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Abstract—This paper presents an asymptotic analysis of mul-
tisignature code-division multiple access (CDMA) in the presence
of frequency-selective channels. We characterize the sum spectral
efficiency and spectral efficiency regions for both the optimal
and linear minimum mean-squared error (MMSE) multiuser
receivers. Both independent and identically distributed (i.i.d).
signatures and isometric signatures, which are orthogonal at each
transmitter, are considered. Our results are asymptotic as the
number of signatures per user and processing gain both tend to
infinity with fixed ratio. The spectral efficiency of the MMSE
receiver is determined from the asymptotic output signal-to-in-
terference-plus noise ratio (SINR). For isometric signatures, our
results rely on approximating certain covariance matrices with
unitarily invariant matrices that are asymptotically free. This
approximation is shown to be very accurate through comparison
with both simulation and an “incremental-signature” analysis,
which can be used to compute asymptotic moments. Also, a novel
proof of the convergence of the empirical spectral distribution of
the signal correlation matrix is presented. From these results, we
derive the optimal coding–spreading tradeoff, which maximizes
the MMSE spectral efficiency, for the case of a single user with
multiple i.i.d. signatures. Simulation studies demonstrate that the
asymptotic results accurately predict the performance of finite-size
systems of interest. The resulting expressions are used to high-
light and infer properties of the multisignature CDMA system,
including the benefit of orthogonal relative to i.i.d. signatures,
and the tradeoff between spectral efficiency and the versatility of
providing a variable data rate service through multiple signatures.

Index Terms—Capacity, code-division multiple access (CDMA),
multiuser detection.

I. INTRODUCTION

B ROADBAND wireless networks require transmission
schemes which are resilient to both time- and fre-

quency-selective fading, while supporting flexible per-user data
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rates. Code-division multiple access (CDMA) with multiple
signatures per user is well suited for this purpose [1]–[3]. Mul-
tisignature CDMA can be implemented in either conventional
direct-sequence (DS) mode, or multicarrier (MC) mode [4]. An
important advantage of these schemes is that they can operate
with minimal coordination among users, since the number
of signatures (and hence the data rate) can be chosen inde-
pendently by the users. In contrast, orthogonal schemes such
as orthogonal frequency-division multiple access (OFDMA)
require the users to coordinate their transmitted spectra. As
with OFDMA, both DS and MC CDMA can employ a cyclic
prefix to remove the interference from previous symbols, and
to diagonalize the channel matrix, and hence simplify receiver
processing. Linear receivers, such as the matched filter, decor-
relator, and linear minimum mean-squared error (MMSE) can
be used either in the time or frequency domains.

We consider a multisignature CDMA system with a general
channel model which only requires statistical knowledge of the
channel eigenvalues. For example the model includes the up-
link of a multiuser multisignature MC-CDMA system with fre-
quency-selective fading channels, where each user spreads data
bits across subcarriers using a set of frequency-domain signa-
tures, as in [4], [5]. It also applies to multisignature versions
of standard symbol-synchronous DS-CDMA systems with fre-
quency-selective fading channels.

In this paper, we characterize the asymptotic spectral effi-
ciency of multisignature CDMA. Asymptotic refers to the limit
as both the number of signatures per user and spreading gain
both tend to infinity with fixed ratio, which is called the system
load. As in earlier work on the asymptotic spectral efficiency
of DS-CDMA [6], [7], we consider both the MMSE and op-
timal receivers. We emphasize, however, that the asymptotic
analysis presented here differs from prior large system analyses
of DS-CDMA (e.g., [6]–[12]) in that we allow multiple signa-
tures per user, and fix the number of users. By varying the system
load across users, we are able to compute an associated spectral
efficiency region, in addition to the sum spectral efficiency.

We consider two types of signature assignments, namely
random independent and identically distributed (i.i.d.) signa-
tures, and random isometric signatures in which the signatures
assigned to a particular user are orthogonal but are independent
of other users’ signatures. Note that with frequency-selective
channels and multiple users, the orthogonality of isometric
signatures is lost at the receiver. As such, it is not clear a priori
whether isometric signatures have any advantage over i.i.d.
signatures. (Note that in [13] it was observed that isometric
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signatures do have advantages for a single user with multiple
signatures.)

Related asymptotic analyses of DS-CDMA with i.i.d.
signatures are presented in [12], which considers multisig-
nature DS-CDMA with flat fading, and in [7], [10], [11],
which consider single-signature DS-CDMA with flat and
frequency-selective fading. In previous work, we derived the
asymptotic signal-to-interference-plus-noise ratio (SINR) for
CDMA with the MMSE receiver for a single-user with multiple
i.i.d. signatures, and multiple users with an equal number of
i.i.d. signatures per user [14]. A related asymptotic analysis of
MC-CDMA has also been independently presented with i.i.d.
signatures in [15], and with both i.i.d. and isometric signatures
in [13], however the multiuser multisignature case has not been
considered.

In this paper, we consider the general multiuser case, where
there is no restriction on the allocation of signatures among
users. We compute the asymptotic output SINR of the MMSE
receiver with both i.i.d. and isometric signatures, which is then
used to compute asymptotic spectral efficiency. (Note that the
asymptotic SINR can also be used to evaluate both uncoded
and coded bit error rates, as in [11], [14].) We also compare
the results to the (optimal) asymptotic spectral efficiency of the
CDMA channel. For isometric signatures, our results rely on
approximating user covariance matrices with unitarily invariant
matrices that are asymptotically free.1 This approximation be-
comes exact for a large number of users, and is shown to be
accurate for any number of users through comparisons with
both simulation results and an “incremental-signature” analysis
which evaluates the incremental change in the quantity of in-
terest when a user adds a single signature. This method can be
used to evaluate asymptotic moments, and to establish asymp-
totic convergence of performance measures.

The asymptotic expressions are functions of the system loads
across users, noise power, received powers, and the fading prop-
erties of the channel (i.e., first-order distribution). In the case
of a single user with multiple i.i.d. signatures and the MMSE
receiver, we solve for the optimal load, or equivalently, the op-
timal spreading–coding tradeoff, which maximizes spectral ef-
ficiency. Although, strictly speaking, our results for isometric
signatures are valid only for a large number of users, our nu-
merical studies show that the analytical results accurately pre-
dict simulation results for all practical cases considered.

Our results allow us to illustrate the performance of multisig-
nature CDMA with different parameters and operating condi-
tions. For example, we examine the effect of allocating power
to users in proportion to the number of assigned signatures, and
quantify the expansion in spectral efficiency region relative to
assigning each user equal power. Additional comparisons are
made contrasting the performance with isometric and i.i.d. sig-
natures, and with the optimal and MMSE receivers. We also
compare the performance of CDMA with OFDMA, in which
the users are orthogonal.

1Free probability theory applies to sets of noncommuting random variables,
which includes large random matrices as a canonical example [16], [17]. The
notion of freeness in free probability theory is analogous to independence in
classical probability theory. (A comprehensive treatment is given in [17].) Re-
cent applications of free probability theory to communications problems have
been presented in [10], [13], [18], [19]. See also the tutorial [20].

We now summarize our main results.

• The sum spectral efficiency increases with i.i.d. signa-
tures, and decreases with isometric signatures, as the
number of users increases, for a fixed total system load
(summed over users) and . This is true for both the
MMSE and optimal receivers. Furthermore, the asymp-
totic sum spectral efficiency with isometric signatures
is always higher than that with i.i.d. signatures. (Both
spectral efficiencies converge to the same value as the
number of users tends to infinity.) For example, with a
total system load of three signatures per subchannel and

10 dB, as the number of users increases from one
to infinity, the optimal sum spectral efficiency increases
by about 25% with i.i.d. signatures and decreases by
about the same percentage with isometric signatures.
We therefore conclude that self-interference, caused by
signatures which pass through the desired user’s channel,
is more detrimental than interference from other users
(i.e., signatures which pass through different channels)
with i.i.d. signatures, but is less detrimental with iso-
metric signatures. In both cases, more users means more
channels, and hence more channel diversity. With i.i.d.
signatures, this translates to a benefit for both the MMSE
and optimal receivers. However, with isometric signatures
adding users increases the correlation among signatures
(on average) which compromises the diversity gain and
leads to a net loss in performance.

• With an MMSE receiver, the user with the least number
of signatures receives the highest (lowest) SINR with i.i.d.
(isometric) signatures. This again implies that self-inter-
ference is worse (better) than other-user interference with
i.i.d. (isometric) signatures.

• For a fixed number of equal power users, sum spectral ef-
ficiency is relatively insensitive to the load per user. How-
ever, for i.i.d. (isometric) signatures it is maximized (min-
imized) when each user has the same number of signa-
tures, assuming the total load is fixed.

• In the infinite-user limit with a single signature per user,
the spectral efficiency of CDMA with frequency-selective
fading is the same as that of CDMA without fading (i.e.,
constant channel).

In Section II, we describe the CDMA system model. In
Section III, we present the asymptotic spectral efficiency of
CDMA with the optimal receiver, and in Section IV, we de-
rive the asymptotic SINR for the MMSE receiver, along with
the associated capacity. Numerical results, which illustrate
the analysis, are presented in Section V, and conclusions are
discussed in Section VI.

II. SYSTEM MODEL

We consider the uplink of a multisignature CDMA system
with synchronous users and frequency-selective channels. Let

denote the total number of signatures, and denote the
number of signatures assigned to user , where

. Let denote the spreading gain, which is either the
number of time-domain chips in DS-CDMA or the number of
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subcarriers in MC-CDMA. We also refer to as the number of
transmit (and receive) diminsions. The ratio
is the total system load, and is the per-user load.

In matrix notation,2 the sequence transmitted by user during
a CDMA symbol is of length , and is given by ,
where is the user’s signature matrix with the th
signature in column , and is
a vector of data symbols. For convenience, we will absorb
the different transmit power levels of the users into the channel
model, and hence without loss of generality, we assume unit
power, zero mean, i.i.d. data symbols with .

We consider both randomly assigned i.i.d. signatures and
random orthogonal signatures for each user. In the i.i.d. case,
the elements of are i.i.d. circularly symmetric complex
random variables, with zero mean, unit variance, and finite
positive moments. The asymptotic performance results do not
depend on the particular distribution of the elements. In the
random orthogonal case, we assume that is obtained by ex-
tracting columns from an Haar-distributed3 unitary
random matrix , where . We will assume that the
matrices , are independent. Note that [13]
considers both i.i.d. and isometric signatures for MC-CDMA
in frequency-selective fading with .

All users transmit their symbols synchronously, and any in-
terference between successive CDMA symbols due to multipath
is removed by the insertion of a cyclic prefix of length .
The received vector is

(1)

where is the channel matrix for user , and is an
vector of additive noise with i.i.d., circularly symmetric, com-
plex Gaussian elements with zero mean and variance . We
also denote the average received power for each signature of the
th user as .

For DS-CDMA, is the standard circulant matrix con-
structed from the time-domain channel impulse response (CIR).
For MC-CDMA, is diagonal where the diagonal contains
the -point discrete Fourier transform (DFT) of the CIR. The
MC-CDMA channel differs from the DS-CDMA channel

only in that includes an additional IDFT/DFT
operation, i.e.,

where is the DFT matrix. Our analysis does not depend on
the particular basis used, but rather depends only on the eigen-
values of , which are clearly the same for both systems.
Furthermore, if the channel order is finite, then the assumption
of a cyclic prefix is unnecessary in either case as .

2Notation: All vectors are defined as column vectors and designated with
bold lower case; all matrices are given in bold upper case; ( � ) denotes trans-
pose; ( � ) denotes complex conjugate; ( � ) denotes Hermitian (i.e., complex
conjugate) transpose; j � j denotes matrix determinant; tr[ � ] denotes the matrix
trace; Tr[ � ] denotes the normalized matrix trace tr[ � ]=N ; and, III denotes the
N �N identity matrix. Expectation and variance are denoted [ � ] and Var[ � ],
respectively.

3AnN�N random matrix��� is Haar distributed if its probability distribution
is invariant to left multiplication by any constant unitary matrix. IfXXX is anN�
N random matrix with i.i.d. complex Gaussian centered unit variance entries,
then the unitary matrix XXXXXX XXX is Haar distributed.

Therefore, our results apply equally to both DS-CDMA and
MC-CDMA.

For the MMSE receiver, the estimate of the symbol carried
on the th signature for user is given by

(2)

where

(3)

(4)

The corresponding SINR is

SINR (5)

where

(6)

and denotes with the th data stream removed, i.e.,

Throughout this paper, we consider the limit as and
with for each . We will denote this limit

as “ ,” and evaluate the spectral efficiency in bits per chip.
Note that each multisignature user can be considered as being
equivalent to a fixed proportion of the users in single-signature
CDMA systems (e.g., as considered in [9]).

When evaluating the limit as , we will assume that
the bandwidth of the signal increases, as opposed to increasing
the time duration of the symbol. In other words, as , the
frequency diversity order increases in proportion with . Fur-
thermore, we will assume that the eigenvalues of
are uniformly bounded over , i.e., for

, and that the empirical distribution of the eigenvalues
of for each converge in distribution almost surely to
a deterministic distribution , with mean and compact
support on the real nonnegative axis. With these assumptions,
we will show that the spectral efficiency and MMSE SINR
converge in the almost-sure sense as .

An example of a specific channel model which satisfies
the preceding assumptions is a wideband frequency-selective
fading channel with a finite-length impulse response, where
the coefficients are modeled as zero-mean, complex-valued,
circularly symmetric Gaussian random variables (i.e., Rayleigh
fading). Here we use the term “wideband” to indicate that there
are many coherence bands, so that a normalized histogram of
the squared absolute value of the frequency domain channel
gains is well approximated by an exponential probability
density function (pdf). Technically, we must truncate the expo-
nential distribution, in order to meet the requirement of compact
support, however, the truncation value can be arbitrarily large.
It can be verified that the associated truncation error vanishes
as the truncation value tends to infinity.

III. SPECTRAL EFFICIENCY REGION

The spectral efficiency for user , is defined as the max-
imum number of bits per chip summed over the user’s signatures
that can be reliably transmitted [6]. Since the bandwidth of a
CDMA system is roughly equivalent to the reciprocal of the chip
duration, the total spectral efficiency (summed over users) can
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be viewed as the maximum bits per second per hertz (bits/s/Hz)
supported by the system.

In this section, we derive the (optimal) asymptotic spectral ef-
ficiency region of the multiuser multisignature CDMA model.
We start by considering the capacity region of the Gaussian
multiple-access channel (GMAC) [21]. We then consider each
boundary of the region, and express the boundaries in terms
of Stieltjes transforms. Unfortunately, for isometric signatures,
these transforms cannot be computed,4 however, we will make
approximations to the transforms using free probability [17].

In what follows, we assume that the transmitter has no knowl-
edge of the channel, hence, the information rate , which is
carried on signature for user , is independent of . That is,
for a particular user, the rate per signature does not vary across
signatures, although the total rate can vary with user . This
corresponds to coding the information sequence at rate , and
then spreading the coded symbols evenly across the user’s sig-
natures. The spectral efficiency for user , and the sum spectral
efficiency are therefore, respectively, given by

(7)

(8)

The capacity region of the GMAC was derived in [21]. Since
multisignature CDMA is a form of the GMAC channel with a
specific mixing matrix, the corresponding capacity region is

for (9)

where

(10)

(11)

(12)

and denotes the th element of the set , which is a subset
of .

Note that the boundaries of the spectral efficiency region in
(9), i.e., the values of , are random, since they depend
on the particular realizations of and . We now
proceed to obtain an asymptotic limit for each of the conditions
in (9). Note that

(13)

where is the th eigenvalue of and . Since the
eigenvalues of and the nonzero eigenvalues of

(14)

4A more general case of this problem is solved using a novel approach in [22,
Theorem 1].

are identical (where is defined in (4)), we can replace
by in (10) and sum to in (13), to obtain

(15)

(16)

where is the empirical eigenvalue distribution

(e.e.d.) of the random matrix , i.e.,

In order to determine the asymptotic limit of (16), we

i) determine the convergence of the (random) e.e.d. of
to a (determinstic) asymptotic eigenvalue distribution
(a.e.d.);

ii) express the limit of (16) in terms of the Stieltjes trans-
form of the a.e.d. of ; and

iii) determine the Stieltjes transform of the a.e.d. of .
In order to address item i) above, first note that all terms in

the expansion of the th moment of (and ) have the form
considered in the following theorem.

Theorem 1: The family of random matrices

has an almost-sure limit distribution. That is,
as , for all

, where

• denotes the set of all finite-length sequences of
positive integers from the set ;

• is the empirical moment given by

(17)

• is the th element of ;
• is a deterministic polynomial in ,

where the degree of is equal to

(18)

and the coefficients of the polynomial are completely de-
termined by and finite moments of .

Proof: See Appendix II.

Theorem 1 establishes the convergence of the th moment
of , for both i.i.d. and isometric signatures, which in
turn establishes the almost-sure convergence in distribution of
the e.e.d., since the spectral norm of is bounded.

With a trivial relabeling of the indices of , the
above argument also holds for in place of . Moreover, as

is bounded and continuous on the support of
the a.e.d. of , from [32, Theorem 4.4.1], we conclude that

, where

(19)

and denotes the a.e.d. of . The argument
is introduced in (19) in order to express in terms of the
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Stieltjes transform5 of , using the following method from
[18]. Differentiating (19) with respect to gives

(20)

Using the boundary condition (i.e., the
spectral efficiency goes to zero as the noise level increases to
infinity), we have

(21)

where is the Stieltjes transform of . This completes
step ii) described above.

Step iii) requires determining for both i.i.d. and iso-
metric signatures, as considered separately in the following sub-
sections.

A. i.i.d. Signatures

To determine for i.i.d. signatures, first define

(22)

(23)

and note that is the Stieltjes transform of the e.e.d. of .
Also, note that we use the notation for the term in (23),
since it is shown in Section IV to be directly related to in
(6).

An application of [24, Theorem 16.3]6 gives that as
with

and , where and are the
solutions to the following set of equations:

(24)

(25)

where the expectation in (25) is with respect to , and
is a scalar random variable according to the a.e.d. of . In
addition, for , a unique solution

to (24)–(25) exists.

B. Isometric Signatures

For isometric , determining is not straightforward,
since the matrices , are not asymptotically
free.7 If they were, then the a.e.d. of the sum could be computed

5The Stieltjes (or Cauchy) transform of the distribution of a random variable
X 2 is [ ], where z 2 is the transform variable, and

= fxjx 2 ; Im(x) > 0g:

6The authors thank P. Loubaton for bringing this reference to our attention.
7We show in Appendix I that limTr[RRR RRR RRR RRR ] is not the same as the

corresponding limit obtained by assuming that RRR and RRR are asymptotically
free.

by using the -transform.8 Nevertheless, we will see that there
is negligible error (for all cases considered) associated with ap-
proximating the component matrices in by asymptotically
free matrices. We therefore proceed by defining

(26)

where , and is a set of independent
random unitary matrices. Note that and have the same
eigenvalues, and the matrices are asymptot-
ically free since they are unitarily invariant, and have an al-
most-sure limit distribution due to a straightforward extension
of Theorem 1, and thus satisfy [17, Theorem 4.3.5]. We will ap-
proximate with . The accuracy of this approx-
imation is discussed in Section V-A and in Appendix I. Note
that it becomes exact for large . Namely, as increases, the
elements of become Gaussian, in which case the a.e.d. of
and is the fixed point of the -transform.

Using this approach, we will show that Stieltjes transform
, satisfies the following equations:

(27)

for (28)

where denotes the Stieltjes transform of the a.e.d. of .
To see this, first note that has the same eigenvalues as

. Now, note that can be written as ,
where the matrix with

. From [17, Proposition 4.3.9], the family
is almost-surely asymptotically free, and the

Stieltjes transform can be computed by applying the
-transform [25]. The -transform computation is summarized

by the following identity. Namely, the Stieltjes transform of
the distribution of the product of two noncommutative free
random variables, , is the solution to the following three
equations (written in compact form) in the three unknowns

and :

(29)

where and denotes the Stieltjes transform of the
distributions of and , respectively.

Applying this to gives

(30)

8The - and -transforms allow the computation of the distribution of sums
and products, respectively, of noncommutative free random variables. See, e.g.,
[17], [20].
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Now, (30) can be rewritten as the fixed-point equation

(31)

Applying the -transform to (26) with (31) gives the result.
Note that in the particular case of frequency-selective

Rayleigh fading discussed in Section II (for which the a.e.d. of
is an exponential distribution with mean )

(32)

(33)

(34)

and hence, (28) simplifies to

for

(35)
In summary, (21) is evaluated using (24)–(25) or (27)–(28)

in order to determine the boundaries of the asymptotic spectral
efficiency region.

IV. MMSE RECEIVER SPECTRAL EFFICIENCY

In this section, we consider the performance of a system with
an MMSE receiver. Asymptotically, the interference-plus-noise
at the output of the MMSE receiver is Gaussian [26], hence, the
asymptotic capacity per signature for user with a single-sig-
nature decoder is [27] where is the asymptotic
output SINR of the MMSE receiver for the th user, defined
below. The asymptotic total (sum) capacity with single-signa-
ture decoders is therefore

(36)

We now require the asymptotic MMSE SINRs .
With i.i.d. signatures, [10, Lemma 1] and [23, Lemma 2.6]

applied to (6) give

(37)

as with for , where

(38)

which corresponds to with and , as
defined in (23). Therefore, solving (24)–(25) at gives
the asymptotic SINR.

We note that an alternate approach to deriving the SINR in
this i.i.d. case is presented in [33]. There a set of simultaneous
equations is derived using an incremental signature method (see
Appendix I) in terms of the derivatives and the
moments and . However, in [33], the mo-
ments were evaluated using the free approximation we use here
for isometric signatures.

To compute the asymptotic MMSE SINR with isometric sig-
natures, we use a generalization of the approach presented in

[13] for . As in the previous subsection, we will em-
ploy an approximation in order to use the -transform. The
mean-squared error (MSE) for user is given by , where

(39)

and the corresponding SINR is . From Lemma 1

in Appendix I and [23, Lemma 2.6], we have that

(40)

in the limit considered, and moreover

(41)

(42)

where the second equality is the matrix inversion lemma, and
is a random variable with distribution according to the e.e.d.

of . Let , where
is the Stieltjes transform of a.e.d. of , which exists

due to Theorem 1. We then have from (40) that

(43)

We again approximate by , where

and

Since and are asymptotically free (from [17, The-
orem 4.3.5]), we can compute the Stieltjes transform of a.e.d.
of , namely, , via the -transform. Equivalently, we
may transform and apply the -transform identity given in (29),
to obtain

(44)

where can be determined from , given in (31).
Also,

(45)

where is a real-valued random variable with distribution given
by the a.e.d. of , and is given by (27)–(28), where

.
Summarizing the preceding derivations, we have

(46)

(47)
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Fig. 1. Empirical (N = 32) positive and negative moments of RRR and RRR (labeled Free approximation) for J = 2 equal-power users with isometric signatures.
(a) 0 dB per-signature SNR, (b) 10 dB per-signature SNR.

(48)

(49)

These relations specify as a system of nonlinear
equations in unknowns. The unknown variables are

, where . The
asymptotic MSE can therefore be computed from (43) and
(46)–(49).

V. NUMERICAL RESULTS

A. Accuracy of Free Approximation for Isometric Signatures

1) Comparison of Moments of and : The results for iso-
metric signatures in this paper are based on approximating the
a.e.d. of by the a.e.d. of . In this section, we discuss the
accuracy of this approximation by comparing the moments of

and . Identical asymptotic moments would imply that the
a.e.d.’s are the same.

Fig. 1 shows plots of the moments and versus
for , and per-signature received

SNRs as 0 and 10 dB with isometric signatures. These
plots are obtained by averaging over 2000 realizations of the re-
spective matrices. They show that the approximation is very ac-
curate over a wide range of parameters (SNRs and system load

). The approximation becomes less accurate as increases be-
yond , in particular, for the large negative moments, and
for high per-signature SNR. Similar plots for show that
the differences between the moments of and diminish fur-
ther. As discussed in Section III, as increases, these differ-
ences must tend to zero since the a.e.d.’s of and converge
to the same distribution.

The asymptotic positive moments of and can be com-
puted exactly via an incremental-signature technique. In Ap-
pendix I, we show that the first three asymptotic moments are
identical, and that the differences in the higher moments are
polynomials in the per-user system loads and average re-
ceived power per signature , and the noise
power per receive dimension , This implies that the approxi-
mation is very accurate for and low SNR, as observed in
Fig. 1.

B. Comparison of and

The Stieltjes transform is used in (21) to compute
the asymptotic optimal spectral efficiency, and is also used to
compute the asymptotic MMSE SINR. Fig. 2 compares
computed empirically for (since asymptotic results are
not available) with for real, negative , and two users
with isometric signatures, equal powers and loads. Note that the
approximation is most accurate for .

1) Comparison of Empirical and Approximate Asymptotic
Sum Spectral Efficiency: Fig. 3 compares empirical values of

with (approximate) asymptotic values of for
as a function of over a range of per-signature SNRs (0–20 dB
in 2-dB steps) for two users with isometric signatures, equal
power and loads. Empirical curves represent averages over 2000
realizations of (13) with . The approximation is nearly
exact for all points shown. The small but visible differences be-
tween the empirical and approximate curves shown in Fig. 2 for
small values of therefore introduce negligible error when com-
puting sum spectral efficiency.

2) Comparison of Empirical and Approximate Asymptotic
SINR for Two Users: Fig. 4 shows empirical and
asymptotic values of output MMSE SINR and versus
for two equal-power users with . Curves are shown
for per-signature received SNR ranging from zero to 20 dB, in
steps of 2 dB, along with infinite SNR.

These results again show that the asymptotic approximation
made for isometric signatures is very accurate, especially for
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Fig. 2. Empirical (N = 16) values of G (z) and asymptotic values of
G (z) versus real, negative z for two users with isometric signatures, equal
power and loads. Curves shown are for I = f1; 2g and � = 0:25 to 1:5 in
steps of 0:25.

Fig. 3. Empirical and (approximate) asymptotic values of sum spectral
efficiency versus �, over a range of per-signature SNRs (in 2-dB steps), for two
users with isometric signatures, equal power and loads.

. The small differences between the empirical and ap-
proximate asymptotic curves in Fig. 2 therefore contributes neg-
ligible error.

Note that for i.i.d. signatures, the asymptotic SINR is higher
for the transmitter with the least number of signatures, even
though the received power per signature is the same for all sig-
natures in the system. For isometric signatures, the reverse is
true.

3) Comparison of Empirical and Approximate Asymptotic
SINR for Four Users: Fig. 5 shows empirical and
asymptotic values of output SINR versus , for
equal-power users with
and . Again, these curves show close alignment be-
tween the asymptotic and empirical values. As in Fig. 4, we ob-
serve that the output SINR for a particular transmitter decreases

(increases) as the load increases for i.i.d. (isometric) signatures,
even though the received power per signature is the same for all
signatures in the system. This indicates that for i.i.d. signatures,
self-interference, caused by signatures which pass through the
desired user’s channel, is slightly worse than interference from
other users, i.e., signatures which pass through different chan-
nels. For isometric signatures the reverse is true.

C. Asymptotic Spectral Efficiency

The preceding numerical comparisons show that the asymp-
totic results give very accurate predictions of finite-system per-
formance. Hence, in what follows we only show asymptotic re-
sults, and omit comparisons with empirical results for finite-size
systems.

1) Two-User Asymptotic Spectral Efficiency Regions: Con-
sider two users, each with equal variance per Rayleigh sub-
channel . Each user allocates equal power across his
own signatures, that is, at the receiver SNR
does not depend on . We shall consider two power assign-
ment schemes. In the first, the power per user is proportional
to the user’s system load (i.e., equal-power per signature). This
is motivated by current CDMA systems in which the rate per
user is varied by varying the number of assigned signatures. We
will refer to this scheme as proportional power allocation. In
the second scheme, we assume that each user is assigned equal
power. In both cases, the sum total power over the two users is
equal, and the two schemes are identical when .

Fig. 6(a) shows three asymptotic optimal spectral efficiency
regions with proportional power allocation corresponding to dif-
ferent values of with and per-signature re-
ceive SNR 8 dB. Regions are shown for both i.i.d. and iso-
metric signatures, based on numerical integration of
and for , respectively, according to (21). Note
also that, for isometric signatures, the horizontal and vertical
boundaries are exact asymptotic values (calculated using the
exact single-user expressions), whereas the boundaries on sum
spectral efficiency are approximate. Also shown is the corre-
sponding region with MMSE receivers and i.i.d. signatures, as-
suming single-signature decoders. Fig. 6(b) shows the union
of asymptotic spectral efficiency regions over all such that

, where all other parameters are the same as in Fig.
6(a).

As expected, Fig. 6(a) shows that the spectral efficiency for
a particular user increases with the number of assigned signa-
tures, or load. With i.i.d. signatures, the boundary of the spectral
efficiency region is concave, and the sum capacity is
maximized with , whereas with isometric signa-
tures the boundary is convex, and the sum capacity is minimized
at ; the maximum is at either or . Still,
the minimum sum spectral efficiency with isometric signatures
is greater than the maximum spectral efficiency with i.i.d. sig-
natures. This again implies that with i.i.d. signatures self-inter-
ference corresponding to a signature from the same user is more
harmful than interference corresponding to a signature from an-
other user. In contrast, with isometric signatures self-interfer-
ence is less harmful than other-user interference.

Also shown in Fig. 6(b) are the regions corresponding to
OFDMA with additive white Gaussian noise (AWGN) and
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Fig. 4. Empirical (N = 32) and asymptotic values of output SINR � and � versus � for two equal-power transmitters with � = 3� . Curves are shown for
per-signature received SNR from zero to 20 dB, in steps of 4 dB. (a) i.i.d. signatures, (b) isometric signatures.

Fig. 5. Empirical (N = 128) and asymptotic values of output SINR � and � versus � for four equal-power transmitters with � = �=2; � = �=4; � =
3�=16; � = �=16. Curves are shown for per-signature received SNR at 6 and 20 dB. (a) i.i.d. signatures, (b) isometric signatures.

Rayleigh-fading channels. In OFDMA, the users occupy
nonoverlapping sets of subchannels, and hence there is no mul-
tiuser interference. In that case, the system load designates
the fraction of total bandwidth allocated to user . For the case

considered, the curves are given by

(50)

(51)

The figure shows that the capacity region of fully loaded
OFDMA , which is an orthogonal multiple-access
scheme, is larger than that of CDMA. This is also true for
CDMA sum capacity with one signature per user [6]. Of
course, OFDMA is limited to , requires more coordina-
tion among users, and is also more susceptible to interference
from other cells and cochannel systems. As increases be-
yond one, the spectral efficiency region of CDMA becomes
largerthan that of OFDMA in Rayleigh-fading channels, as
indicated later in Fig. 9.

Fig. 6(b) shows that the CDMA curve with isometric sig-
natures meets the OFDMA fading curve at the axes. In other
words, a single CDMA user with and isometric sig-
natures has the same spectral efficiency as OFDMA, even
though the CDMA signatures are not orthogonal at the re-
ceiver. This is because the CDMA spectral efficiency is

where are the eigenvalues of
for OFDMA, and for CDMA. With isometric

signatures, these eigenvalues are the same in both cases.
Fig. 7(a) and (b) shows the union of asymptotic spectral

efficiency regions over for two users with proportional and
equal-power allocation, respectively. Regions are shown for
total loads and , per-signature
received SNR 8 dB, and with both i.i.d. and isometric
signatures. In both cases, the region expands as increases.
These graphs show that proportional power allocation gives a
larger spectral efficiency region than allocating equal power per
user. Note that with only one active user, corresponding to the
intersection of the boundary with each axis, proportional power
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Fig. 6. Asymptotic optimal spectral efficiency regions with i.i.d. and isometric signatures. Also shown is the corresponding region with the MMSE receiver, i.i.d.
signatures, and single-signature decoding. All curves are for two users, proportional power allocation, and SNR = 8 dB. (a) Three regions with � +� = 1. (b)
Union of all regions with � + � = 1.

Fig. 7. Union of asymptotic spectral efficiency regions for two users with � + � = �. (a) Curves correspond to proportional power allocation with i.i.d.
and isometric signatures. For each �, the region corresponding to isometric signatures is larger than the region corresponding to i.i.d. signatures. The received
per-signature SNR = 8 dB. (b) Curves correspond to equal power per user with i.i.d. signatures. The per-signature SNR satisfies J� p =� = 8 dB, so that the
total transmit power is the same as for proportional power allocation with � = 1.

assignment allocates twice as much power to the active user as
equal-power assignment.

2) Spectral Efficiency Versus and System Load: Fig.
8 shows asymptotic sum spectral efficiency versus for
OFDMA and CDMA with i.i.d. and isometric signatures for

, and users, and proportional power allocation. In
each case , so that . Note that

SNR SNR

(The isometric and OFDMA curves coincide.)

Fig. 8(a) and (b) shows that as increases, the spectral ef-
ficiency increases with i.i.d. signatures, but decreases with iso-
metric signatures. Note that the curve is common to both
figures, so that the asymptotic spectral efficiency with isometric
signatures is always greater than that for i.i.d. signatures, and
the difference goes to zero as increases.

Fig. 9 shows asymptotic sum spectral efficiency versus total
system load for OFDMA and CDMA with i.i.d. and isometric
signatures for , and users, and proportional power
allocation with 10 dB. In each case . Also



PEACOCK et al.: ASYMPTOTIC SPECTRAL EFFICIENCY OF MULTIUSER MULTISIGNATURE CDMA 1123

Fig. 8. Sum spectral efficiency vs. for OFDMA and CDMA for J = 1; 2; 4 and K users, and proportional power allocation. In each case � = 1=J so that
� = 1. (a) i.i.d. signatures, (b) isometric signatures.

Fig. 9. Sum spectral efficiency versus � for OFDMA and CDMA for J = 1; 2; 4, and K users, and proportional power allocation with = 10 dB. In each
case � = �=J . (a) i.i.d. signatures, (b) isometric signatures.

shown are the single-user spectral efficiencies with AWGN and
flat fading, given by (50) and (51), respectively. Fig. 9(a), cor-
responding to i.i.d. signatures, shows curves for both the op-
timal receiver (from (21) and (24)–(25)) and the MMSE receiver
(from (36) and (24)–(25)). As observed in [6] for the case of
single-signature CDMA, the spectral efficiency of CDMA with
an optimal receiver increases with , whereas the spectral ef-
ficiency for the MMSE receiver reaches a maximum when the
system load is less than one.

Fig. 9(a) shows that as , the optimal spectral ef-
ficiency with (single signature per user) appears to
approach the AWGN single-user spectral efficiency, and the
single-user, multisignature spectral efficiency with i.i.d. signa-
tures appears to approach the flat-fading single-user spectral
efficiency. We also observe that the spectral efficiency of the
MMSE receiver with i.i.d. signatures increases with for fixed

. This is due to the fact that self-interference is worse than
other-user interference.

In the isometric signature case, presented in Fig. 8, curves are
shown for both the optimal and MMSE receivers. Of course,
in this case we must have . As in Fig. 8, the
curve is the same for i.i.d. and isometric signatures. Again for
any finite number of users, the spectral efficiency with isometric
signatures is always greater than that with i.i.d. signatures.

For and , MC-CDMA with isometric signatures
has the same spectral efficiency as OFDMA, as discussed in
relation to Fig. 8(b). However, for , the spectral efficiency
is greater than that of OFDMA. This is due to the higher degree
of frequency diversity obtained with MC-CDMA, because it
spreads over all subcarriers. Also note that the MC-CDMA
spectral efficiency decreases slightly as increases, even
though there is greater diversity with larger . This is due to
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the fact that the assigned signatures are not orthogonal among
users. The minimum spectral efficiency with (i.e., a
single signature per user) is greater than the spectral efficiency
with i.i.d. signatures (for any ).

D. Discussion

The preceding numerical results indicate the effect of split-
ting a total number of signatures (i.e., system load) and power
between two users. In general, the preceding analysis can be
used to optimize the allocation of signatures and powers among
many users to meet specific system objectives. For example, if
each user has a target information rate, then we can determine
a set of assigned powers and system loads, which can achieve
these rates. An objective in that case might be to minimize the
total power summed over the users. The set of powers and loads,
which minimize the total power, appears to be difficult to deter-
mine analytically, but can be computed via a gradient search. For
both the optimal and MMSE receivers, the total load can also
be considered a design parameter. For the optimal receiver, both
the sum spectral efficiency and the receiver complexity increase
with . For the MMSE receiver, can be selected to optimize
the coding–spreading tradeoff, as previously discussed.

VI. CONCLUSION

We have analyzed the spectral efficiency of multiuser mul-
tisignature CDMA over frequency-selective fading channels.
Both the optimal and MMSE receivers have been considered
with i.i.d. and isometric random signatures. Our results are
asymptotic as the number of signatures per user and processing
gain tend to infinity with fixed ratio (system load), and account
for variations in system load and transmitted power across
users. By optimizing the system loads across users, we can
compute a maximum achievable spectral efficiency region.
The analysis has been used to illustrate the dependence of the
spectral efficiency region on power and signature allocation
across users, and the spectral efficiency of the optimal and
MMSE receivers as a function of the code rate.

Our numerical results indicate that with i.i.d. signatures,
self-interference from signatures which pass through the same
channel as the desired signature, is worse than other-user
interference, i.e., from signatures which pass through a dif-
ferent channel. Namely, we have observed that for the MMSE
receiver, a user with a smaller system load experiences a higher
output SINR. Also, for both the MMSE and optimal receivers,
the sum spectral efficiency increases with the number of users,
given a fixed total system load (summed over users). That is,
the spectral efficiency is maximized when each user is assigned
a single signature, and the number of users and processing
gain both tend to infinity. In contrast, with isometric signatures
other-user interference is worse than self-interference, so that
the sum spectral efficiency decreases with the number of users.
The comparison results with CDMA and OFDMA can be used
to quantify the tradeoffs among spectral efficiency, receiver
complexity, and versatility (e.g., the amount of user coordina-
tion) when providing a variable data rate service.

APPENDIX I
MOMENTS OF AND

Here we show that the first three (asymptotic) moments of
and are identical, and that the difference in fourth moments
is a polynomial in the set of loads and powers . We
also show that the difference in the fourth moments is small
compared with the magnitude of the fourth moments.

Let , be a scalar random variable whose distribution
is the a.e.d. of .

The incremental signature method9 is used to show the
equality of the first three (asymptotic) moments of and ,
and that all terms in the polynomial for the difference in the
fourth moment have the form ,
where denotes the variance of . In general, the
difference in the th moments is a polynomial in the noise
power , the set of loads , and the moments of .
In particular, the difference in the th moments is a polynomial
containing two types of terms. The first type has the same
form as those found in the polynomial for the difference in the

th moment, but multiplied by . The second type has
the form

(52)

where is a constant (possibly zero), and for each
and . Also , and are

nonnegative integers with . Moreover, we find
that for the moments computed here, a majority of significant
terms in the moment polynomials cancel in the difference poly-
nomials (e.g., terms such as ). Therefore, the difference
in th moments is small in comparison to the moment, espe-
cially for small .

In principle, this comparison can be used to bound the approx-
imation error incurred when replacing by in the expressions
for optimal spectral efficiency and SINR for the MMSE receiver.
We also remark that this moment analysis can be used to com-
pute the exact SINR and spectral efficiency associated with a
reduced-rank MMSE receiver [15], [30].

We require the following notation. Let .
Also let

(53)

(54)

(55)

(56)

We will require the following lemma for isometric signatures.

Lemma 1: Let be columns from an Haar-
distributed random matrix, and let be a column of . Let
be an random matrix with uniformly bounded spectral
norm, which is a nontrivial function of , and satisfies

9In [30, Appendix B], this incremental signature method was used for i.i.d.
signatures and DS-CDMA. In this appendix, we extend the method to isometric
signatures.
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where is with substituted by , and is an
independent unitary matrix. Then

(57)

as with .
Proof: This is a straightforward extension of [13, Propo-

sition 3].

Additionally, using the definitions and assumptions of
Lemma 1, note that if instead is independent of , then

under the limit given.
In what follows, we use the incremental signature technique

with both i.i.d. and isometric signatures. For i.i.d. signatures,
it is preferable to add a signature when deriving the derivative,
whereas for isometric signatures we subtract a signature. This
is because in the i.i.d. case, we can use [10, Lemma 1] when the
incremental signature is independent of other terms in the ex-
pression. This occurs when the incremental signature is added.
For isometric signatures, we can use Lemma 1 when the incre-
mental signature is contained in . This occurs when the in-
cremental signature is subtracted.

The following two lemmas are used to show convergence of
random finite differences to deterministic derivatives for i.i.d.
and isometric signatures, respectively.

Lemma 2: Let denote an infinite
sequence, indexed by , where the th element is a complex-
valued sequence, indexed by , of length .
Suppose

(58)

as , where is uniformly bounded above
on , and represents the derivative of , which is assumed
to be continuous. Additionally assume as

. Then

(59)

as .
Proof:

(60)

(61)

(62)

(63)

as , due to (58) and the Riemann integrability of . Note
that the symbol is used as shorthand for .

Lemma 3: Let be as defined in
Lemma 2, however with . Suppose

(64)

as , where is continuous and uniformly
bounded above on , and is a finite positive integer. Addi-
tionally, assume as , where
is a finite constant. Then

(65)

as , where .
Proof: Fix . Note that the derivative of is given by

, and

(66)

as . As such, define for
. Now

(67)

(68)

(69)

(70)

as , due to (64) and (66).

We now address the difference in the asymptotic positive mo-
ments of and . Clearly, the difference between the first mo-
ments is zero, i.e., , since

The following Lemma is used to consider the difference in the
second and third asymptotic moments of and .
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Lemma 4: For any , we have (71)–(73) at the
bottom of the page.

Proof: First note that for integer ,
which establishes (71) when . Now define

. The incremental signature technique applied to
involves the addition (subtraction) of an i.i.d. (isometric) signa-
ture to . This yields

(74)

Now, due to [10, Lemma 1] and Lemma 1, we have that

and

and similarly, for both signature types. In
addition, note that and as
for i.i.d. and isometric signatures, respectively. Therefore, from
Lemmas 2 and 3, we obtain the second and third lines of (73).

For the case in (73), it is convenient (for what follows)
to evaluate the limit of

with , and for (i.e.,
distinct indices). Similarly, let

The incremental signature technique applied to
and simplified via Lemmas 2 and 3

gives

in the limit considered, where

i.i.d. sigs

iso sigs
(75)

with the boundaries conditions is zero at for i.i.d.
, and

at for isometric .

An identical treatment of gives

in the limit considered, where and sat-
isfy the same relation given in (75) for and

, respectively. However, in order to obtain this it is also
necessary to use the fact that in the limit considered

(76)

for and , due to the almost-sure
asymptotic freeness of .

We therefore have the solution

establishing the case of (71), and also the first line of (73).
Now consider (72). Since , we need only

consider the cases and .
The case is readily obtained since
for integer . The case holds since

(here ). Finally, we consider . Define
, we have

i.i.d. sigs
iso sigs (77)

in the limit considered, where . In addition,
note that and for i.i.d. and iso-
metric signatures, respectively. In addition, we consider
in a similar manner to obtain (78) at the top of the following
page in the limit considered, and note the boundary conditions

and for i.i.d. and iso-
metric signatures, respectively. Applying Lemmas 2 and 3 to
(77) and (78), we obtain and

, where and are omitted, but may be obtained
from the above. More significantly, the above derivations also
hold for and replaced by and , respectively, again
due to (76), establishing (72).

(71)

(72)

and
for
for and i.i.d. signatures
for and isometric signatures.

(73)



PEACOCK et al.: ASYMPTOTIC SPECTRAL EFFICIENCY OF MULTIUSER MULTISIGNATURE CDMA 1127

i.i.d. sigs
iso sigs (78)

We now show that the differences in the second and third
asymptotic moments of and are zero. From (73) of Lem-
ma 4 we have

(79)

and similarly, we can use (72) to show in the
limit considered.

Proceeding to the difference in the fourth moments of and
, we require the following lemma.

Lemma 5: For

in the limit considered unless

and

Proof: As in the proof of Lemma 4, considering each case
for and applying the incremental signature technique
gives the result.

From Lemmas 4 and 5 we have

(80)

where

and

For i.i.d. signatures, the incremental signature technique and
Lemma 2 gives , where

(81)

(82)

(83)

Integrating gives

(84)

The same technique applied to gives an expression
identical to (84), but where is replaced by

. Note that

(85)

(86)

where (86) is found by applying the method for calculating
mixed moments of free random variables (e.g., see [31]). For
i.i.d. signatures we combine (80), (84), and (85)–(86) to obtain

(87)

For isometric signatures we also have

from the incremental signature technique and Lemma 3, where

(88)

(89)

(90)

The same technique applied to also gives (88)–(90)
where is replaced by , given
by (86). Thus, for isometric signatures we again combine (80)
and (88), so that with isometric signatures also satisfies
(87).

Finally, observe that the limit of is a polynomial in
the per-user system loads and the variance of the subchannel
powers, . Fig. 1, presented earlier, showed that
for the numerical value of (87) is small in comparison
to the moment over the wide range of and the two
values of SNR shown. This is largely due to the fact that only

terms are nonzero out of the total terms in
the expansion of (80).

By extension, we see that the limit of is a polynomial
in the loads , and the moments of , as shown in (52). For

, the noise power enters terms with degree as
well.10

APPENDIX II
ALMOST-SURE LIMIT DISTRIBUTION OF

Proof of Theorem 1: The proof is by induction on . Note
that the family has an almost-sure limit distribution, since for
any in (17) clearly has an almost-sure

10The noise power does not appear in the moment difference for n � 4 since
it only appears in � (���) as a coefficient of terms which are asymptotically
identical for both RRR and RRR, e.g., � Tr[RRR ]
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limit of the form for some integers
and . Observe this limit is a polynomial

of degree in .
Now assume the family has an almost-sure limit distri-

bution for some , and hence, in the
limit considered for all where is a polyno-
mial of degree in for all with coeffi-
cients determined by and finite moments of
(hereafter, refer to this as having “the stated form”). For the
induction argument on , we wish to show that has an al-
most-sure limit distribution, and that for all

in the limit considered, where has the stated
form.

To do this, we use a further induction argument on .
We start this induction by noting that due to the previous
inductive assumption, for all with

in the limit considered, where has the
stated form, since the trace in (17) contains only for .
Therefore, for this induction argument, assume that for all

with , where is a finite positive
integer, in the limit considered, where has
the stated form.

We now demonstrate that for all with
in the limit considered, where

has the stated form. To do this, we use the incremental-signa-
ture technique with respect to user . To do this, we consider a
sequence for which , and indicate the dependence
of and on and by writing
and .

We have

(91)

where is unity when and zero otherwise, and the
sign in (91) and in what follows is positive for i.i.d. signatures
and negative for isometric signatures, as discussed in Appendix
I. Note that (91) holds for general sequences ; however, in
this induction step we will only be concerned with sequences
for which .

Expanding (91) gives

(92)

(93)

if the th bit of is zero

otherwise
(94)

where the th bit of refers to the standard binary representation
of the -bit positive integer , defining the most significant bit
as the “first” bit.

Suppose there are terms of the form in the
product in (93). Note that there will always be at least one term
of this form, since and . So . Also,
from the expansion of (91), the degree of in is equal to

, and is therefore at most .
In other words, the argument of the trace in is a product

of terms, given in (94), where there are precisely
which have the form . We now use the fact that

to create products of terms in which
appears on the left and appears on the right.

More precisely, we now have

(95)

(96)

where denotes the number of terms between
the th pair in , and denotes modulo-
addition. Also, denotes the bit index at which the
first term of the form occurs between the th
pair in . Now applying [10, Lemma 1] and Lemma 1 to (96),
we have that in the limit considered, where
we get (97) at the bottom of the page due to [10, Lemma 1] in
the i.i.d. case and Lemma 1 in the isometric case.

Consider sequences of interest, i.e., those for which
. For i.i.d. signatures it is apparent that the product

term in the right-hand side of (97) is a monomial in elements of
having degree with respect to less than . This is due to

the fact that has at most the same degree as , which we
previously established is at most . Similarly, for isometric
signatures it is apparent that the right-hand side of (97) is either
equal to (this occurs times, corresponding to
when ), or has a trace argument which is a monomial
in variables from having degree with respect to less than

.
For i.i.d. signatures, and isometric signatures for the cases

where does not equal , according to the
induction assumptions we have now established that al-
most-surely converges to a polynomial in with degree
equal to the degree of in the argument of the trace in
(97) for , and coefficients determined by and
moments of . Moreover, for these cases,

almost-surely converges to a deterministic polynomial in
, of at most degree , and in with

degree at most for i.i.d. signatures, and with degree
for isometric signatures.

, i.i.d. sigs

, iso sigs.

(97)
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Therefore, for any sequence for which
, we can write (92) in the following general form:

i.i.d. sigs (98)

iso sigs (99)

where and are de-
terministic values which do not depend on . In addition, con-
sidering the boundary conditions, note that we also have from
the inductive assumption that and for i.i.d. and
isometric signatures, respectively, almost-surely converge to de-
terministic polynomials in , of at most de-
gree . And so, we may apply Lemmas 2 and 3 to obtain
that , where is a polynomial of
degree in , given by

i.i.d. signatures (100)

isometric signatures

(101)

where

and is the boundary condition found via .
Moreover, this completes the induction and implies that

has an almost-sure limit distribution.

Under the assumption of a positive compact distribution for
, and the well-known fact that ,

Theorem 1 implies the almost-sure convergence in distribution
of the empirical distribution function of to a deterministic
distribution with compact support.
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