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Abstract—This paper studies the design and analysis of
optimal training-based beamforming in uncorrelated multiple-
input multiple-output (MIMO) channels with known Gaussian
statistics. First, given the response of the MIMO channel to a
finite sequence of training vectors, the beamforming vector which
maximizes the average received signal-to-noise ratio (SNR) over
all channel realizations is found. Secondly, the question of what
consists of optimal training for a given amount of training is
addressed. Upper and lower bounds for the maximum achievable
SNR using beamforming are established. Furthermore, optimal
training sequences are conjectured to satisfy the Welch bound.
The conjecture is supported by the evidence that such sequences
achieve close to the upper bound with moderate to large amount
of trainings.

I. INTRODUCTION

The performance of multiple-input multiple-output (MIMO)
channels can be significantly enhanced if the channel state
is known to the transmitter, the receiver, or both. Alternative
blind techniques applied in order to avoid channel training
may often incur in a nonnegligible loss of performance and
a fairly increased computational complexity. In practice, the
coefficients of a MIMO channel often vary over time and
need to be estimated. The impact of the realistic availability
of an imprecise channel state information in the capacity
gains predicted for MIMO systems are summarized in [1].
If the channel state varies slowly, one may carry out some
measurements in order to learn the channel statistics and
estimate (or predict) its instantaneous realization. Typically,
the channel coefficients are measured at the receiver by having
the transmitter send known training vectors. Knowledge of
the channel at the receiver can be sent to the transmitter via
feedback channels [2].

The tradeoff between the time and the power allocated to
training operation and data transmission was evaluated in [3].
In particular, they provided the optimum number of pilots and
training power allocation of a training-based MIMO system
in the sense of maximizing a lower-bound on the Shannon
capacity over the class of ergodic block-fading (memoryless
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and uncorrelated) channels, as a function of the number of
transmit and receive antennas, the received signal-to-noise
ratio (SNR) and the length of the fading coherence time.
Earlier related contributions include [4], as well as [5], [6],
where the number of channel uses available for training and the
optimal input distribution achieving capacity at high SNR over
unknown block-fading uncorrelated MIMO channels with a
finite coherence time interval is investigated. Furthermore, the
effects of pilot-assisted channel estimation on achievable data
rates over frequency-flat time-varying channels is analyzed in
[7]. Along with the time-division multiplexing training scheme
considered in the previous works, a tight lower-bound on
the maximum mutual information of a MIMO system using
superimposed pilots is derived in [8].

One simple use of the channel state information at the
transmitter is to modulate the transmitted symbol onto a beam-
forming vector matched to the channel in order to improve
the received SNR. In this paper, we focus on the previous
beamforming approach with the aim of exploiting the diversity
gain achieved over the MIMO channel. If the MIMO channel
is completely known to the transmitter, the evident choice
of the beamforming vector is the right eigenvector of the
channel matrix corresponding to the maximum singular value
in amplitude, which maximizes the received SNR.

Consider training-based beamforming for uncorrelated
MIMO channels with known statistics. We assume that a
sequence of known training vectors are sent by the transmitter
so that the receiver can estimate the channel. In [9], the
capacity of beamforming over a block-fading MIMO channel
is maximized with respect to the finite amount of training
available for channel estimation as well as of limited feed-
back. Instead of following the generally suboptimal approach
consisting of obtaining an intermediate estimate of the channel
matrix to be used in further post-processing, we pursue the
direct estimation of the optimal (channel-adapted) beamformer
vector that needs to be fed back. In particular, the following
questions are addressed in this paper:

1) Given the channel response to training, what is the
optimal beamforming vector which maximizes the re-
ceived SNR averaged over all possible realizations of
the channel?



2) Given a total budget for training purposes, such as the
total energy consumed by training, what is the optimal
sequence of training vectors to use?

We first describe the MIMO channel in Section II. Section
III then provides an exact answer to question 1 in above.
Section IV presents a partial answer to question 2, where an
optimal choice of training vector is conjectured and shown to
achieve close to an upper bound on the performance of optimal
training.

II. CHANNEL MODEL

Consider a linear channel model corresponding to a MIMO
transmission system with M receive antennas and K transmit
antennas, namely, the received signal is expressed as

y(t) = H x(t) + n(t), t = 1, 2, . . . (1)

where x(t) ∈ CK represents the transmitted signal, n(t) ∈
CM the background noise samples, and H ∈ CM×K the
MIMO channel matrix. It is assumed that the entries of H,
{H}m,k ,m = 1, . . . ,M, k = 1, . . . ,K, are independent
identically distributed (i.i.d.) circularly symmetric complex
Gaussian with zero mean and unit variance. The noise process
is modeled as wide-sense stationary, with standarized complex
Gaussian vector entries such that E

[
n(s)n(t)H

]
= δs,tIM ,

where δs,t is the Kronecker delta function.
The purpose of using multiple antennas here is to enhance

the received SNR through beamforming. Specifically, one
wishes to modulate a sequence of transmitted symbols x(t)
onto a unit-norm beamforming vector v ∈ CK (x(t) = vx(t)),
so that the received signal becomes

y(t) = H v x(t) + n(t), t = 1, 2, . . . (2)

Assuming E
{
|x(t)|2

}
= P , the received SNR is then

SNR = E
{
v†H†Hv

}
P. (3)

Suppose the channel H is known completely or partially to
the transmitter, then one wishes to find a beamforming vector
matched to the channel, so that the SNR is maximized in some
sense.

In order to construct the beamforming vector, a set of
training beams are assumed to be available. Then, given a
time interval of certain length is available for the purposes
of training, we are interested in the optimal construction of
a transmit beamforming vector maximizing the SNR during
the allocated period of time. Additionally, as the achieved
performance clearly depends on the available training beams,
we are also concerned about the optimality of the training
sequence. These problems are addressed in the following.

III. OPTIMAL BEAMFORMING

A. Estimation of Optimal Beamforming Vector

In this section, we seek the optimum transmit beamforming
vector for a MIMO system where a statistical characteriza-
tion of the channel is available through training. Suppose
a sequence of T fixed beams are used for training. The

posterior mean and covariance of the (random) channel entries
conditioned on the received observations allow us to formulate
the optimal beamforming problem as that of finding the unit
length (deterministic) vector v such that the SNR over the
training interval is maximized. Then, this problem can be
formulated as

max
v:‖v‖=1

E
[
‖Hv‖2

∣∣∣y (1) , . . . ,y(T )
]

(4)

with the optimal solution given by the top eigenvector of

E
[
H†H

∣∣y (1) , . . . ,y(T )
]

= E
[
H†H

∣∣Y] (5)

where
Y = HB + N (6)

with

Y = [y (1) , . . . ,y(T )] (7)
B = [b (1) , . . . ,b(T )] , (8)
N = [n (1) , . . . ,n(T )] . (9)

Now, we have
Lemma 1: The optimal training vector is the eigenvec-

tor associated with the maximum eigenvalue of the matrix
E
[
H†H

∣∣Y], which is given by

M
(
BB† + IK

)−1

+
(
BB† + IK

)−1

BY†YB†
(
BB† + IK

)−1

.
(10)

Proof: Observe first that the entries of E
[
H†H

∣∣Y] can
be found as{

E
[
H†H

∣∣Y]}
i,j

=
M∑
m=1

E
[
H∗m,iHm,j

∣∣Y] . (11)

Now, note that both (independent) entries Hm,i and Hm,j

belong to the same (mth-)row of the channel matrix H. Thus,
obtaining the posterior correlation of the random variables
(Hm,i, Hm,j), for i, j = 1, . . . ,K, is equivalent to obtaining
the posterior correlation of this row vector (note that, by
assumption, the covariance does not depend on the index m).
Additionally, consider the model

Ȳ = B̄H̄ + N̄ (12)

where H̄ =
[
h̄1, . . . , h̄M

]
≡ H† ∈ CK×M , and Ȳ =

[ȳ (1) , . . . , ȳ (M)], B̄ =
[
b̄ (1) , . . . , b̄ (K)

]
and N̄ =

[n̄ (1) , . . . , n̄ (M)] are equivalently defined. Using these def-
initions, we observe that the previous problem reduces to the
following Bayesian LMMSE estimation problem, namely,

ȳ (m) = B̄h̄m + n̄ (m) (13)

From (13), it is clear that the columns of Ȳ (or, accordingly,
the rows of Y) are independent. (In fact, note that ȳ (m) is
the only contribution in the received observations helping to
describe the posterior statistics of h̄m.) Since ȳ (m) and h̄m
are jointly Gaussian, we can use the well-known fact that

E
[
h̄m|ȳ (m)

]
= Ch̄mȳ(m)C

−1
ȳ(m)ȳ (m) (14)



and

Ch̄m|ȳ(m) = Ch̄m
−Ch̄mȳ(m)C

−1
ȳ(m)Cȳ(m)h̄m

(15)

where the covariances are

Ch̄m
=IK , (16)

Cȳ(m) = B†B + IT (17)

Ch̄mȳ(m) = C†
ȳ(m)h̄m

= B. (18)

Thus, we have

E
[
h̄m|ȳ (m)

]
= B

(
B†B + IT

)−1
ȳ (m) (19)

=
(
BB† + IK

)−1
Bȳ (m) (20)

and

Ch̄m|ȳ(m) = IK −B
(
B†B + IT

)−1
B† (21)

=
(
BB† + IK

)−1
. (22)

Hence, we can find the posterior correlation as

E
[
H†H

∣∣Y]
=

M∑
m=1

E
[
h̄mh̄

†

m

∣∣∣Y] (23)

=
M∑
m=1

E
[
h̄mh̄

†

m

∣∣∣ ȳ (m)
]

(24)

=
M∑
m=1

Ch̄m|ȳ(m) + E
[
h̄m|ȳ (m)

]
E
[
h̄m|ȳ (m)

] † (25)

which, after some algebra, becomes (10).
Note that Lemma 1 admits also the following alternative

proof. We can directly use the fact that the matrices Ȳ and H̄
are jointly matrix-variate normal distributed with mean zero
and covariances1 Ch̄ = IM ⊗ IK = IKM and Cȳ = IM ⊗
B̄B̄†+ ITM = IM ⊗ B̄B̄†+ IM ⊗ IT = IM ⊗

(
B̄B̄† + IT

)
,

respectively, with ⊗ denoting the Kronecker tensor-product. In
order to find E

[
H†H

∣∣Y], we just need to obtain the distribu-
tion of H̄ conditioned on Ȳ, or, equivalently, the conditional
distribution of h̄ = vec

(
H̄
)

given ȳ =
(
IM ⊗ B̄

)
h̄ + ñ.

Clearly, h̄ and ȳ are jointly Gaussian distributed, so that, using

Cȳ,h̄ = E
[((

IM ⊗ B̄
)
h̄ + ñ

)
h̄†
]

= IM ⊗ B̄ (26)

the posterior mean of h̄ conditioned on the observation of ȳ
can be found to be given by

E
[
h̄
∣∣ ȳ] = C†

ȳ,h̄
C−1

ȳ ȳ (27)

=
(
IM ⊗ B̄

)† (
IM ⊗

(
B̄B̄† + IT

))−1

ȳ (28)

=
(

IM ⊗ B̄†
(
B̄B̄† + IT

)−1
)

ȳ (29)

=
(
IM ⊗

(
B̄†B̄ + IK

)−1
B̄†
)

ȳ (30)

1The covariance of a random matrix is defined as the covariance of the
vector obtained by lining up all of its columns.

and the conditional variance given by

C h̄|ȳ = Ch̄ −C†
ȳ,h̄

C−1
ȳ Cȳ,h̄ (31)

= IKM −
(

IM ⊗ B̄†
(
B̄B̄† + IT

)−1

B̄
)

(32)

= IM ⊗
(

IK − B̄†
(
B̄B̄† + IT

)−1

B̄
)

(33)

= IM ⊗
(
IK + B̄†B̄

)−1
(34)

where we have used the matrix inversion lemma in order to
obtain the last equality. Accordingly, the channel coefficients
H̄ conditioned on Ȳ is again matrix-variate normal dis-
tributed with mean M =

(
B̄†B̄ + IK

)−1
B̄†Ȳ and covariance

C h̄|ȳ = Ψ ⊗ Σ, where we have defined Ψ = IM and

Σ =
(
B̄†B̄ + IK

)−1
. From the properties of the matrix-

normal distribution [10], we have that

E
[
H̄H̄†

∣∣∣Y] = Tr [Ψ] Σ + MM† (35)

which is again equivalent to (10).

B. Beamforming Based on Channel Estimation

Note that an indirect (suboptimal) approach would consist in
constructing the quadratic form H†H using an estimate of the
MIMO channel matrix. In particular, the MMSE estimator and
the LS estimator (here also the maximum-likelihood estimator)
of H are, respetively,

ĤMMSE = YB†
(
BB† + IK

)−1

, (36)

ĤLS = YB†
(
BB†

)−1

, (37)

and the solution for the beamforming vector can be accord-
ingly obtained as the top eigenvector of, respectively,

Ĥ†MMSEĤMMSE =
(
BB† + IK

)−1

BY†YB†
(
BB† + IK

)−1

,
(38)

Ĥ†LSĤLS =
(
BB†

)−1

BY†YB†
(
BB†

)−1

. (39)

In Section V we compare the performance of the beam-
forming schemes described in Section III-A and III-B.

IV. OPTIMAL TRAINING

We now consider the optimal design of the training sequence
used to construct the optimal transmit beamformer. In partic-
ular, we are interested in a set of training beams such that

max
B:‖B‖F≤E

EH,N

[
λmax

{
H†H

∣∣Y}] , (40)

where E determines the constraint on the total energy con-
sumed by training.



A. A Constraint Optimization Problem

From the definition of Y in (6), the estimator provided by
Lemma 1 is equivalently distributed as

E
[
H†H

∣∣Y] = M

{(
BB† + IK

)−1

+ ΞΞ†
}

(41)

where

Ξ =
(
BB† + IK

)−1

B
[

B† IT
]
W (42)

with the entries of W ∈ C(K+T )×M being i.i.d. circularly
symmetric complex Gaussian with mean zero and variance
1/M (with some abuse of notation, in the sequel W will de-
note a matrix distributed as in here with pertinent dimensions).
From the last expression, using the matrix inversion lemma, we
recognize E

[
E
[
H†H

∣∣Y]] = MIK , as it is straightforward
from the properties of the conditional expectation, namely,
by the law of iterated expectations, E

[
E
[
H†H

∣∣Y]] =
E
[
H†H

]
.

Furthermore, from the SVD of B, i.e., B = UΣV†, with
Σ being a K-dimensional square matrix, and the unitary
invariance property of Wishart matrices, we have

E
[
H†H

∣∣Y] = MU
{(

Σ2 + IK
)−1

+ ΘΘ†
}

U† (43)

where
Θ =

(
Σ2 + IK

)−1
Σ
[

Σ IK
]
W. (44)

Since we are interested in the eigenvalues of the estimator
(in particular in the maximum eigenvalue), we may directly
focus on the matrix

(
Σ2 + IK

)−1 + ΘΘ†, which is clearly
distributed equivalently as(

Σ2 + IK
)−1

+
(
Σ2 + IK

)− 1
2 ΣWW†Σ

(
Σ2 + IK

)− 1
2

(45)
and has the same eigenvalues as(

Σ2 + IK
)−1

+
(
Σ2 + IK

)−1
Σ2WW†. (46)

Then, the problem of optimum training sequence design re-
duces to the following optimization problem, namely,

max
Σ2: tr Σ2≤E

E
[
λmax

{(
Σ2 + IK

)−1
+
(
Σ2 + IK

)−1
Σ2WW†

}]
.

(47)
Furthermore, define

D = (Σ2 + IK)−1Σ2, (48)

and write

E
[
H†H

∣∣Y] = MU
{

(IK −D) + D1/2WW†D
1/2
}

U†.

Then, the constraint on the training power can be written as
tr Σ2= tr

(
D (IK −D)−1

)
≤ E, and the training matrix B,

or, equivalently the matrix D, should be chosen to achieve

max
D: tr(D(IK−D)−1)≤E

E
[
λmax

{
(IK −D) + D1/2WW†D

1/2
}]

.

(49)

Conjecture 1: The solution to (49) in D has equal diagonal
elements.

In other words, Σ =
√
E/KIK and hence the training

vectors B = UΣV† satisfies that BB† = I. Therefore, the
conjectured optimal training sequences (colums of B) satisfy
the Welch-bound equality (WBE) [11], [12]. In the multiuser
detection literature, WBE signature sequences are known to
maximize the sum capacity achieved by overloaded symbol-
synchrous code-division multiple-access channels with equal
average-input-energy constraints [13], [14].

B. An Equivalent Constraint

Not being able to show Conjecture 1, we distill it to an
equivalent but more concise mathematical formulation in the
following. We rewrite (49) by shedding IK and rearranging the
order of the matrices in the product, so that it is equivalent to
finding D achieving

max
D: tr(D(IK−D)−1)≤E

E
[
λmax

{
D
(
WW† − IK

)}]
(50)

The constraint tr
(
D (IK −D)−1

)
≤ E (i.e., tr Σ2 ≤ E)

is not convenient. We show how to relax the constraint
tr Σ2 ≤ E to a constraint on tr D. For the purpose of showing
Conjecture 1, it is enough to show

Conjecture 2: The solution to the following over K dimen-
sional diagonal D is D = IK ,

max
D: tr D≤K

E
[
λmax

{
D
(
WW† − IK

)}]
. (51)

Remark 1: The constraint tr D ≤ K can be replaced by
tr D ≤ E′ for any E′ > 0 because the maximum eigenvalue
is linear in E′, i.e., one can always scale D by 1/ tr D ≤ K
so that the trace is limited to 1.

Next, we claim that the original constraint

tr
(
D (IK −D)−1

)
≤ E (52)

is tighter than

tr D ≤ K2

E +K
= E′. (53)

The reason is that x/(1 − x) is a concave function. In fact
the nontrivial boundary of the two sets touches at the point
Di ≡ K/(E +K), i.e., D = (K/(E +K))IK .

Now, if the maximum under the relaxed constraint (53) is
achieved by D = (K/(E+K))IK , which in fact satisfies the
original constraint (52), the maximization under the original
constraint is also achieved by D = (K/(E + K))IK , which
implies Conjecture 1.

Note, on the other hand that Conjecture 1, if true for all E >
0, also implies Conjecture 2. The reason is that the constraint
(52) reduces to tr D ≤ E as E becomes small (Di is small
so that (1 − Di) ≈ 1), as well as the fact that scaling of D
does not change the solution to Conjecture 2.

Based on the above, it is enough to show Conjecture 2,
which is the hardest version of Conjecture 1, where E → 0.



C. An Upper-bound on the Optimal SNR

The conjectured optimal power allocation over time consists
of a training covariance matrix equal to a scaled identity
meeting the energy constraint. More specifically, the diago-
nals of D, or, equivalently Σ2, are all equal and given by
D = (E/(E + K))IK . This special choice of training leads
to the following received SNR:

E
[
λmax

{
D
(
WW† − IK

)}]
=

=
E

E +K

(
E
[
λmax

{
WW†

}]
− 1
)

. (54)

Note that all elements of D are constrained to be less than
1, so that using D = IK leads to an upper-bound, namely,

E
[
λmax

{
D
(
WW† − IK

)}]
= E

[
λmax

{
WW†

}]
− 1.
(55)

Using results in the literature on the moment generating
function of the maximum eigenvalue of a complex central
Wishart matrix [15], the expectation defining equations (54)
and (55) can be obtained as

E
[
λmax

{
WW†

}]
= 1 +

K∑
l=1

ξl, (56)

with ξl defined as

∑
{αl,K}

∑
{β}

(−1)l+per(β) Γ̂K (M,β)

ΓK (K) ΓK (M)

T(β,αl,K)∑
s=0

∑
{s1,...,sl}

(
s

s1, . . . , sl

)
1

l2

(57)
where per (·) denotes the number of permutations, β =
{β1, . . . , βK} is a permutation of the index set [K] =
{1, . . . ,K}, αl,K = {α1, . . . , αl} is a subset of [K] with
α1 < . . . < αl; Γ (·) is the usual gamma function and

ΓK (M) =
K∏
i=1

Γ (M − i+ 1) (58)

Γ̂K (M,β) =
K∏
j=1

Γ (τ + j + βj − 1) , (59)

where we have defined τ = M −K. Moreover,

T (β, αl,K) =
K∑
i=1

(g (αi, βαi
)− 1) (60)

where g (i, j) = τ + i+ j−1, and the last sum in (57) is over
all integer partitions of s = s1 + · · ·+ sl satisfying 0 ≤ si <
g (αi, βαi

), i = 1, . . . , l.
Thus, we have that

Ubound = E
[
λmax

{
D
(
WW† − IK

)}]
=

K∑
l=1

ξl. (61)

The upper-bound in (61) corresponds to the asympotic
regime defined by either an infinite training period length
or an infinite available power. Denoting P = ‖b (n)‖2, the
problem of allocating power over time can be related to the

energy limitation problem as E = P × T (or E = SNR × T
assuming unit additive noise variance). Note that the gap
between the upper-bound and the conjectured solution is small
in percentage if E >> K, which is almost always the case in
practice. In particular, we can establish the following rate of
convergence for the conjectured optimal SNR to achieve the
SNR upper-bound, namely,

MUbound

E [λmax {H†H|Y}]
= 1 + µtx, (62)

where µtx = K/E is a function of the total energy budget
(depending on the SNR and the training length) as well as
the number of transmit antennas. For instance, note that for
µtx = 1, a loss of 3dB is to be expected.

D. Lower-bound

Clearly, a lower-bound is obtained when trying to estimate
the instantaneous realization of the Gram matrix H†H with
only one sample. In our framework, this is equivalent to a
matrix D with a certain diagonal entry equal to E/ (E + 1)
and all others fixed to zero, leading to

E
[
λmax

{
D
(
WW† − IK

)}]
= E [max {0, Q}] , (63)

where Q = 1
M

∑M
m=1 |wm|

2 − 1, with wm, m = 1, . . . ,M ,
being standarized complex Gaussian random variables and
M (Q+ 1) a random variable following a chi-square law with
M degrees of freedom. In particular, from the probability
density function of the chi-square law and the pertinent
transformations of random variables, the expectation in (63)
can be found as

E [max {0, Q}] =

(
se−1

)s
Γ (s)

s−1∑
k=0

(
s− 1
k

)
(k + 1)!
sk+2

, (64)

where we have defined s = M/2.
The lower-bound in (64) corresponds to the suboptimal

situation in which all the energy is concentrated as the power
allocated to only a certain time instant, whereas the transmitter
is switched off during the rest of the training period. This
scheme is equivalent to a strategy according to which only a
certain direction is trained during the entire training phase.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the optimal training vector and the analysis of the optimality
of different training beams. In the simulations, we fix P =
SNR = 1, and, without loss of generality, relate an increase in
the energy limitations to the availability of a longer training
period (larger sample-size).

Figure 1 illustrates the averaged conditional SNR, i.e.,
E [SNR (T + 1)|y (1) , . . . ,y (T )] = v̂†H†Hv̂, where v̂ is
the beamformer estimate obtained as the top eigenvector of
three different estimators, namely the conditional mean estima-
tor (MMSE estimator) of the quadratic form H†H, derived in
Section III, as well as the approximation of the previous Gram
matrix constructed using the MMSE estimator and the LS
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estimator of the MIMO channel matrix, respetively. Random
training has been assumed. Note that the three estimates
coincide for the case of the conjectured optimal training
design, as they all produce the same principal eigenvector.

In Figure 2, the SNR approximation in (40) is shown
for different training strategies determining the allocation of
the (limited) power throughout the training interval so as
to meet the energy constraint. Binary complex sequences of
normalized (unit-norm) vectors were used. In particular, the
selected choices correspond to the conjectured optimal training
covariance with all diagonals equal (obtained by sequences
meeting the Welch-bound equality, for which Σ2 = T/KIK ,
or, accordingly, D = T/ (T +K) IK), randomly drawn train-
ing beams (with norm one and complex binary entries), and
a training matrix B with columns consisting of a random
training beam replicated throught the training interval. Along
with the performance for the different choices of B, the upper
and lower bounds are also shown. As mentioned above, the

upper-bound corresponds to the high SNR regime or an infinite
training sample-support and the lower-bound corresponds to
the suboptimal situation in which all available energy is con-
centrated on a single mode, such that only one certain direction
is trained. Clearly, the lower-bound is met by the training strat-
egy consisting of a set of replicated training beams. In order to
straightforwardly analyze the system performance with WBE
sequences meeting the assumptions above, the length of the
training period is chosen as T = {4, 8, 16, 32, 64, 128, 256}.

VI. CONCLUDING REMARKS

Given the response of a MIMO channel to a sequence of
training vectors, we have shown that the optimal beamforming
vector is the top eigenvector of an appropriately defined con-
ditional covariance of the channel conditioned on the training
response. We also formulated the problem of finding the
optimal training sequences for maximizing the received signal-
to-noise ratio, and conjectured that such sequences satisfy the
Welch bound. The conjecture is distilled to a concise open
mathematical problem. Using upper and lower bounds for
the optimal received SNR, we show that the Welch-bound
sequences achieves close to the upper bound with moderate
to large amount of training.
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