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Performance of Reduced-Rank Linear Interference
Suppression

Michael L. Honig, Fellow, IEEE,and Weimin Xiao, Member, IEEE

Abstract—The performance of reduced-rank linear filtering
is studied for the suppression of multiple-access interference. A
reduced-rank filter resides in a lower dimensional space, relative
to the full-rank filter, which enables faster convergence and
tracking. We evaluate the large system output signal-to-interfer-
ence plus noise ratio (SINR) as a function of filter rank for
the multistage Wiener filter (MSWF) presented by Goldstein and
Reed. The large system limit is defined by letting the number of
users and the number of dimensions tend to infinity with

fixed. For the case where all users are received with the
same power, the reduced-rank SINR converges to the full-rank
SINR as acontinued fraction. An important conclusion from this
analysis is that the rank needed to achieve a desired output
SINR does not scale with system size. Numerical results show
that = 8 is sufficient to achieve near-full-rank performance
even under heavy loads( = 1). We also evaluate the large
system output SINR for other reduced-rank methods, namely,
Principal Components and Cross-Spectral, which are based on an
eigendecomposition of the input covariance matrix, and Partial
Despreading (PD). For those methods, the large system limit
lets with fixed. Our results show that for large
systems, the MSWF allows a dramatic reduction in rank relative
to the other techniques considered.

Index Terms—Interference suppression, large system analysis,
multiuser detection, reduced-rank filters.

I. INTRODUCTION

REDUCED-rank filtering and estimation have been pro-
posed for numerous signal processing applications such

as array processing, radar, model order reduction, and quantiza-
tion (e.g., see [1]–[4] and references therein). A reduced-rank
estimator may require relatively little observed data to produce
an accurate approximation of the optimal filter. In this paper, we
study the performance of reduced-rank linear filters for the sup-
pression of multiple-access interference.

Reduced-rank linear filtering has recently been applied to
interference suppression in direct-sequence (DS) code-divi-
sion multiple access (CDMA) systems [5]–[10]. Although
conventional adaptive filtering algorithms can be used to
estimate the linear minimum mean-squared error (MMSE)
detector, assuming short, or repeated spreading codes [11], the
performance may be inadequate when a large number of filter
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coefficients must be estimated. For example, a conventional im-
plementation of a time-domain adaptive filter which spans three
symbols for proposed third-generation wide-band DS-CDMA
cellular systems can have over 300 coefficients. Introducing
multiple antennas for additional space–time interference sup-
pression capability exacerbates this problem. Adapting such a
large number of filter coefficients is hampered by very slow
response to changing interference and channel conditions.

In a reduced-rank filter, the received signal is projected onto
a lower dimensional subspace, and the filter optimization then
occurs within this subspace. This has the advantage of reducing
the number of filter coefficients to be estimated. However, by
adding this subspace constraint, the overall MMSE may be
higher than that achieved by a full-rank filter. Much of the pre-
vious work on reduced-rank interference suppression has been
based on “Principal Components” in which the received vector
is projected onto an estimate of the lower dimensional signal
subspace with largest energy (e.g., [8], [12]). This technique
can improve convergence and tracking performance when the
number of degrees of freedom (e.g., CDMA processing gain)
is much larger than the signal subspace. This assumption,
however, does not hold in a heavily loaded commercial cellular
system.

Our main contribution is to characterize the performance of
the reduced-rank multistage Wiener filter (MSWF) presented by
Goldstein and Reed [13], [14]. This technique has the important
property that the filter rank (i.e., dimension of the projected sub-
space) can be much less than the dimension of the signal sub-
space without compromising performance. Furthermore, adap-
tive estimation of the optimum filter coefficients does not re-
quire an eigendecomposition of the input (sample) covariance
matrix. Adaptive interference suppression algorithms based on
the MSWF are presented in [9].

Our performance evaluation is motivated by the large system
analysis for DS-CDMA with random spreading sequences
introduced in [15]–[17]. Specifically, let be the number of
users, be the number of available dimensions (e.g., chips
per coded symbol in CDMA, or number of receiver antennas
in a narrow-band system), and be the subspace dimension.
We evaluate the signal-to-interference plus noise ratio (SINR)
at the output of the MSWF as with fixed.
For the case where all users are received with the same power,
we obtain a closed-form expression for the output SINR as a
function of , , and the background noise variance. As

increases, this expression rapidly converges to the full-rank
large system SINR derived in [17] as acontinued-fraction. The
MSWF therefore has the surprising property that the dimension

needed to obtain a target SINR (e.g., within a smallof the
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full-rank SINR) does not scale with the system size (i.e.,and
). Our results show that for moderate to heavy loads, a rank

filter essentially achieves full-rank performance, and
the SINR for a rank filter is within 1 dB of the full-rank
SINR.

We also evaluate the large system performance of the
reduced-rank MSWF given an arbitrary power distribution.
A byproduct of this analysis is a method for computing the
full-rank large system SINR which does not explicitly make
use of the asymptotic eigenvalue distribution for the class of
random matrices derived in [18], and used in [15]–[17].

Finally, we compare the large system performance of
the MSWF with the following reduced-rank techniques. 1)
Principal Components, 2) Cross-Spectral [19], [20], and 3)
Partial-Despreading [21]. (See also [6].) The Cross-Spectral
method is based on an eigendecomposition of the input co-
variance matrix, but unlike Principal Components, selects the
basis vectors which minimize MSE. Partial Despreading (PD)
refers to a relatively simple reduced-rank technique in which
the subspace is spanned by nonoverlapping segments of the
matched filter.

In contrast with the MSWF, the large system analysis of the
latter techniques lets with both and
fixed. That is, to achieve a target SINR near the full-rank large
system limit, as . For the case where all
users are received with the same power, we obtain closed-form
expressions which accurately predict output SINR as a function
of , , and noise variance.

In the next two sections, we present the system model and the
reduced-rank techniques considered. In Section IV, we briefly
review large system analysis. Our main results are presented in
Section V, and numerical examples are presented in Section VI.
Proofs and derivations are given in Section VII.

II. SYSTEM MODEL

Let be the received vector corresponding to the
th transmitted symbol. For example, the elements of may

be samples at the output of a chip-matched filter (for CDMA)
or across an antenna array. We assume that

(1)

where

(2)

is the matrix of signature sequences whereis the
number of dimensions (e.g., processing gain or number of an-
tennas) and is the number of users, and is the signature
sequence for user. The amplitude matrix

where is the power for user , is the -vector
of symbols across users at time, and is the noise vector,
which has covariance matrix . We assume that the symbol
variance is one for all users, and that all vectors are complex
valued.

In what follows we assume that user 1 is the desired user. The
MMSE receiver consists of the filter represented by the vector
, which is chosen to minimize the mean-square error (MSE)

(3)

where denotes expectation, anddenotes Hermitian trans-
pose. The MMSE solution is [11]

(4)

where the covariance matrix

(5)

where and the (full-rank) MMSE is

(6)

Let the matrix of spreading codes for the inter-
ferers be

(7)

and

(8)

where is the diagonal matrix of interference amplitudes and
denotes componentsthrough of the vector . The in-

terference-plus-noise covariance matrix is

(9)

The output SINR of the MMSE filter is

(10)

where is the received power for user 1.

III. REDUCED-RANK LINEAR FILTERING

A reduced-rank filter reduces the number of coefficients to
be estimated by projecting the received vector onto a lower di-
mensional subspace [22, Sec. 8.4], [2]. Specifically, let be
the matrix with column vectors forming a basis for a

-dimensional subspace, where . The vector of com-
bining coefficients for theth received vector corresponding to
this subspace is given by

(11)

In what follows, a “tilde” denotes a (reduced-rank)-dimen-
sional vector, or covariance matrix.

The sequence of vectors is the input to a tapped-delay
line filter, represented by the -vector . The filter output
corresponding to theth transmitted symbol is ,
and the objective is to selectto minimize the reduced-rank
MSE

(12)

The solution is

(13)

where

(14)
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Fig. 1. Multistage Wiener filter (MSWF).

and

(15)

Defining in the obvious way, the output SINR is given by

(16)

In what follows, we present the reduced-rank filters of in-
terest. We remark that other reduced-rank methods have been
proposed in [5], [10], [23], [24], [4], [25]. (The auxiliary vector
method proposed in [10] generates the same-dimensional
subspace as the MSWF.) A simulation study of adaptive ver-
sions of the eigendecomposition and PD interference suppres-
sion methods described here is presented in [6].

A. Multistage Wiener Filter (MSWF)

A block diagram showing four stages of the MSWF is shown
in Fig. 1. The stages are associated with the sequence of nested
filters where is the order of the filter. Let
denote ablocking matrix, i.e.,

(17)

Referring to Fig. 1, let denote the output of the filter ,
and denote the output of the blocking matrix , both at
time . Then the filter for the th stage is determined by

(18)

where denotes complex conjugate. For , we have
(the desired input symbol), , and

is the matched filter . Here we assume that each blocking
matrix is , so that each vector is . As in
[14], it will be convenient to normalize the filters
so that .

The filter output is obtained by linearly combining the outputs
of the filters via the weights . This
is accomplished stage-by-stage. Referring to Fig. 1, let

(19)

for and . Then is selected to
minimize .

The rank MSWF is given by the following set of recur-
sions.

Initialization:

(20)

For (Forward Recursion)

(21)

(22)

(23)

(24)

Decrement (Backward Recursion)

(25)

(26)

where .
The MSWF has the following properties.

1) At stage the filter generates the desired (time) sequence
and the “observation” sequence . The

MSWF for estimating the former from the latter has the
same structure at each stage. The full-rank MMSE filter
can, therefore, be represented as an MSWF withstages,
where is replaced by the MMSE filter for estimating

from .

2) It is shown in [14] that

(27)

where

(28)

for , where and .
The following induction argument establishes thatis
orthogonal to for all . First, it is easily verified
from (27) that is orthogonal to . Assume, then, that

is orthogonal to for , . We can rewrite
(28) and (27) as

(29)

and

(30)

where is a normalization constant, and the last
equality holds since and is
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orthogonal to . It can then be verified from (30) that
is orthogonal to , or, equivalently, that

is orthogonal to for , , which
establishes the induction step. The relations (29) and (30)
will be useful in what follows.

From Fig. 1 it is easily seen that the matrix of basis
vectors for the MSWF is given by

(31)

where the last equality is due to the fact that the’s are
orthogonal. (This implies that the blocking matrices in
Fig. 1 can be replaced by the identity matrix without af-
fecting the variables and , .) An
alternate set of nonorthogonal basis vectors is given in the
next section.

3) It is easily shown that each is contained in the signal
subspace, hence stages are needed to form the full-rank
filter.

4) It is shown in [14] that

(32)

for and . It follows that
is tridiagonal.

5) The blocking matrix is not unique. (In [14], is
assumed to be an matrix, so
that is .) Although any rank
matrix that satisfies (18) achieves the same performance
(MMSE), this choice can affect the performance for a spe-
cific data record. In particular, a poor choice of blocking
matrix can lead to numerical instability.

6) Computation of the MMSE filter coefficients does not re-
quire an estimate of the signal subspace, as do the eigen-
decomposition techniques to be described. Successive fil-
ters are determined by “residual correlations” of signals
in the preceding stage. Adaptive algorithms based on this
technique are presented in [9].

B. Eigendecomposition Methods

The reduced-rank technique which has probably received the
most attention is “Principal Components” (PC), which is based
on the following eigendecomposition of the covariance matrix

(33)

where is the orthonormal matrix of eigenvectors ofand is
the diagonal matrix of eigenvalues. Suppose that the eigenvalues
are ordered as . For a given subspace
dimension , the projection matrix for PC is , the
first columns of .

For , the eigenvalues are associated with
the signal subspace, and the remaining eigenvalues are associ-
ated with the noise subspace, i.e., for .
Consequently, by selecting , PC retains full-rank MMSE
performance (e.g., see [8], [26]). However, the performance can

degrade quite rapidly as decreases below , since there is no
guarantee that the associated subspace will retain most of the de-
sired signal energy. This is especially troublesome in a near–far
scenario, since for small , the subspace which contains most
of the energy will likely correspond to the interference, and not
the desired signal. We remark that in a heavily loaded cellular
system, the dimension of the signal subspace may be near, or
even exceed the number of dimensions available, in which case
PC does not offer much of an advantage relative to conventional
full-rank adaptive techniques.

An alternative to PC is to choose a set ofeigenvectors for
the projection matrix which minimizes the MSE. Specifically,
we can rewrite the MSE (6) in terms of reduced-rank variables
as

(34)

The subspace that minimizes the MSE has basis vectors which
are the eigenvectors of associated with the largest values of

, where is the th component of , and is given
by , where is the th column of . (Note the inverse
weighting of in contrast with PC.)

This technique, called “Cross-Spectral” (CS) reduced-rank
filtering, was proposed in [19] and [20]. This technique can per-
form well for since it takes into account the energy in the
subspace contributed by the desired user. Unlike PC, the projec-
tion subspace for CS requires knowledge of the desired user’s
spreading code . A disadvantage of eigendecomposition tech-
niques in general is the complexity associated with estimation
of the signal subspace.

C. Partial Despreading (PD)

In this method, proposed for DS-CDMA in [21], the received
signal ispartially despreadover consecutive segments of
chips, where is a parameter. The partially despread vector
has dimension , and is the input to the -tap filter.
Consequently, corresponds to the full-rank MMSE filter,
and corresponds to the matched filter. The columns of

in this case are nonoverlapping segments of, the signa-
ture for user 1, where each segment is of length.

Specifically, if , the th column of is

(35)

where , prime denotes transpose, and there are
zeros on the left and zeros on the right. This

is a simple reduced-rank technique that allows the selection of
MSE performance between the matched and full-rank MMSE
filters by adjusting the number of adaptive filter coefficients.

IV. L ARGE SYSTEM ANALYSIS

Our main results, presented in the next section, are motivated
by the large system results for synchronous CDMA with
random signature sequences presented in [15]–[17]. Specifi-
cally, we evaluate the large system limit of the output SINR
for the reduced-rank filters described in the preceding section
when the signatures are chosen randomly. This limit is defined
by letting the number of dimensions and number of users
tend to infinity with held constant.
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The large system results presented in [15]–[17], as well as
some of the results presented here, make use of the limiting
eigenvalue distribution of a class of random matrices. Let
be an infinite matrix of independent and identically distributed
(i.i.d.) complex-valued random variables with variance, and
be a sequence of real-valued random variables (corresponding
to user powers). Let be an matrix, whose th
entry is . Let be a diagonal matrix with diagonal
entries . As , we assume that the empirical
distribution function of these entries converges almost surely in
distribution to a deterministic limit .

Let denote the empirical distribution function of the
eigenvalues of the Hermitian matrix . It is shown in [18]
that as , and for , converges almost
surely to a deterministic limit . Let denote the Stieltjes
transform of the limit distribution

(36)

for . It is shown in [18] that

(37)

for all . In what follows, we will denote the range of
for which is nonzero as .

For an arbitrary distribution , closed-form expressions for
, , and do not exist. However, a closed-form expres-

sion for is given in [27] for the case where , ,
and , (i.e., all users are received with the same
power). This will be used in Section VII to derive some of our
results.

The preceding result was used in [17] to derive the large
system limit of the output SINR for the linear MMSE filter in a
synchronous CDMA system. Specifically, let denote the re-
ceived power of user, and denote the received power of a
random user, which has the limit distribution . Let user 1
be the user of interest. It is shown in [17] that as ,
the (random) output SINR of the linear MMSE receiver for user
1 converges in probability to the deterministic limit

(38)

where

(39)

is the “effective interference” associated with an interferer re-
ceived with power .

For the case where all users are received with the same power,
(38) becomes

(40)

which yields a closed-form solution for [17]. It will be con-
venient to denote this solution as

(41)

Similary, we will denote the solution to (38) for an arbitrary
power distribution as

(42)

Finally, we remark that the analogous large system limit for the
matched filter is

(43)

V. MAIN RESULTS

In this section, we present the large system limits of output
SINR for the reduced-rank filters presented in Section III.
Proofs and derivations are given in Section VII. For finite

and , the output SINR is a random variable due to the
assignment of random signature sequences. For the MSWF and
PD, we are able to show, in analogy with the full-rank MMSE
receiver, that the output SINR converges to a deterministic limit
as . We conjecture that this is also true for the
PC and CS methods.

A. Multistage Wiener Filter (MSWF)

We first state the large system SINR for the MSWF assuming
that all users are received with the same power.

Theorem 1: As , the output SINR of the
rank MSWF converges in probability to the limit , which
satisfies

for (44)

where is the received power for each user, , and
is the large system limit of the output

SINR for the matched filter.

The proof is given in Section VII-A.
According to this theorem, for finite the output SINR of the

MSWF can be expressed as acontinued fraction. For example,

(45)

As increases, this continued fraction converges to the
full-rank MMSE given by (40). Two important consequences
of this result are as follows.

1) The dimension needed to achieve a target SINR within
some small of the full-rank SINR does not scale with
the system size ( and ). This is in contrast with the
other techniques considered, for which the large system
output SINR is determined by the ratio .

2) As increases, converges rapidly to the full-rank
MMSE. Specifically, consider the case without back-
ground noise, . It can be shown that

for

for

for .

(46)

In particular, increases exponentially with for
and linearly with for . If , then the
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gap between and the full-rank performance
decreases exponentially. Numerical results to be pre-

sented in the next section indicate that for signal-to-noise
ratios (SNRs) and loads of interest, the
full-rank MMSE performance is essentially achieved with

.

We now consider the MSWF with an arbitrary power distri-
bution. In this case, we do not have a closed-form result for the
large system SINR, although we can compute it numerically. In
analogy with the uniform power case, we also have theapprox-
imation

(47)

where , is the asymptotic SINR of the matched
filter given by (43), and is an arbitrary power distribution.
This approximation is accurate for many cases we have consid-
ered; however, in Appendix A we show that it is not exact.

To compute the output SINR for the MSWF with an arbitrary
power distribution, we first give an alternate representation of
the subspace spanned by the basis vectors, or columns of.
Let denote the -dimensional subspace associated with the
rank MSWF, which is spanned by the set of basis vectors
given by (31), and let denote the interference-plus-noise co-
variance matrix given by (9).

Theorem 2: The subspace is spanned by the vectors
where .

The proof is given in Section VII-B.
The matrix of basis vectors for the MSWF can, therefore, be

written as

(48)

It is straightforward to show that can be replaced by
in Theorem 2. Approximations of the full-rank

MMSE filter in terms of powers of the covariance matrix have
also been considered in [28] and [29].

Let

(49)

(50)

(51)

Note that is an matrix. From (13)–(15),
the reduced-rank MSWF is

(52)

(53)

(54)

(55)

where

(56)

is the output SINR from (16). To compute the large system limit,
we, therefore, need to compute the large system limit of,

which is given by the following lemma, where is the asymp-
totic eigenvalue distribution of .

Lemma 1: As , converges in probability
to the limit

(57)

provided that this moment is finite.
Proof: From (49) we have

(58)

where is the th eigenvector of , and the sum can be re-
stricted to in the signal subspace since otherwise
. It is shown in [17] that is , and the Lemma

follows from the same argument used to prove [17, Lemma 4.3].

When all users have the same powerand , the limit
can be evaluated explicitly as [27]

(59)

To compute for , we observe that

(60)

which leads to a recursive method for computing the sequence
. For a nonuniform power distribution, the large system

limit can be computed directly from (57). In Appendix A,
we give two other methods for computing, one of which does
not make explicit use of the asymptotic eigenvalue distribution

.
We can now state the large system SINR for the rank

MSWF where the limiting power distribution is . The su-
perscript indicates the large system limit of the associated
variable(s).

Theorem 3: As , the output SINR of the rank
MSWF converges in probability to

(61)

Proof: This follows directly from Lemma 1 and the fact
that , given by (56), is a continuous and bounded function of

.

As for the uniform power case, the dimension needed
to achieve a target SINR within some small constantof the
full-rank SINR does not scale with and . Because this
representation for the output SINR is not as transparent as
that for the uniform power case, it is difficult to see how fast
the SINR given by (61) converges to the full-rank value as
increases. Numerical examples are presented in Section VI,
and indicate that, as for the uniform power case, full-rank
performance is achieved for .

For large , Theorem 3 gives an alternative method to (38)
for computing the full-rank MMSE. This method does not re-
quire knowledge of the asymptotic eigenvalue distribution if the
second method for computing the moments presented in
Appendix B is used.
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Finally, we remark that for a uniform power distribution, the
SINR shown in Theorem 3 must be the same as the continued
fraction representation in Theorem 1. Finding a direct proof of
this equivalence appears to be an open problem.

B. Eigendecomposition Methods

We now state our results for the PC and CS reduced-rank
methods presented in Section III-B. In what follows, the large
system limit is defined as where
and . In particular, now increases proportionally
with and . As stated earlier, we conjecture that the SINR
converges to a deterministic large system limit. The technical
difficulty in proving this is characterization of the large system
limit of where is the th eigenvector of the covari-
ance matrix corresponding to the particular ordering given in
Section III-B. Note, in particular, that and are correlated.

In order to proceed, we assume that the conjecture is true, and
evaluate the corresponding large system limit. The numerical
results in Section VI show that the large system results are nearly
identical to the corresponding simulation results. For PC, we
are only able to evaluate the large system limit for the uniform
(equal) power case. In what follows, is the limit distribution
for the eigenvalues of (see Section VII-C).

For both the PC and CS methods, the output SINR for a rank
filter can be written as

(62)

where

(63)

and where and are the th eigenvalue and eigenvector,
respectively, of the covariance matrix. We first consider PC,
for which . We show in Section VII-C that

(64)

where

(65)

and is defined by

(66)

If in (63) converges to a deterministic large system limit,
then this limit must be . The large system limit for
output SINR is then

(67)

Numerical examples are presented in the next section, and
show that, as expected, when , the PC algorithm achieves
full-rank performance. Asdecreases below, the performance
degrades substantially.

Although we do not have an analogous result for an arbitrary
power distribution, we observe that for , the PC algo-
rithm again achieves full-rank performance, since the eigenvec-
tors chosen for the projection include the signal subspace. As
decreases below, in a near–far situation the performance can
be substantially worse than that with equal received powers. For
example, assume that there are two groups of users where users
in each group have the same power, but users in the first group
transmit with much more power than users in the second group.
(The groups may correspond to different services, such as voice
and data.) In this situation, the eigenvalues corresponding to the
signal subspace can also be roughly divided into two sets corre-
sponding to the two user groups. If the desired user belongs to
the second group, then its energy is mostly contained in the sub-
space spanned by eigenvectors associated with the small eigen-
values. Consequently, PC will choose a subspace which con-
tains little energy from the desired user, resulting in poor per-
formance.

The CS method, described in Section III-B, performs better
than the PC method for since it accounts for the projection
of the desired user spreading sequence onto the selected sub-
space. The output SINR is again given by (62) and (63) where
the ordering of eigenvalues and eigenvectors corresponds to de-
creasing values of . Let

(68)

so that

(69)

As , numerical results indicate that the sequence
converges to a deterministic distribution . Assuming

this is true, it follows that as and

(70)

where satisfies .
In what follows, we assume that is zero-mean Gaussian.

Justification for this assumption stems from the analysis in [30],
where it is shown that if is a randomly chosen eigenvector
of the interference-plus-noise covariance matrix, then is
zero-mean Gaussian. (In that case, and are independent.)
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Fig. 2. Output SINR versus rankD for the MSWF with different loads�.

It is shown in Section VII-C that has variance .
(Note that converges to a deterministic large system limit
for fixed .) Consequently, at high SNRs ( for

), , independent of . Further justification for
this assumption is the close agreement between the large system
analytical and simulation results shown in the next section.

With the Gaussian assumption for

(71)

where satisfies

and

(72)

which is the large system limit of where is chosen
randomly according to a uniform distribution between one and

. In Section VII-D, it is shown that

(73)

where is the full-rank SINR. When all users have the same
power

(74)

and .

If converges to a deterministic large system limit, then
it must converge to in which case converges in
probability to the corresponding limit

(75)

The numerical results shown in the next section are generated
according to these assumptions.

C. Partial Despreading (PD)

The output SINR for PD can be expressed in terms of the
full-rank MMSE expressions and given by (41) and (42).
The large system limit is obtained by despreading over
chips, where is held constant, so that .

Theorem 4: Assume that the elements ofare i.i.d., zero-
mean, and are selected from either a binary or Gaussian distri-
bution. As and , the output
SINR of the PD MMSE filter converges in probability to the
limit

(76)

where .

The proof is given in Section VII-E.
If , then is the large system limit for

the matched-filter output SINR given by (43). The large system
limit of the output SINR for the MMSE PD filter with a uniform
power distribution is

(77)
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Fig. 3. Output SINR versus rankD for the MSWF with different SNRs.

VI. NUMERICAL RESULTS

In this section, we present numerical results, which illus-
trate the performance of the reduced-rank techniques consid-
ered. Simulation results for a CDMA system with finiteand
random binary signature sequences are included for comparison
with the large system limit. The latter results are averaged over
random binary signature sequences and the received power dis-
tribution.

Fig. 2 shows plots of output SINR versus rank for the
MSWF with different loads , assuming the background SNR is

10 dB and that all users are received with equal power.
Also included are simulation results corresponding to .
Fig. 3 shows the analogous results for different SNRs and fixed
load . These results show that the large system limit
accurately predicts the simulated values. In all cases shown, the
MSWF achieves essentially full-rank performance for .
Furthermore, the SINR for is within 1 dB of the full-rank
SINR, and the SINR for is approximately midway be-
tween the SINRs for the matched-filter and full-rank MMSE re-
ceivers.

Fig. 4 shows simulated output SINR for the MSWF as a func-
tion of normalized rank for and . This
illustrates the convergence to the large system limit, which is
the full-rank performance for all values of (shown as the
solid line in the figure).

Fig. 5 shows output SINR versus normalized rank for
the reduced-rank filters considered assuming uniform (equal)

power, SNR 10 dB, and . For all four methods con-
sidered, the large system analysis accurately predicts the simu-
lation results, which are shown for . As discussed pre-
viously, the large system SINR for the MSWF as is the
full-rank SINR for any . (Large system results for the
MSWF corresponding to finite are not shown.) Consequently,
there is a large gap between the curve for the MSWF and the
curves for the other methods for small . The CS and PC
reduced-rank filters can achieve the full-rank performance only
when . For , these results show that the CS filter
performs much better than the PC filter.

The PD filter can achieve the full-rank performance only
when , since for any , the selected subspace

does not generally contain the MMSE solution. For small
, the PD filter performs close to the matched filter, which

is significantly better than the eigendecomposition methods.
This is because for the latter methods, the desired signal energy
is spread over many eigenvectors, so that for small, relatively
little desired signal energy is retained in the selected subspace.

Performance results for nonuniform power distributions
are shown in Figs. 6–8. Two distributions are considered:
log-normal, and discrete with two powers. In the former case,
the desired user has power , and the log-variance of the
log-normal distribution is 6 dB. In the latter case,
10 dB, where is the power associated with users in group

and the fraction of high-power users is . The
desired user is assumed to be in group one with an SNR of 10
dB. The first case applies to the reverse link of an isolated cell
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Fig. 4. Output SINR versus normalized rankD=N for the MSWF with different spreading gains.

where power control is used to compensate for shadowing. The
second case corresponds to two service categories, such as data
and voice, with perfect power control.

Fig. 6 compares the large system output SINR of the MSWF
computed via the approximation (47) with the exact SINR com-
puted from (61). Figs. 7 and 8 show output SINR versus normal-
ized rank for the different reduced-rank filters considered. Sim-
ulation results are shown for (and in Fig. 6).
In these figures, . Figs. 7 and 8 show that all methods
perform approximately the same as for the uniform power case,
except for PC, which performs significantly worse for .

VII. PROOFS ANDDERIVATIONS

A. Theorem 1: MSWF with Uniform Power

The proof is based on an induction argument in which the
full-rank MSWF is partitioned into two component filters. The
first filter consists of the first stages and the second filter
consists of stagesthrough (i.e., the full-rank filter which
estimates from ). We first consider the case and
prove that: i) the theorem is valid for ; ii) the large
system SINR associated with the second component filter is the
full-rank large system SINR ; and iii) the large system SINR
associated with the filter (with appropriately defined desired
signal and interference components) is equal to the large system
SINR for the matched filter. For the induction step, we make the
analogous assumptions i)–iii) for somewhere , and
prove that i)–iii) hold for .

The rank one MSWF is the matched filter , which has
output

(78)

where , , and denote the corresponding desired signal,
interference, and noise terms. The SINR at the output ofis

(79)

where denotes the large system limit ,
the expectation is with respect to the transmitted symbols and
noise, and the limit follows from the fact that .

Let be a vector which is orthogonal to. The output of
is

(80)

and it is easily shown that

(81)

(82)

(83)

We now express as the sum of a desired signal component,
interference, and noise

(84)

We define the desired signal as

(85)
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Fig. 5. Output SINR versus normalized rankD=K for reduced-rank filters with equal received powers.

where minimizes . That is,

(86)

is the MMSE estimate of given , so that by the orthogo-
nality principle

(87)

Given these definitions of the signal, interference, and noise, we
associate an (output) SINR with the filter , which is given by

(88)

(89)

where the expectation is again with respect to the transmitted
symbols and noise. From (88) and (89) we have that

(90)

Now consider the filter , which has output
. Since the output contains the desired signal

, the SINR associated withis

(91)

Choosing to maximize the SINR, or equivalently, minimize
the output energy gives

(92)

(93)

and

(94)

Combining (91)–(94) gives

(95)

and letting gives

(96)
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Fig. 6. Output SINR versusD for the MSWF with two groups of high- and low-power users. The large system approximation (47) is compared with the exact
large system SINR computed from (61).

Now suppose that we choose , so that .
To prove the theorem for , we must show that the large
system SINR associated with is

(97)

which is the large system SINR for the matched filter. We, there-
fore, let

(98)

(99)

where is the orthogonal projection
of onto , and is the normalization constant. Now from (99)

(100)

(101)

(102)

(See Appendix B, which discusses the computation of the large
system limit of the moments .) From (86) and
(102) we have

(103)

and it is shown in Appendix D that

(104)

Combining (88) with (103) and (104) gives (97), and substi-
tuting into (96) gives

(105)

Before proceeding to the induction step, we need to make an
additional observation. Suppose that we choose ,
which consists of stages two throughof the MSWF. Referring
to Fig. 1, this filter has input and output . Let
denote stages through of the MSWF (input and
output ). From Fig. 1 and (26) we can write

(106)

where we have used the fact that . We can,
therefore, express as a linear combination of the MSWF
filters , i.e.,

(107)

where the ’s, are the corresponding
combining coefficients, and depend on the filter indices .
Since the ’s are orthogonal, is orthogonal to , as re-
quired.



1940 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

Fig. 7. Output SINR versus normalized rankD=K for reduced-rank filters with a log-normal received power distribution.

From the discussion in Section III, is the MMSE filter
for estimating from , the output of the blocking filter in
Fig. 1. Since stages are needed to obtain the full-rank MMSE
filter, the output SINR of is the full-rank SINR , which
from (40) must satisfy

(108)

Comparing (108) with (96) with shows that the
output SINR of must be as .
This completes the first step of the proof.

For the induction step we partition the MSWF into the first
stages, consisting of , and the rest of the

filter, consisting of . By assumption, the large system
output SINR of is . We also need to define
the filter , which consists of stagesthrough of a rank-
MSWF. Clearly, is a linear combination of ,

(109)

where , and , , are the combining
coefficients. We decompose as

(110)

where is orthogonal to , which appears in the MSWF. In
what follows, we will choose . That is, for

, and for , is the “bottom

part” of the full-rank MSWF below stage. Note that is
the MMSE filter for estimating from .

Let

(111)

(112)

(113)

where , , the desired signal is the pro-
jection of onto , and is the projection of onto

(114)

The variables needed for the induction step are illustrated in
Fig. 9.

Lemma 2:

(115)

(116)

(117)

Proof: First,

To show (116), we write
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Fig. 8. Output SINR versus normalized rankD=K for reduced-rank filters with two groups of high- and low-power users.

Fig. 9. Illustration of variables used in the proof of Theorem 1.

Now

(118)

and

(119)

follows from (32) and the fact that is a linear combination of
. Consequently,

constant

constant

Finally,

(120)

which completes the proof of Lemma 2.
We now compute the large system limit of

(121)

in terms of the output SINR for , which is

(122)

and which satisfies

(123)

Selecting to minimize in (113) gives

(124)

(125)
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and

(126)

where (123) has been used. Combining (121)–(126) gives

(127)

For , corresponding to , we have
(by assumption), so that (127) and (40) imply that

(128)

We can rewrite (128) as

(129)

where the superscript “ ” denotes the large system limit of the
associated variable.

Lemma 3: , , and are independent of
.

The proof is given in Appendix C.
As , and , so that (129) can

only be true if . Consequently, from (128) as

(130)
and the SINR associated with the output ofis

(131)

for where convergence in probability follows
from the fact that the variables are continuous and bounded
functions of the moments , .

From (127)–(130), we can write

(132)

where is given by (131). Similarly, (127) can be used again
to express in terms of , which is given by (132)
and (131). Iterating in this manner gives the theorem.

B. Theorem 2: Basis for the MSWF

In what follows, it will be convenient to replace the normal-
ized MSWF filters , given by (30), by the unnormal-
ized filters , which satisfy

(133)

Clearly, span the same space . The theorem is
obviously true for since . Since

(134)

where

is nonsingular, so the theorem is true for .
Assume that the theorem is true for , and that

(135)

where is a nonsingular upper triangular matrix with
diagonal elements equal to one. From (30)

where

Denoting the th column of as , we have

where

Hence, is also a nonsingular upper triangular matrix with
diagonal elements equal to one, which establishes the theorem.

C. Principal Components

We assume all users are received with power. From (63)
we have

(136)

where the expectation is with respect to the random signature
matrix . Since the elements of are i.i.d., we can replace
by , so that

(137)
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Combining (136) and (137) gives

(138)

As , the distribution of converges to a
deterministic limit with associated density [27, Theorem
2.1]

for

otherwise
(139)

where and are given by (65), and for there
is an additional mass point at

(140)

Combining (138) with the asymptotic eigenvalue distribution
gives

(141)

where satisfies

(142)

The preceding integrals can be evaluated in closed form
giving (64) and (66). The conjecture that converges to a
deterministic limit depends on showing that the large system
limit of the variance of the random variable is zero where

. We remark that and are uncorrelated for
, i.e.,

(143)

so that

In the case of an arbitrary power distribution, (137) no
longer holds, since the projection of the desired user’s signal
onto the eigenvectors depends onand . It, therefore, ap-
pears to be difficult to compute the corresponding large system
limit for arbitrary .

D. Cross-Spectral Method

Here we compute the variance of defined by (68), where
is chosen randomly. We have

(144)

where is the asymptotic SINR for the full-rank MMSE filter.
Alternatively, from (137) and (138) we have that

(145)

which for given by (139) can be evaluated as (74).

E. Theorem 4: Partial Despreading (PD)

The projection matrix is

...
...

. . .
...

(146)

where is a segment of
containing chips, and the columns of contain nonover-
lapping segments. In analogy with (14) and (15) we define

(147)

where is with element

(148)

where is the diagonal matrix of the powers of
the interferers,

(149)

and

(150)

is the noise covariance matrix where . With

these definitions, the output SINR , and we
can apply the large system results for the full-rank MMSE filter
presented in Section IV.

We consider the following two cases.

1) The elements of are i.i.d. binary random variables
chosen from with equal probabilities.

2) The elements of are i.i.d. Gaussian random variables
with zero mean and variance.
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For case 1, , and . It is

easy to verify that the elements of are i.i.d. random variables
with zero mean and variance . Now the covariance matrix
has the same form as for a full-rank MMSE filter with interferer
powers given by , desired user power , noise vari-
ance , and system load . According to
(38) and (42), we have

(151)

As , or , we have

(152)

Hence, for a fixed , as , the large system SINR
for the PD filter converges to the matched-filter SINR.

For case 2, as with , we have
and , and the ele-

ments of are i.i.d. Gaussian random variables with zero mean
and variance . The output SINR is again given by (151)
where , which is the same as the matched-filter SINR
(152).

For finite , we must assume that the energy of each seg-
ment of is the same, so that and

. To prove that the elements in , given by (148),
are i.i.d. Gaussian, we first note that conditioned on , ele-
ment of is Gaussian with zero mean and
variance . That is, the conditional probability density func-
tion (pdf) is independent of , so that

Hence, the elements of are uncorrelated Gaussian with zero
mean and variance , and are, therefore, i.i.d., so that (151) also
applies to this case.

VIII. C ONCLUSION

We have characterized the performance of the reduced-rank
MSWF when used for multiple-access interference suppression.
For the uniform power case the large system, SINR is easily
computed as a continued fraction, and converges rapidly to the
full-rank SINR as the rank increases. Numerical results show
that this large system analysis accurately predicts average per-
formance for moderately sized systems. We do not have a sim-
ilar type of simple expression for an arbitrary power distribution,
although the performance can be computed numerically. An im-
portant conclusion, based on this analysis, is that the rank of the
MSWF needed to achieve a target SINR in the neighborhood of
the full-rank SINR does not scale with system size. Numerical
results show that is sufficient to achieve near full-rank
performance for all cases considered.

The large system SINRs of PC, CS, and PD reduced-rank
techniques have also been evaluated. Whether or not the ex-
pression for the CS technique is exact is an open question. In all

cases, the large system analysis accurately predicts performance
for moderately sized systems. Numerical results show that for
very small , the techniques based on eigendecomposition
perform relatively poorly. The CS filter requires to
perform better than the matched filter, and to per-
form better than PD. PC performs well only when .
The MSWF performs significantly better than the other tech-
niques considered for small , and furthermore, does not
require explicit tracking of the signal subspace.

Our results pertain to optimal (MMSE) filters. Adaptive al-
gorithms based on the MSWF are presented in [9], [31], and
are observed to converge significantly faster than a full-rank
Least Squares algorithm. An analysis of the convergence of
these adaptive reduced-rank filters with random data is pre-
sented in [32]. Investigation of tracking performance in the pres-
ence of time- and frequency-selective fading is being pursued.

APPENDIX A
EQUATION (47) IS NOT EXACT

Here we show that (47) does not hold with equality for ar-
bitrary . Consider a rank-two MSWF. According to (61), the
SINR can be computed as

(153)

where . Combining the expressions for
, , in Appendix B with (60) gives

The asymptotic SINR of the two-stage MSWF is therefore a
function of and , , whereas (47) cannot
be expressed in terms of a finite number moments offor an
arbitrary power distribution. Nevertheless, the numerical results
in Section VI show that (47) gives a reasonable approximation
to (61) for the case examined.

APPENDIX B
COMPUTATION OF

Here we give two alternate methods to (57) for computing the
large system limit for , where is defined
by (49). In what follows we will abbreviate as .
For the first method, we define the-transform

(154)
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where the preceding sum converges for ,
where is the maximum eigenvalue of . We observe
that with is the output SINR of the full-rank
linear MMSE filter with signature sequence matrix and re-
ceived power matrix . Taking the large system limit gives
[17]

(155)

where is defined by (42) and is defined by (36) and
satisfies (37). For uniform power we have from (37) and (40)

(156)

which is the -transform of the sequence defined by (59) with
and .

The second method for computing is based on relating
with users to with users. Specifically, let

and

(157)

where is the power assigned to user . We can write

(158)

and taking expectation with respect to gives

(159)

Taking the large system limit, and noting that becomes
gives

(160)

or

(161)

Since , we have . If is chosen from
a distribution, then ; however, since
converges to in probability, we have

(162)

Similarly, we can compute and , which are used in the
proof of Theorem 1. We have

(163)

which gives

(164)

Solving and averaging over gives

(165)

Finally, following this approach for gives

(166)

so that

(167)

This approach can be used to compute higher moments as
follows. First, note that is the large system limit of

Since is idempotent, we can express as the sum
of terms of the form

where and the fact
has been used for matricesand . Enumerating the terms in
the expansion and averaging overgives as a func-
tion of and the moments of . Since these are
polynomials in , the expression can be integrated to give.

APPENDIX C
PROOF OFLEMMA 3

From (30)

since for . If , is independent of , then
is independent of . Since is independent of , by
induction is independent of .

To prove that and are independent of , we
note that is the projection of onto , and

Now

and

for . Hence, if is independent of , then
and are independent of . Since

, the Lemma follows by induction.
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APPENDIX D
DERIVATION OF (104)

Since , we have

(168)

and from (99)

(169)

where . (We abuse notation somewhat by
reusing the originally defined in (49).) Also,

(170)

Combining (168)–(170) with the computation of the large
system limits in Appendix B gives (104).
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