s2=xk




.

Combining (2.14), (3.24), and (3.25), and noting that ψG ′(0) = − X
_
, giv es (2.15).

From (2.12),

(3.26)

d

ds
η0(s)vbars=0 = −

1
x∞

d

ds



∞

k=0
Σ [xk(s) − xTildek(s)]


vbars=0 − 


∞

k=0
Σ [xk(s) − xTildek(s)]


vbars=0

d

ds



1
x∞(s)



vbars=0

= −
1

x∞

∞

k=0
Σ λ k

k−1

m=0
Π absφ ′(xm)abs = −

1
x∞




1 +

∞

k=0
Σ λ k+1

k

m=0
Π absφ ′(xm)abs





.

As a side remark, we outline an alternative derivation of (2.22). In analogy with the recurrence

relation (2.14), the following recurrence relation can be derived for the mean delay T
_

G,H ,

(3.27)T
_

G,H = X
_

+
∞

k=0
Σ p(G)

k T
_

H*F*k

where T
_

H*F*k is the mean delay until service given that the amount of work in front of the test customer is

the random variable Y plus k service times and p(G)
k ≡ p(G)

k (0). If Y = 0, then

(3.28)T
_

G = X
_

+
∞

k=0
Σ p(i)

k T
_

k

where T
_

k = T
_

F*k and p(i)
k ≡ p(F stari)

k . The boundary condition, in analogy with (3.12), is

(3.29)
T
_

0 =
1

λ + α
+

λ
λ + α

T
_

1 .

The contraction mapping technique, which can be used to obtain the solution to (3.9), (3.10), can also be

applied to (3.28), (3.29), thereby giving explicit expressions for T
_

ij and T
_

G,H .

Before proving Theorems 4-7, some basic properties of the sequences xk and yk , which follow

directly from the discussion at the beginning of this section, are stated. The sequences xk and yk are

illustrated graphically in Figure 1.

Lemma 2. For real s ≥ 0, the sequence xk(s), defined by (2.8), increases monotonically and converges to
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x∞(s), and the sequences yk(s) and absφ ′[xk(s)]abs each decrease monotonically and converge to y∞(s)

and absφ ′[x∞(s)]abs, respectively. Also, x∞(s) < s + λ + α .

Proof of Corollary 2: From (2.15), for the case ψ P(s1, s2) = e−(s1t f +s2tb),

(3.30)T
_

t f ,tb
= T

_
0e−s(t f +tb) + t f +

∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs


e−xk+1t f −xk tb [tb − λφ ′(xk)t f ] ,

so that

(3.31)

T
_

t f +tb,0 − T
_

t f ,tb
= tb +

∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs




−λφ ′(xk)(t f + tb)e−xk+1(t f +tb) − tbe−xk+1t f −xk tb + λφ ′(xk)t f e−xk+1t f −xk tb 



= tb +
∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs




−tbe−xk+1t f [e−xk tb + λφ ′(xk)e−xk+1tb ] + λφ ′(xk)t f e−xk+1t f [e−xk tb − e−xk+1tb ]



=
∞

k=0
Σ λ k


k−1

m=0
Π absφ ′(xm)abs




tbe−xk tb (e−xk t f − e−xk+1t f ) + λφ ′(xk)t f e−xk+1t f (e−xk tb − e−xk+1tb )


.

The next lemma proves Theorem 4 by showing that if λ m ≤ 1, then all terms in the series

(2.21) are nonnegative.

Lemma 3: The function

(3.32)f (xk , xk+1) = tbe−xk tb (e−xk t f − e−xk+1t f ) + λφ ′(xk)t f e−xk+1t f (e−xk tb − e−xk+1tb )

is greater than or equal to zero for t f ≥ 0, tb ≥ 0, and λ absφ ′(xk)abs ≤ 1.

Proof: Observe that

(3.33)f (xk , xk) = 0 .

Also,

(3.34)

∂ f

∂xk+1
= tbt f e−xk tb−xk+1t f + λφ ′(xk)t f



−t f e−xk+1t f (e−xk tb − e−xk+1tb ) + tbe−xk+1t f −xk+1tb 



= tbt f e−xk tb−xk+1t f + λφ ′(xk)t f e−xk+1t f [(t f + tb)e−xk+1tb − t f e−xk tb ]

= tbt f e−xk+1t f (e−xk tb − λ absφ ′(xk)abse−xk+1tb ) + λ absφ ′(xk)abst2
f e−xk+1t f (e−xk tb − e−xk+1tb ) .

Lemma 2 states that xk+1 > xk , therefore the derivative (3.34) is positive, which implies that f (xk , xk+1) is
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positive, if λ absφ ′(xk)abs ≤ 1. Every term in the sum (3.31) is guaranteed to be positive if

λ absφ ′(x0)abs = λ m ≤ 1.

Notice that if λ m = 1, then the sum (3.31) will be strictly positive, since absφ ′(xk)abs is

strictly decreasing with k. It therefore seems likely that there exists a threshhold λ0 > 1/m, such that if

λ ≤ λ0 the sum (3.31) is positive for all positive t f and tb.

Proof of Theorem 5: For the case ψG(s) = e−st f and ψ H (s) = φ j(s), (2.22) becomes

(3.35a)
T
_

G*H − T
_

G,H =
∞

k=0
Σ λ k


k

m=0
Π absφ ′(xm)abs


f (xk , xk+1)

where

(3.35b)f (xk , xk+1) = 


jy j−1
k (e−xk t f − e−xk+1t f ) − λ t f e−xk+1t f (y j

k − y j
k+1)


.

Now,

(3.36)f (0, 0) = 0

and

(3.37)∂ f

∂xk+1
= λ t2

f e−xk+1t f (y j
k − y j

k+1) + (1 − λ absφ ′(xk+1)abs) jt f e−yk+1t f y j−1
k ,

which is positive for k ≥ 1 if 1 − λ absφ ′(α )abs ≥ 0. For k = 0,

(3.38)
f (xk , xk+1) = f (0, α ) = j(1 − e−α t) − λ te−α t[1 − φ j(α )] ,

which is greater than or equal to zero if

(3.39)λ ≤
eα t − 1

t
⋅

j

1 − φ j(α )
.

It is easily shown that
eα t − 1

t
≥ α , with equality as t approaches zero. Furthermore, it can be shown that

the function
j

1 − a j
, where 0 ≤ a < 1 and j ≥ 1 is an integer, increases with j, so that if

(3.40)λ ≤ min 


1
absφ ′(α )abs

,
α

1 − φ (α )



,

then f (xk , xk+1) ≥ 0 for all k ≥ 0. Referring to Figure 2, it is clear that

(3.41)α absφ ′(α )abs < 1 − φ (α ) < α absφ ′(0)abs = α m ,

which proves the result.
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Proof of Theorem 6: Substituting ψ H (s) = φ j(s) into (2.22) gives

(3.42)
T
_

G,H − T
_

G*H =
∞

k=0
Σ λ k


k

m=0
Π absφ ′(xm)abs


f (xk , xk+1)

where

(3.43)
f (xk , xk+1) = jy j−1

k [ψG(xk) − ψG(xk+1)] − λ absψG ′(xk+1)abs(y j
k − y j

k+1) .

As in the preceding proofs, it is easily shown that for k ≥ 1, ∂ f /∂xk ≤ 0, and hence f (xk , xk+1) ≥ 0, if

λ absφ ′(α )abs ≤ 1. For k = 0,

(3.44)
f (0, α ) = j[1 − ψG(α )] − λ absψG ′(α )abs[1 − φ j(α )] ,

which is greater than or equal to zero if

(3.45)λ ≤
j

1 − φ j(α )
⋅

1 − ψG(α )
absψG ′(α )abs

for all possible ψG(s) and j ≥ 1. Substituting ψG(s) = φ i−1(s)φτ (s), and noting that the right side of (3.45) is

minimized by setting j = 1, and is equal to 1/absφ ′(α )abs for i = 1 and τ = 0, gives Theorem 6.

Proof of Corollary 2: For this case ψG(s) = φ i(s), and we show that

1 − ψG(α )
absψG ′(α )abs

=
1 − φ i(α )

iφ i−1(α )absφ ′(α )abs

increases with i. Assume that this is false. Then

(3.46)1 − φ i(α )
iφ i−1(α )

>
1 − φ i+1(α )
(i + 1)φ i(α )

for some i. This implies that

(3.47)(i + 1)φ (α ) − φ i+1(α ) > i .

The left side assumes its maximum value, however, when φ (α ) = 1, therefore this cannot be true.

Consequently,

(3.48)
i≥1

min
1 − ψG(α )

absψG ′(α )abs
=

1 − φ (α )
absφ ′(α )abs

and Corollary 2 follows from Theorem 6.

We remark that Corollary 2 can also be proved directly from (2.23). In particular, it is easily

shown that

(3.49)
f (yk , yk+1) = jy j−1

k (yi
k − yi

k+1) − λ absφ ′(α )absiyi−1
k+1(y j

k − y j
k+1) ≥ 0
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for i ≥ 1, j ≥ 1, and λ absφ ′(α )abs ≤ 1.

Proof of Theorem 7: From (2.23) and Lemma 2

(3.50)

T
_

i+ j − T
_

ij < jm(1 − yi
1) − λ imabsφ ′(x1)absyi−1

1 (1 − y j
1)

+ λ mabsφ ′(x1)abs[ jy j−1
1 (yi

1 − yi
2) − λ absφ ′(x2)absiyi−1

2 (y j
1 − y j

2)]

+ λ2mabsφ ′(x1)absabsφ ′(x2)abs
∞

k=2
Σ (λ absφ ′(x2)abs)k−2 jy j−1

2 (yi
2 − yi

∞)

< jm(1 − yi
1) − λ mabsφ ′(x1)absiyi−1

1 (1 − y j
1) + λ mabsφ ′(x1)absjyi+ j−1

1

+ λ2absφ ′(x1)absabsφ ′(x2)abs
jmy j−1

2 (yi
2 − yi

∞)
1 − λ absφ ′(x2)abs

,

assuming λ is large enough so that λ absφ ′(x2)abs < 1. For fixed α it can be shown that the last term goes

to zero faster than O(1/λ). Therefore, for large λ ,

(3.51)
T
_

i+ j − T
_

ij < jm(1 − yi
1) + λ mabsφ ′(x1)absyi−1

1 [ jy j
1 − i(1 − y j

1)] + O(1/λ)

which can be negative only if

jy j
1 < i(1 − y j

1) ,

or

(3.52)y j
1 <

i

i + j
.

Since y1 < 1, i can be selected large enough so that (3.51) is true for any j, and if λ is greater than some

threshold λ0, then from (3.51), T
_

i+ j − T
_

ij < 0.

4. A MODIFIED PROBLEM

So far we have assumed that the test customer can always give up his place in the queue, and

move to the back of the queue. It has been shown that if λ is large enough, using this option will decrease

the test customer’s expected delay until service. Suppose, however, that the test customer cannot move to

the back of the queue once he is in the queue, but upon reaching the server before E has occured, he can

choose to wait outside the queue any amount of time before rejoining the back of the queue. The amount of

time the test customer waits is determined according to some policy, i.e., it may be determined by

observing the length of the queue. Initially, then, the test customer may wait before joining the queue, but

once in the queue he must stay in the queue until he reaches the server. This version of the problem was in
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fact the original version [Gopinath (1984)], and will be referred to as Problem 2 (P2). The problem

considered so far will be referred to as Problem 1 (P1).

Lemma 4. Given any λ , α , and m, if the move-along policy is optimal for P1, then it is also optimal for

P2.

Proof: Any allowable policy for P2 can be effectively duplicated by a policy for P1 (but not vice versa).

Therefore the optimal policy for P1 must perform at least as well as the optimal policy for P2.

Theorems 4-6 and Corollary 2 therefore also apply to P2. Because any policy for P1 cannot in general be

duplicated by a policy for P2, the converse to Lemma 4 may not be true. That is, if the move-along policy is

not optimal for P1, it is unknown whether or not this implies that the move-along policy is not optimal for

P2. The following Theorem states the analogous result for P2 as was stated in Theorem 6.

Theorem 8: For P2, given any α and m, there exists a λ0 such that if λ ≥ λ0, the move-along policy is not

optimal.

Proof: Assume that initially there are i customers in the queue, and that the test customer must decide to

either join the queue immediately, or wait until either there are i′ > i customers in the queue, or until E

occurs, whichever occurs first. If the test customer chooses to wait, the mean delay until service is

(4.1)
T
_

i ′ = pi,i′ D + (1 − pi,i′)[T
_

i′ + τ i,i′(λ)]

where pi,i′ is the probability that E occurs before the queue length becomes i′, D is the mean delay until

service given that E occurs before the queue length becomes i′, and τ i,i′(λ) is the mean time it takes to go

from a queue length of i to i′ (not including the test customer). Since D must be less than the mean delay

given that E occurs after the queue length becomes i′, waiting outside the queue reduces the mean delay if

(4.2)
T
_

i − T
_

i′ > τ i,i′(λ)

for some i′. Clearly,

(4.3)
λ→∞
lim τ i,i′(λ) = 0.

Using (2.17) and Lemma 2 gives the lower and upper bounds
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(4.4)T
_

i > T
_

i = im + yi
∞T

_
0 + λ miyi−1

1 absφ ′(x1)abs

and

T
_

i < T
__

i = im + yi
∞T

_
0 + λ miyi−1

1 absφ ′(x1)abs + λ2imyi−1
2 absφ ′(x1)absabsφ ′(x2)abs

∞

k=2
Σ (λ absφ ′(x2)abs)k−2 .

(4.5)

The infinite series can be summed provided that λ absφ ′(x2)abs < 1. From (2.30) this is always true if λ is

large enough. Consequently, (4.5) becomes

(4.6)
T
__

i = im + yi
∞T

_
0 + λ miyi−1

1 absφ ′(x1)abs +
λ2mabsφ ′(x1)absabsφ ′(x2)absiyi−1

2
1 − λ absφ ′(x2)abs

.

The condition (4.2) is satisfied if T
_

i − T
__

i′ > τ i,i′(λ), or

(4.7)(i′ − i)m + T
_

0(yi′
∞ − yi

∞) + λ mabsφ ′(x1)abs(i′yi′−1
1 − iyi−1

1 ) +
mλ2absφ ′(x1)absabsφ ′(x2)absi′yi′−1

2
1 − λ absφ ′(x2)abs

+ τ i,i′(λ) < 0 .

For fixed α , m, i, and i′ > 1,

(4.8)
λ→∞
lim [λ2absφ ′(x2)absyi′−1

2 ] = 0 .

Consequently, for large λ the left hand side of (4.7) becomes

(i′ − i)m + T
_

0(yi′
∞ − yi

∞) + λ mabsφ ′(x1)abs(i′yi′−1
1 − iyi−1

1 ) ,

which is negative for large enough λ if

(4.9)
i′yi′−1

1 < iyi−1
1 .

Since the function f (u) = iui−1 decreases with i when u < 1  and i is large enough, (4.9) is true for large

enough i′. Consequently, for any α , m, and initial number of customers i, if λ is large enough, the observer

can reduce his delay until service by waiting for the number of customers in the queue to increase to i′.

Therefore if λ is greater than some threshold value λ0, then the condition (4.2) is true for some i and i′, and

the move-along policy is not optimal.

5. EXAMPLES

We conclude with two specific examples, namely the M /D/1 and M /M /1 queues.

Deterministic Service Time (M/D/1)

For this case
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(5.1)
F(t) =





0
1

if t ≤ m

if t > m
,

and

(5.2c)

φ (s) = e−sm

φ ′(s) = − me−sm

φτ (s) = e−s(m−τ ), φτ ′(s) = − (m − τ )e−s(m−τ ) .

To compute T
_

G,H , it is necessary to compute the sequence

(5.3)xk+1 = λ(1 − e−xk ) + α , x0 = 0 .

For the case ψG(s) = φ i−1(s)φτ (s) = e−s(im−τ ), and ψ H (s) = e−sjm, (2.22) becomes

(5.4a)T
_

G,H = im − τ + e−x∞[( j+i)m−τ ]T
_

0 +
∞

k=0
Σ λ k[ jm + λ(im − τ )e−xk m] exp 


− jmxk − (im − τ )xk+1 − m

k−1

l=1
Σ xl




where

(5.4b)T
_

0 =
1

x∞




1 +

∞

k=0
Σ (λ m)k+1 exp 


−m

k

l=0
Σ xl







.

From Theorem 5, assuming that the test customer can move to the back of the queue at any time, the move-

along policy is optimal if

(5.5)λ ≤
α

1 − e−α m
,

and from Corollary 2, the move-along policy is optimal for the discrete-epoch problem if

(5.6)
λ ≤

1
m

emα .

Exponential Service Time (M/M/1)

For this case

(5.7)
F(t) = Fτ (t) = 1 − e−t/m,

and

(5.8b)
φ (s) = φτ (s) =

1
1 + sm

,

φ ′(s) = φτ ′(s) = −
m

(1 + sm)2 ,

and
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(5.9)xk+1 =
λ mxk

mxk + 1
+ α .

For the case ψG(s) = φ i−1(s)φτ (s) = φ i(s), and ψ H (s) = φ j(s), the expression for T
_

G,H becomes

(5.10a)T
_

ij = im + 


1
1 + mx∞




j+i

T
_

0 +
∞

k=0
Σ λ k


k

l=0
Π m

(1 + mxl)2



1
(1 + mxk) j−1(1 + mxk+1)i





j +
λ mi

(1 + mxk+1)(1 + mxk)




where

(5.10b)T
_

0 =
1

x∞




1 +

∞

k=0
Σ (λ m)k+1


k

l=0
Π 1

(1 + mxl)2






.

In the case of exponentially distributed service times the situations described in subsections (1.3) (minimal

information and complete freedom) and (1.4) (minimal information and limited freedom) become identical.

From Theorem 6 or Corollary 2 the move-along policy is guaranteed to be optimal if

(5.11)
λ ≤

(1 + mα )2

m
.

From Theorem 5, if the test customer knows the service times of the customers ahead of him, then the

move-along policy is optimal if

(5.12)
λ ≤

1 + mα
m

.

6. UNANSWERED QUESTIONS

Assuming the conjecture stated in Section 1 is true, then Theorems 4 through 6 give lower

bounds on the critical levels λ*
k . Further improvements to these bounds have not yet been obtained.

The following Theorem applies to the case where the queueing system has a finite capacity

C < ∞, where incoming customers are blocked and disappear if there are already C customers in the

system (not including the test customer).

Theorem 9: For an M /M /1 queue with C ≤ 4, the condition T
_

ij < T
_

i+ j is always true, independent of λ , m,

and α .

Proof: For finite C, a finite set of linear difference equations for the mean delay T
_

ij can be written down by

inspection from which the theorem is easily verified. Details are ommitted.

It is not known if Theorem 9 is true for any C > 4. For a very large capacity queueing system,
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Theorem 7 must apply. Consequently, there must exist a threshhold λ (not necessarily finite), which is a

function of C, such that the move-along policy is optimal if λ ≤ λ . How does λ behave as C goes to

infinity?

Perhaps the most interesting generalization of the problem studied here is the case where other

customers in the queue are also waiting for events to occur before they can be served. For example, all

customers may be waiting for independent events, each of which occurs after an exponentially distributed

amount of time, and each may decide to follow the move-along policy. Is the move-along policy optimal for

a particular test customer?
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