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Abstract—Adaptive iterative receivers which combine mul-
tiuser decision-feedback detection with maximum a posteriori
(MAP) decoding and soft feedback are presented for synchronous
coded direct sequence-code-division multiple access. Both succes-
sive and parallel demodulation of users are considered. Optimal
filters are derived using both minimum mean squared error and
least squares (LS) criteria. The latter assumes short (repeated)
spreading codes and that the users to be demodulated simulta-
neously transmit training sequences. The LS criterion does not
require prior knowledge or estimates of spreading codes and
channels. Simulation results show that the adaptive receiver can
perform significantly better than the standard (soft) interference
canceller, since the adaptive algorithm attempts to measure and
exploit the second-order statistics between the input and output of
the MAP decoder. With limited training, successive feedback and
decoding performs significantly better than parallel feedback. The
effect of code rate on performance is examined, and reduced-rank
versions of the adaptive LS algorithms, which can reduce training
overhead, are also presented.

Index Terms—Adaptive filters, code division multiaccess
(CDMA), interference cancellation, interference suppression,
iterative methods, MIMO systems, multiuser detection.

I. INTRODUCTION

MULTIUSER decision-feedback detectors (DFDs) for
direct-sequence (DS)-code-division multiple access

(CDMA) based on the minimum mean squared error (MMSE)
criterion have been presented in [1]–[3]. The successive-deci-
sion feedback detector (S-DFD) was presented in [1], whereas
a parallel-DFD (P-DFD) based on the MMSE criterion was
presented in [3]. The MMSE criterion has the attractive prop-
erty that with short or repeated spreading sequences the filter
coefficients can be estimated without side information about
user signatures, amplitudes, and channels. It has been shown
in [4]–[6] that given sufficient , the MMSE DFD can
perform significantly better than the analogous linear detector
at relatively high loads (users/bandwidth expansion). However,
at low to moderate , error propagation can severely
degrade the performance of the DFD.
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In this paper, we combine adaptive multiuser decision feed-
back detection with repeated spreading sequences [2], [7] with
coding and iterative (turbo) decoding as presented in [8]–[12].
Specifically, soft outputs from the DFD are used to estimate
likelihoods which are interleaved and input to the MAP decoder
for the convolutional code. The MAP decoder computes a pos-
teriori probabilities (APPs) for each user’s coded bits, which are
used to generate soft estimates. These soft estimates are subse-
quently used to update the DFD filters, deinterleaved, and fed
back through the feedback filter. This process is then iterated.

In the adaptive receiver presented, the DFD filters are jointly
optimized according to a least squares (LS) criterion at each it-
eration. This is in contrast to prior work in which the feedback
filter is fixed for all iterations [10], [11] or where the filters are
re-estimated for each symbol [11], [12]. (See also [13], which
uses a different adaptation method for filter estimation.) The re-
sulting receiver requires only a training sequence for estimation
of the filter coefficients. Prior knowledge of spreading codes,
channels, and noise statistics is not required, provided that the
channels and relative delays for the users of interest are sta-
tionary within each packet.

Our numerical results show that for the system parameters
considered, the adaptive iterative receiver performs significantly
better than the fixed DFD optimized according to the MMSE cri-
terion, assuming perfect feedback [2]. This is because the adap-
tive algorithm attempts to exploit the joint statistics between the
input symbols and the soft decisions, which are fed back through
the feedback filter. We derive the MMSE DFD filters in terms
of these joint statistics.

The performance of the adaptive iterative receivers is studied
by simulation as a function of background signal-to-noise ratio

, training, load, and code rate. Our results show that
at a moderate load ( where is the number of
users and is the bandwidth expansion), the iterative receivers
achieve near single-user performance at an close to the
lower bound corresponding to the large system capacity [14].
At larger loads, this gap widens, and the performance becomes
much more sensitive to the code properties.

Parallel demodulation is also compared with successive
demodulation. We present an iterative successive (IS)-DFD in
which the most recently available soft decisions are fed back
and used to estimate the filters. (See also [3] and [15], where
related S-DFDs are presented.) Given sufficient training and
iterations, both the P- and IS-DFDs exhibit the same perfor-
mance. With limited training, the IS-DFD (or a hybrid which
switches from the IS- to the P-DFD) performs substantially
better than the P-DFD.
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Fig. 1. System model.

Finally, we present reduced-rank versions of the adaptive LS
algorithms, which can reduce the amount of training overhead
required. These algorithms are motivated by related work on
reduced-rank linear interference suppression [16]. Numerical
results show that with limited training the reduced-rank algo-
rithms offer a signficant performance improvement for large
systems.

The adaptive iterative receivers are described in Section II.
Section III presents the adaptive algorithms, and simulation re-
sults are presented in Section VI. The effect of code rate is ex-
amined in Section VII and reduced-rank adaptive algorithms are
presented in Section VIII.

II. SYSTEM MODEL AND RECEIVERS

The system model is shown in Fig. 1. For simplicity, we
consider an ideal synchronous CDMA system with additive
white Gaussian noise (AWGN). The extension to an asyn-
chronous CDMA system with multipath is briefly discussed
in Section IX. We will also assume that the users are received
with equal powers, although this is not required for the adaptive
receivers to be presented.

Each user’s sequence of information symbols ( for
user ) is the input to a convolutional coder (the same for each
user); the coder outputs are sent through a random interleaver
(different for each user), and these are transmitted through the
ideal synchronous DS-CDMA channel. The received vector of

samples during symbol interval is given by

(1)

where is the matrix of spreading codes, is the
number of users, is the th vector across users of interleaved
coded symbols, and is the vector of noise samples with
covariance matrix . Let be the total bandwidth
expansion due to coding at rate and spreading. We assume

binary information and coded symbols so that the th element
of , .

The received vector is the input to a nonlinear filter, con-
sisting of feedforward and feedback matrices and ,
where denotes iteration. Referring to Fig. 1(b), the output of
the DFD corresponding to user at time is

(2)

where “ ” denotes complex conjugate transpose, and
are the feedforward and feedback filters, respectively,

and is the input to the feedback filter at time , all
corresponding to the th iteration for user .

For the P-DFD, the vector does not depend on , i.e.,
soft decisions from the preceding iteration are used for parallel
cancellation. An adaptive linear receiver is used for the first iter-
ation. For the IS-DFD, the users are demodulated successively,
and the most recent decisions are used for cancellation. After
each iteration, the users are reordered, and the feedback filter

cancels all demodulated users, as in the P-DFD. That is,
the first decisions in are from the current iteration,
and the remaining decisions are from the preceding iteration.

Ideally, if , then can be selected to
cancel the multiple-access interference. The feedforward filter

then suppresses unknown (e.g., other cell) interfer-
ence. Computation of , , and is described in
Section III.

For purposes of MAP decoding, we assume that the interfer-
ence plus noise at the output of the subtractor shown in Fig. 1
(corresponding to ) is Gaussian. This assumption is reasonable
when is close to or when there are many active users. For
the th user we therefore write

(3)
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where is a constant and is a Gaussian random
variable with variance . Since

(4)

and

(5)

estimates and can be obtained via the corre-

sponding sample averages over the packet. These estimates
are used to compute the detector a posteriori probabilities

which are deinterleaved and input
to the MAP decoder for the convolutional code. In what
follows, we assume that the MAP decoder generates APPs

, which are used to compute the input to the
feedback filter .

III. COMPUTATION OF DFD FILTERS

We first consider MMSE optimization of and , followed
by the LS adaptive estimation algorithm.

A. MMSE Optimization

For the P-DFD our objective is to select and to minimize
the mean squared error (MSE)

(6)

where does not depend on , and the dependence on itera-
tion and symbol is not shown for convenience. With perfect
feedback, i.e., , the optimal and are derived in [2]
and [3]. In that case

(7)

where

(8)

is the linear MMSE filter and

(9)

Let

(10)

denote the error corresponding to , which has covariance
matrix

(11)

Let denote the th column of with the th element re-
moved ( elements), and let denote the

matrix, which is with both the th row and th column re-
moved. Let the matrix denote with the zeros
along the diagonal removed. Then the nonzero entries of the th
column of the feedback filter is given by

(12)

This filter minimizes the MSE over
. For the ideal single-cell synchronous CDMA case consid-

ered, it can be shown that , where is a constant, and
. That is, the optimized P-DFD with perfect

feedback reduces to the standard interference canceller. In the
presence of other-cell interference, becomes the linear MMSE
filter given that only other-cell users are present, and again
cancels intracell interference with ideal feedback.

For the S-DFD, we optimize and column by column, i.e.,
for user , the MSE is

(13)

where

(14)

With perfect feedback, the MMSE solution for is

(15)

where

(16)

is the identity matrix, and is the th unit vector. It
is straightforward to show that this solution is equivalent to (7)
and (12) [3].

For the case of interest, where , the MMSE solution for
and depends on the joint (second-order) statistics of , ,

and . Computation of will be discussed shortly, but for now
we assume that is a random variable and that correlations with

and are well defined. For the numerical results in Section IV,
are the soft decisions on the coded bits at the output of the

MAP decoder. Let

(17)

where and are random vectors. Minimizing in (6) gives
the MMSE feedforward filter

(18)

The feedback matrix is defined in terms of the matrices

(19)

(20)

Let denote with the th row and column removed (a
matrix), and let denote the th column

of with the th component removed ( elements). Then

(21)

where is defined as before.
For the S-DFD, we minimize in (13), which gives (15)

where

(22)
where denotes the th column of . Unlike the
case with perfect feedback, in this case, the solutions corre-
sponding to the P- and S-DFDs are generally different.
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B. LS Optimization

Determining , , and in terms of , the noise
statistics, the interleaver, and code properties appears to be dif-
ficult, which makes an assessment of true MMSE performance
quite difficult. An alternative adaptive approach is to select
and to minimize the LS cost function computed over all
available input vectors

(23)

This gives the same expressions for and as given by (15)
and (22) (or (18) and (21) for the P-DFD), where the covariance
matrices are replaced by the corresponding sample covariance
matrices [17]. That is, for sequences and ,

, we redefine

(24)

The preceding LS algorithm is decision-directed since it de-
pends on the coded bit sequence . For training, the se-
quence of training bits would have to be coded and interleaved
in order to measure , , and . To avoid this com-
plication, we can instead update and according to an adap-
tive LS algorithm based on perfect feedback during training [18]
and subsequently switch to decision-directed mode during the
remainder of the data packet. Either hard or soft decisions on

can be used to update in (7). For the P-DFD the
error covariance matrix at the output of is then estimated as

(25)

and is computed according to (12) where is replaced by
. Hard or soft decisions can again be used to compute . This

algorithm minimizes the LS cost function when .
Simulation results indicate that using soft decisions gives better
performance than using hard decisions. Furthermore, the soft
decision-directed version of this simplified LS adaptive algo-
rithm [using (25)] is observed to perform as well as the pre-
ceding “exact” soft decision-directed LS algorithm [using (11)].
The former algorithm was therefore simulated to generate the
numerical comparisons in Section VI.

IV. COMPUTATION OF FEEDBACK SYMBOLS

The MAP decoder computes for each
and . We wish to use this information to compute the

symbols , which are fed back through . For fixed and
, we can choose to minimize the MSE given by (6), which

gives

(26)

where is the soft estimate of
at the output of the MAP decoder. If is unknown (e.g., due
to multipath), then can be replaced by the sample covari-
ance matrix . A simplification occurs when is selected

to cancel the interference at the output of given perfect feed-
back . In that case it can be shown that
so that . The numerical results in Section VI use this
simplification, rather than using (26).

It has been pointed out in [19] that using APPs to compute
in (26) gives a biased estimate of the transmitted symbols,

which are fed back for interference cancellation. This bias can
be eliminated by replacing the APPs with the extrinsic infor-
mation computed by the decoder. That is, the extrinsic infor-
mation is obtained by removing the a priori information from
the APP. (Extrinsic information is typically used in decoding
of turbo codes.) For the adaptive multiuser receivers considered
here, numerical experiments have shown that replacing APPs
with extrinsic information results in much slower convergence
with increasing iterations ( dB penalty after five iterations
relative to feedback with APPs), although the packet error rate
converges to a slightly better result (a fraction of a decibel im-
provement after 50 iterations).

V. TURBO ITERATIONS

Given a sequence of received vectors and a
training sequence , the receiver operations for the
IS-DFD follow.

For the first iteration , do for :

1) Compute the LS filters and with the training
data according to (15) and (22), where the sample covari-
ance matrices are defined according to (24).

2) Compute , , from (2).
3) Compute detector a posteriori probabilities for user .
4) Deinterleave.
5) Decode and compute the sequence ,

, from MAP decoder outputs.
For each (number of iterations):

1) Reorder users. Do for (according to the
new order):

a) interleave MAP outputs;
b) compute and from the received vectors,

training sequence, and ;
c) compute MAP inputs for user and deinterleave;
d) decode and compute the sequence , or if

, output hard estimates of information bits
.

For the first iteration the elements of the vectors
and are zero, since only soft decisions for users

are available. For the th iteration, , the
elements of are soft decisions from iteration

, and, in general, only the th entry of is zero.
Numerical experiments show that the performance of the

IS-DFD is sensitive to the criterion used to reorder the users.
For the numerical results in Section VII, the users at the
beginning of iteration are ordered according to increasing
values of

(27)

where the sum is over all symbols in the packet.
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Fig. 2. Receiver comparison for system with 12 users, bandwidth expansion
of 16 and 200 training symbols.

TABLE I
CONVOLUTIONAL CODES FROM [25] USED TO GENERATE THE RESULTS IN

SECTION VII. d IS THE FREE DISTANCE AND  IS THE ASYMPTOTIC

CODING GAIN. RATE 3/4 AND 7/8 CODES ARE PUNCTURED

RATE 1/4 AND RATE 1/8 CODES, RESPECTIVELY

For the P-DFD, the users can be decoded in parallel so that
there is no loop over the user index when computing and

. For the first iteration, (linear LS filter) and
. The filters are recomputed at each iteration according

to the decision-directed algorithm described in Section III.

VI. NUMERICAL COMPARISON

Fig. 2 shows a plot of packet error rate versus for the
following receivers:

1) linear MMSE (no iterations);
2) MMSE P-DFD with coefficients calculated assuming per-

fect feedback ;
3) “approximate” LS P-DFD based on perfect feedback, but

using soft decisions [(7), (12), and (25)].
A rate code with the properties shown in Table I was
used to generate these curves. The LS P-DFD based on both
soft and hard decisions [(18) and (21)] was also simulated, but
those results are not shown since with soft decisions the results
are virtually identical to those of the “approximate” LS algo-
rithm. Hard decisions cause a slight degradation in performance

dB . Plots are shown for 5, 10, and 25 iterations. All
results are averaged over the users. Also shown is the single-user
bound. The load , where is the number of
users, and is the bandwidth expansion factor. Random
Gaussian spreading sequences were used with unit energy. This

type of small system might correspond to a wireless local area
network.

The data packets contain 500 information symbols, and for
the results in Fig. 2, we assume a training sequence of 200 sym-
bols. A packet is in error if it contains one or more bit errors.
In addition to being an appropriate performance measure for
a packet data network, the packet error rate (PER) is a better
performance measure than bit-error rate (BER) for the random
short code system considered. This is because a high cross cor-
relation between two spreading sequences may cause a burst
of errors in the associated packets, which raises the average
BER even though the packet error rate may be low. Changing
spreading codes from one packet to the next equalizes the packet
error rate over the user population. Additional simulations with
larger packet sizes show that these results essentially scale to
larger packets so that the fractional overhead due to training can
be decreased. (For packets up to four times longer, the perfor-
mance degradation was approximately 0.5 dB, which is due to
the PER performance measure.)

Because of the high load, the linear receiver has a PER near
one for the range of shown. It is interesting that the op-
timized (MMSE) P-DFD assuming perfect feedback performs
significantly worse than the adaptive P-DFD. This is because
the adaptive P-DFD attempts to measure and exploit the joint
statistics of the soft estimates with the transmitted symbols. We
remark that a similar improvement in performance for MMSE
filters relative to the ideal interference canceller is reported in
[12]; however, the MMSE filters in [12] are conditioned on the
soft decisions and, hence, must be recomputed for each symbol
using knowledge of the spreading codes, relative amplitudes and
phases, noise variance, and channels. Here, the filters are recom-
puted adaptively once per turbo iteration. The breakpoint shown
in Fig. 2, i.e., where the curves start to fall, is close to the
corresponding to large system sum capacity. Specifically, eval-
uating the large system sum capacity expression in [14] shows
that the must be at least 3.2 dB to achieve a spectral ef-
ficiency of 0.75 bit per chip with load 0.75.

Fig. 3 shows PER versus number of training symbols. Curves
are included for both the LS algorithms described earlier and
stochastic gradient algorithms given by

(28)

where

(29)

and is the step-size. The additional factor is a reliability
factor which weights the particular update. The decisions
can be either hard or soft. For the simulation results shown, the
filters are reinitialized to zero after each turbo iteration, and the
step size is constant over all iterations.

Fig. 3 shows that the LS algorithms can achieve a packet
error rate of 5% with less than 100 training symbols, whereas
the stochastic gradient algorithm requires at least four times as
many training symbols. We also observe that there is a tradeoff
between the amount of training data and number of iterations
needed to achieve a target packet error rate. Specifically, with
200 training symbols four iterations are needed to achieve a PER
of 5%, whereas with 100 training symbols, ten iterations are



482 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

Fig. 3. PER versus training interval for adaptive receivers with 12 users and
bandwidth expansion factor of 16 at E =N = 6 dB.

needed. Of course, increasing the number of iterations cannot
compensate entirely for an inadequate training period.

Figs. 4 and 5 show the performance of the adaptive P- and
IS-DFDs and a hybrid, which switches from the IS- to the
P-DFD after the first iteration. Fig. 4 shows PER versus
with 80 training symbols, and Fig. 5 shows PER versus number
of iterations with dB and 80 training symbols. The
results are averaged over the users. For this case, the hybrid al-
gorithm performs best and offers a substantial gain with respect
to the adaptive P-DFD. This performance difference diminishes
as the training length increases. Fig. 5 shows that with limited
training the IS- and hybrid DFDs require substantially fewer
iterations to reach the same target error rate than the P-DFD.
Alternatively, for a fixed number of iterations and target PER,
the hybrid DFD requires significantly less training than the IS-
and P-DFDs.

VII. EFFECT OF CODE RATE

We now study the effect of code rate on performance. It has
been observed in [14] and [20]–[24] that for the linear MMSE
receiver, the optimal code rate generally increases with load and
SNR. For adaptive receivers, the code rate also influences the
amount of training required. Namely, a smaller code rate re-
duces the number of filter coefficients to estimate, which re-
duces the required training overhead.

Fig. 6 shows plots of PER versus for different code
rates. In this case, and , corresponding to a
load of 1.25. The large load was chosen to illustrate the sub-
stantial gain provided by an increase in code rate. Specifically,
the rate 1/2 code requires at least 5 dB more than the
rate 3/4 code to achieve a PER equal to 0.01. The convolutional
codes considered are shown in Table I. These have been se-
lected from [25] on the basis of similar complexity (constraint
lengths). A larger code rate allows for more degrees of freedom
for interference suppression at the first stage. This effect is more

Fig. 4. Receiver comparison with K = 12 users, N = 16, code rate R =

1=2 (eight chips percoded bit), 80 training symbols.

Fig. 5. PER versus turbo iterations for the P-, IS-, and hybrid DFDs with
E =N = 6 dB and 80 training symbols. Remaining parameters are the same
as in Fig. 4.

pronounced for the iterative receivers than for linear receivers.
Namely, if the code rate is too small, then an iterative receiver
has insufficient degrees of freedom to produce soft decisions at
the output of the first stage, which are sufficiently reliable to
improve the detection at succeeding stages. Increasing the code
rate may improve the soft decisions produced by the initial stage
enough to achieve a relatively low PER. In contrast to the pre-
vious results for smaller load 3/4, here there is a substantial gap
between the multi-user PERs and single-user performance (ap-
proximately 6 dB with the rate 7/8 code). The breakpoint shown
in Fig. 6 is also further away from the , corresponding
to the large system sum capacity. Namely, 4.5 dB is needed to
achieve a spectral efficiency of 1.25 chips/bit with load 1.25
[14].
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Fig. 6. Performance with different code rates, 20 users, total bandwidth
expansion 16 (50 iterations, 200 training symbols).

Further numerical experiments show that at the lower load
of 0.75, the rate 1/2 code generally performs the best out of the
codes in Table I. This is consistent with the large system analysis
performance presented in [26].

The effect of code rate on training is illustrated by Fig. 7,
which shows PER versus training symbols with the same system
parameters used to generate Fig. 3. A similar set of codes to that
shown in Table I was used, with all codes having 64 states, and
asymptotic coding gains between 5.4 and 6.5 dB. Training sym-
bols are uncoded in all cases. These results illustrate that the
code rate affects both the length of training required to achieve
a target PER and the error floor with unlimited training. Addi-
tional numerical examples show that longer training intervals
and additional iterations are more beneficial with high loads or
low . For example, a similar experiment with

and dB shows that optimal performance re-
quires nearly twice as much training as for the case shown in
Fig. 7.

VIII. REDUCED-RANK ESTIMATION

A property of the LS estimation algorithms previously
presented is that the amount of training generally increases
proportionally with the filter length. Consequently, for a fixed
packet length, a large training overhead may be needed with
large filter lengths. One method for reducing the amount of
training overhead is reduced-rank estimation of the feedforward
and feedback filters [27, Sec. 8.4]. Here, we focus on the class
of adaptive reduced-rank algorithms introduced in [16], which
are motivated by the multistage Wiener filter [28]. These
algorithms can provide a significant reduction in training when
used with adaptive linear filters [16].

A reduced-rank filter first projects the received signal onto a
lower dimensional subspace. Both the filtering and the filter es-
timation take place within this subspace. Let be the

Fig. 7. Training performance for different code rates, 12 users, bandwidth
expansion 16 (25 iterations).

matrix with column vectors which are a basis for a -dimen-
sional subspace, where . The projected received vector
corresponding to symbol is then given by

(30)

The sequence of projected received vectors is the input
to the filter ( vector), which has output

(31)

The vector , which minimizes the LS cost function
, is

(32)

where ( matrix) and
( vector). Here, we focus on the Powers

of (PoR) algorithm, presented in [16], for which

(33)

For the adaptive iterative P-DFD, we use the decompo-
sition of the feedforward filter, given by (7), and compute
reduced-rank estimates for both the linear filter and the
error estimation filter . That is, for each user , we
estimate a linear reduced-rank filter according to (32), and
from (12) the reduced-rank error estimation filter is given by

(34)

where is the th column of excluding the th component,

is excluding the th row and column, is given by (25),
and

(35)
Figs. 8 and 9 compare the performance of full- and re-

duced-rank iterative DFDs for a system with
and 120 training symbols. Fig. 8 shows PER versus
with five and 50 iterations, and Fig. 9 shows PER versus
number of iterations with dB. For the reduced-rank
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Fig. 8. Comparison of PER versus E =N for full- and reduced-rank DFDs
with K = 48, N = 64, and 120 training symbols.

Fig. 9. Comparison of PER versus iterations for full- and reduced-rank DFDs
with K = 48,N = 64, 120 training symbols, and E =N = 6 dB.

results, the feedforward and feedback ranks are optimized for
each user. Specifically, for the P-DFD, the two ranks for user

are chosen to minimize

(36)

where is the P-DFD output for user at time [see
Fig. 1(b)]. For the IS-DFD, the two ranks optimized at a
particular iteration for user are used at the next iteration.

The results show that the reduced-rank algorithms offer a
significant performance gain relative to the full-rank algorithms
for the parameters selected. In general, for a fixed training
length this gain increases with the size of the filters. For a
smaller system size, e.g., , reduced-rank estimation
does not offer a significant performance advantage. For fixed
filter lengths, the performance gain decreases as the training

length increases, since in both cases the filters converge to the
MMSE filters with perfect feedback.

IX. EXTENSIONS

Here, we briefly indicate how the adaptive iterative receivers
presented can be extended to asynchronous CDMA with mul-
tipath. We first remark that these receivers can be directly ap-
plied to a synchronous CDMA system with multipath. In that
case, the matrix can be interpreted as the received signature
during the observation window, i.e., the transmitted signature
convolved with the channel response. For low delay spreads,
the multipath is coherently combined by the MMSE estimation
algorithm, as in a linear MMSE receiver, assuming the channels
are stationary during the observation window. With large delay
spreads, the associated intersymbol interference appears as un-
known interference, which may be partially suppressed by the
feedforward filter.

For a quasisynchronous chip-asynchronous system in which
the users are offset by small delays (less than a few chips), chip
oversampling can compensate for the random timing offsets.
For example, with samples per chip, both the received sig-
natures and feedforward filters have dimension . This in-
crease in number of filter coefficients may increase the amount
of training overhead needed. With larger relative delays among
users, it becomes necessary to expand the observation window,
as in a linear MMSE receiver [18]. Of course, the increase in
filter length again increases the required training overhead.

Finally, we mention that although this work was motivated
by the application to CDMA, the model also applies to a
narrow-band system with multiple transmitter and receiver
antennas [29]. Hence, the adaptive approach presented here can
also applied to space–time iterative detection.

X. CONCLUSION

Adaptive multiuser decision feedback receivers with itera-
tive soft MAP decoding have been presented for synchronous
DS-CDMA. Estimation of the filter coefficients is performed
once per iteration and relies upon training sequences, which are
simultaneously transmitted by the users to be demodulated. The
receiver complexity is relatively low. Specifically, the P-DFD
filters for each user are computed by solving a set of linear
equations for the forward linear filter and a set of linear
equations for the backward filter. The receiver is appropriate for
the reverse link of a cellular system since the adaptive feedfor-
ward filter suppresses interference from all users which are not
jointly decoded (e.g., from other cells).

The performance of the adaptive receivers has been studied
by computer simulation and shows that for a small system (e.g.,

), the adaptive receiver can perform substantially better
than a fixed DFD optimized with known signatures, assuming
perfect feedback. We also find that with limited training or
iterations, successive demodulation can significantly improve
upon the performance of the iterative P-DFD. For moderate to
large filter lengths, reduced-rank estimation can further reduce
the required training overhead. Combining these methods with
other enhancements, such as optimizing the tradeoff between
extrinsic information and APPs, and filtering decision statistics
over multiple iterations, as proposed in [30], may yield further
improvements.
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