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Abstract—We consider multiple-input multiple-output
(MIMO) systems exploiting the full diversity order of a MIMO
fading channel via optimal beamforming and combining.
Specifically, an analytical characterization of the transient
regime of a training-based MIMO system over arbitrarily
correlated channels is presented. No channel state information
is assumed to be available at either the transmitter or the
receiver side, so that the design of the optimal transmit and
receive beamformers is necessarily based on a finite collection
of samples observed during a training phase. The focus is on
practical scenarios where the length of the training sequence is
comparable in magnitude to the system size. In these situations,
the performance of the MIMO system can be expected to suffer
from a considerable degradation. In order to characterize the
actual performance under the previous realistic conditions, a
large-system performance analysis is proposed that builds upon
some new results on the convergence of the eigenvectors of large
information-plus-noise covariance matrices.

Index Terms—MIMO channel, training, optimal beamforming,
full diversity gain, sample covariance matrix, random matrix
theory, asymptotic eigenvector

I. I NTRODUCTION

The performance of multiple-input multiple-output (MIMO)
channels can be significantly enhanced if the channel state is
known to the transmitter, the receiver, or both. In practice,
the coefficients of a MIMO channel often vary over time
and need to be estimated. If the channel state varies slowly,
one may carry out some measurements in order to learn the
channel statistics and estimate (or predict) its instantaneous
realization. Typically, the channel coefficients are measured
at the receiver by having the transmitter send known training
vectors. Knowledge of the channel at the receiver can be sent
to the transmitter via feedback channels [1].

The impact of the practical availability of imprecise channel
state information (CSI) in the capacity gains achieved in
MIMO spatial multiplexing systems is summarized in [2].
On the other hand, the tradeoff between the time and the
power allocated to training operation and data transmission
was evaluated in [3]. In particular, the authors provide the
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optimum number of pilots and training power allocation of
a training-based MIMO system in the sense of maximizing a
lower-bound on the Shannon capacity over the class of ergodic
block-fading (memoryless and uncorrelated) channels, as a
function of the number of transmit and receive antennas, the
received signal-to-noise ratio (SNR) and the length of the fad-
ing coherence time. Earlier related contributions include[4], as
well as [5], [6], where the number of channel uses available for
training and the optimal input distribution achieving capacity
at high SNR over unknown block-fading uncorrelated MIMO
channels with a finite coherence time interval is investigated.

Much less effort has been placed on understanding the
consequences of the lack of CSI on the achieved diversity gain
of an unknown MIMO channel that is learned by means of a
training sequence of finite length. Indeed, perfect knowledge of
the channel realization can be used in general to modulate each
transmitted symbol onto a beamforming vector matched to the
channel in order to improve the received SNR. In particular,if
the MIMO channel is completely known to the transmitter, the
evident choice of the beamforming vector is the right singular
vector of the channel matrix corresponding to the maximum
singular value in amplitude, which maximizes the received
SNR. In [7], the problem of optimal transmit beamforming
maximizing the received SNR over unknown MIMO channels
with given Gaussian statistics is addressed.

In this paper, we focus on the problem of achieving full
diversity gain over an unknown, arbitrary block-fading MIMO
channel by optimal transmit beamforming and receive combin-
ing. The problem formulation here builds upon the work in [8],
where least-squares filtering with a limited number of training
symbols is analyzed for the suppression of multiple-access
interference at reception (without feedback). In particular, we
assume a certain given amount of channel uses is allocated
for training purposes at the beginning of each coherence
interval, such that both sides can learn the channel from
a sequence of known training beams. Instead of following
the generally suboptimal approach consisting of obtaining
an intermediate estimate of the channel matrix to be used
for further processing, we pursue the direct estimation of
both optimal (channel-adapted) beamformer vector and receive
combiner using the sequence of pilots during the so-called



training phase. In particular, we are interested in the actual
empirical performance obtained from a limited number of
training samples per degree-of-freedom. More specifically, we
provide a large-system analysis of the transient estimation
regime of such a training-based MIMO scheme in which
the number of transmit and receive antennas as well as
the length of the training sequence are considered, as in
practice, to be comparable in magnitude. For that purpose, we
investigate the asymptotic convergence of the eigenvectors of
large-dimensional information-plus-noise covariance matrices
by relying on existing results from random matrix theory.

The paper is organized as follows. In Section II, the problem
of pilot-aided MIMO transmitter and receiver estimation is
addressed. In Section III, we provide a brief overview of the
existing convergence results regarding the asymptotic behavior
of the eigenvectors of sample covariance matrices. More-
over, the main mathematical result of the paper concerning
information-plus-noise-type covariance matrices, on thebasis
of which our findings are grounded, is introduced without
proof at the end of the section. In Section IV, we present a
large system performance analysis of the transient estimation
regime of a MIMO system with limited training. Finally, the
proposed approximation of the practically achieved diversity
gain is numerically validated in Section V.

II. CHANNEL MODEL AND TRANSCEIVER ESTIMATION

Consider the linear vector channel model corresponding to
a MIMO transmission system withM receive antennas and
K transmit antennas, namely, the received signal is expressed
as

y (n) = Hx (n) + n (n) , n = 1, 2, . . . (1)

wherex (n) ∈ C
K represents the transmitted signal,n (n) ∈

C
M is the background noise, andH ∈ C

M×K models an
arbitrary MIMO channel matrix. The noise process is assumed
to be wide-sense stationary, with independent and identically
distributed (i.i.d.) standardized complex Gaussian1 vector en-
tries such thatE

[
n (l)n (m)

H
]

= σ2
n
δl,mIM , whereδl,m is

the Kronecker delta function. Without loss of generality, we
will assume in the followingσ2

n
= 1. Specifically, one wishes

to modulate a sequence of transmitted symbolsx (n) onto a
(unit-norm) beamforming vectorv ∈ C

K (x (n) = vx (n)),
so that the received signal in (1) becomes

y (n) = Hvx (n) + n (n) , n = 1, 2, . . . (2)

As mentioned above, the purpose of using multiple antennas
here is to enhance through beamforming the SNR at the
receiver side and after matched filtering, namely,

SNR =
∣∣uHHv

∣∣2 , (3)

whereu ∈ C
M represents the receiver matched to the MIMO

channel. In particular, the receiver and transmitter vectors max-
imizing the SNR are respectively the right and left top singular

1A complex random variable is standarized complex Gaussian if its real and
imaginary parts are i.i.d. Gaussian distributed with mean zero and variance
1/2.

vectors ofH = UΣVH , henceforth denoted byu1 and v1.
Accordingly, if SNRk = [Σ]

2
k,k is the signal-to-noise ratio

associated with thekth channel eigenmode, it is clear from (3)
that the maximum achievable SNR isSNR1 = maxk SNRk.

We assume that no CSI is available at either the transmitter
or the receiver side, and that a sequence ofN fixed pilot beams
b (n) ∈ C

K consuming a certain given amount of training
energy is available for transceiver estimation purposes. In this
work, we will considerK ≤ N . Accordingly, the received
signal becomes (x (n) = b (n))

y (n) = Hb (n) + n (n) , n = 1, 2, . . .

By collecting the column vector observations in (2) at different
instants of time in a matrixY ∈ C

M×N , we can write

Y = [y (1) , . . . ,y (N)] = HB + N,

where we have defined

B = [b (1) , . . . ,b (N)] ,

N = [n (1) , . . . ,n (N)] .

In the following, we consider the problem of empirical
estimation of the optimal transceiver given a fixed training
energy budget (i.e., power allocation strategy across pilot
beams and length of training phase), namely,

{u,v} = arg max
u,v:‖B‖2

F
≤E

E [SNR|y (1) , . . . ,y(N)] ,

where E determines the constraint on the total energy con-
sumed by training. In particular, note that the total energy
constraint will be related to the power allocated to the
beamvector pilots sent during the training phase, as well as
the length of this training window (i.e., number of training
beams). Furthermore, for estimation purposes, observe that
u1 is the top eigenvector ofHHH , whereasv1 is the top
eigenvector ofHHH. The achieved system performance based
on pilot-assisted transceiver estimation clearly dependson the
selection of training beams. In this work, we will focus on
the more relevant case in practice of orthogonal training. In
particular, we assume that the training phase is defined by a set
of orthogonal (unitary) beams satisfying the training budget
constraint, such thatBBH = E/KIK . In other words, the
training sequences (column vectors ofB) satisfy the Welch-
bound equality (WBE) [9], [10]. In the multiuser detection
literature, WBE signature sequences are known to maximize
the sum capacity achieved by overloaded symbol-synchronous
code-division multiple-access channels with equal average-
input-energy constraints [11], [12]. The optimality of WBE
sequences for transmit beamforming schemes maximizing
the received SNR is discussed in [7]. For the purpose of
statistically analyzing the effect of limited training in the
performance of pilot-assisted MIMO systems, it will be in
order to assume in the sequel, and with some abuse of
notation, the following model for the training matrix, namely,
B =

√
E/KUH , where the columns ofU ∈ C

N×K are
orthogonal, such thatUHU = IK .



A. Receiver estimation

Since the top eigenvector ofHHH is equal to the principal
eigenvector of the covariance matrix of the received observa-
tions, namely,

R = E
[
y (n)yH (n)

]
= E/ (KN)HHH + IM ,

the problem of estimatingu1 can be directly approached by
equivalently finding an estimator of the top eigenvector ofR.
To that effect, we may use the sample estimate of the latter,
namely the sample covariance matrix (SCM), i.e.,

R̂ =
1

N

N∑

n=1

y (n)yH (n) =
1

N
YYH . (4)

From the strong law of large numbers, the SCM̂R is a
consistent estimator of the theoretical covariance matrix. In
fact, the SCM is the minimum variance unbiased estimator of
R [13]. Moreover, for Gaussian observations, the maximum-
likelihood (ML) estimator of the principal eigenvector ofR is
the corresponding eigenvector of̂R.

B. Transmitter estimation

In order to find an estimator of the optimum transmitter
(i.e., the top eigenvector ofHHH), consider the following
construction based on the (known) training vectors, namely,

Ĉ =
1

N

(
B#
)H

YHYB#, (5)

where (·)# denotes the Moore-Penrose pseudoinverse, i.e.,

B# = BH
(
BBH

)−1

. Indeed, note that, asN goes to

infinity, almost surely,Ĉ → C, where

C = E

[
Ĉ
]

=
1

N
HHH +

MK

EN
IK .

The following section provides an overview of the existing
results concerning the asymptotic behavior of the eigenvectors
of sample covariance matrices. In particular, we present the
main mathematical tool of this paper, namely a convergence
result characterizing the limit of the sample eigenvectorsof
information-plus-noise covariance matrices.

III. A SYMPTOTIC EIGENVECTORS OF SIGNAL-PLUS-NOISE

SAMPLE COVARIANCE MATRICES

Due to the relevance of the eigenvalue spectrum of certain
covariance matrix models in statistical signal processingand
wireless communications, the theory of the spectral analysis of
large-dimensional random matrices, or random matrix theory
(RMT), has proved very useful in the tasks of both perfor-
mance analysis and system design. For a monograph exposi-
tion on the subject, we refer the reader to [14]. Indeed, the
characterization of the asymptotic behavior of the eigenvalues
of certain random matrix models is of unquestionable practical
interest, as it can be drawn from the vast engineering literature
based on RMT results. However, in many problems, the study
of an objective function is required that depends upon not only

the eigenvalues but also the eigenvectors of the random matrix
model.

While there are many results in the RMT literature about
the eigenvalues of random matrices of increasing dimensions,
not much has been reported about the asymptotic behavior of
their eigensubspaces since Silverstein’s work in [15] (seealso
references therein to his earlier contributions on the topic).
In particular, consider the matrixB = XXH , with X being
an M × N random matrix such that the entries of

√
NX

are i.i.d. complex random variables with mean zero, variance
one and finite fourth-order moment. LetB = UΛUH be the
eigendecomposition of the previous matrix. Then, buildingon
the fact that the matrix of eigenvectors of Wishart matrices
follows the Haar distribution, i.e., the uniform distribution over
the group of unitary matrices, Silverstein showed that, for
any nonrandom vectorx of appropriate dimensions, whose
entries are either−1/

√
N or +1/

√
N , the random vector

a = UHx is asymptotically isotropic (in [16] the same is
proved for a random vectorx with i.i.d. entries independent of
U). Furthermore, in order to study sample covariance matrices
of the formB = R1/2XXHR1/2, whereR1/2 is the positive
square-root of anM×M Hermitian positive definite matrixR
with uniformly bounded spectral norm, the following empirical
distribution function was considered in [17], namely,

HM
B

(λ) =

M∑

m=1

|am|2 I(λm(B)≤λ),

whereIΩ denotes the indicator function over the setΩ and
am is themth entry of the vectora. Clearly,HM

B
is a random

probability distribution function with Stieltjes transform given
by

mH (z) =

∫

R

dHM
B

(λ)

λ − z
= xH (B − zIM )

−1
x. (6)

In this context, from the connection between vague conver-
gence of distributions and pointwise convergence of Stieltjes
transforms, almost sure convergence of the (random) distribu-
tion functionHM

B
can be established by showing convergence

of mH (z). In [18], an asymptotic deterministic equivalent of
the Stieltjes transform in (6) was proposed for the more general
caseB = A + R1/2XTXHR1/2, whereA is Hermitian and
T real diagonal and positive definite, both having appropriate
dimensions. Specifically, it is shown thatmH (z) converges
with probability one, for eachz ∈ C

+, as

xH (B − zIM )
−1

x − xH (A + xMR − zIM )
−1

x → 0,

as M,N → ∞ with M/N → c < +∞, where xM =
xM (eM ) is defined as

xM =
1

N
Tr
[
T (IN + ceMT)

−1
]

,

andeM = eM (z) is the unique solution inC+ of the equation

eM =
1

M
Tr
[
R (A + xMR − zIM )

−1
]

.



In this paper, we study the asymptotic behavior ofmH (z)
for information-plus-noise covariance matrix models. In par-
ticular, we present the following result:

Theorem 1: Let X, R and T be defined as above, and
consider the matrixY = R1/2XT1/2. Furthermore, let
Σ = Y + A. Then, for eachz ∈ C

+, almost surely, as
M,N → ∞ with M/N → c < +∞,

xH
(
ΣΣH − zIM

)−1

x − xHΥ (z)x → 0,

xH
(
ΣHΣ − zIN

)−1
x − xHΥ̃ (z)x → 0,

where we have defined

Υ (z) =
(
−z
(
I + Rδ̃

)
+ A (I + Tδ)AH − zIM

)−1

,

Υ̃ (z) =

(
−z (I + Tδ) + AH

(
I + Rδ̃

)−1

A − zIN

)−1

,

and δ = δ (z) and δ̃ = δ̃ (z) are the unique solution to the
following system of equations:

{
δ (z) = 1

M Tr [RΥ (z)]

δ̃ (z) = 1
M Tr

[
TΥ̃ (z)

]
.

Proof: The special case forR = IM andT = σ2IN , with
σ2 an arbitrary positive scalar was handled in [19, Proposition
1.1]2 as an extension of Theorem 1.1 in [20] on the asymptotic
eigenvalue distribution of information-plus-noise covariance
matrices. For the proof of Theorem 1, we follow the main
stream in the proof of [21]. The proof is omitted due to lack
of space (see [22]).

In the following section, we provide an analytical char-
acterization of the performance of a training-based MIMO
system under the realistic assumption of a training phase
length comparable in magnitude with the system dimension.

IV. L ARGE SYSTEM PERFORMANCE ANALYSIS

In this section, we are interested in assessing the perfor-
mance of a training-based MIMO system under a limited
training budget. In particular, we will concentrate on the effect
of a bounded ratio between training sample-size and number
of degrees of freedom. In this work, in order to study the effect
of the energy budget limitation as essentially due to a finite
training sequence length, we assume a fixed power allocation
across training beams given by‖b (n)‖2

= 1, n = 1, . . . , N .
Using the principal eigenvectors of̂R and Ĉ, denoted in

the sequel bŷu1 and v̂1, respectively, as the estimators of
the optimum receiver and transmitter achieving the maximum
SNR, namely given bySNR1, we are interested in evaluating
the performance loss incurred in practice by the use of the
estimated solutions, i.e.,

ŜNR =

∣∣∣∣∣
K∧M∑

k=1

√
SNRk ûH

1 ukv
H
k v̂1

∣∣∣∣∣

2

, (7)

2We would like to thank Philippe Loubaton for his remarks on the
correctness of the proof.

where∧ denotes the minimum of the two quantities. Observe
that the lack of an accurate estimate will contribute to the
spread of power over the different orthogonal subchannels
(similar to a linear programming suboptimal solution to the
power allocation problem). In order to analytically characterize
the performance measure in (7), it is enough to characterize
the projection of the transceiver estimate obtained from a finite
training sample-support onto the eigensubspaces spanned by
the different right and left singular vectors. Indeed, for an
unlimited training energy budget, asN → ∞ (infinite training
phase length), we clearly havêuH

1 ukv
H
k v̂1 → 1δ1,k, and,

accordingly,ŜNR → SNR1.
The (finite-dimensional) statistical analysis of the quantity

in (7) for finite system-size and limited training energy is
rather intricate (for some related work based on a similar
model and using finite RMT techniques see [23]). On the
other hand, from an asymptotic characterization in the large-
sample regime based on classical limiting results from the
multivariante analysis of sample covariance matrices (see, e.g.,
[13]), no further insights can be gained for comparable training
length and system size. Here, we focus on a large-system
analysis of (7) and let not only the number of training samples
(N ), but also both the number transmit (K) and receive
(M ) antennas (i.e., the system dimension) go to infinity at a
constant rate, defined byα = M/N and β = K/N . Since
the previous asymptotic framework better matches realistic
deployment conditions in practice, we may expect our results
to more appropriately model the system performance in a
practical setting characterized by a small number of training
beams per degree-of-freedom.

Regarding the projections in the sum in (7) involving the
estimateŝu1 andv̂1, we may rely on the following procedure
based on the power method for finding the eigenvalues and
associated eigenvectors of an arbitrary Hermitian matrix.In
particular, let us concentrate for instance on the top eigenvector
of R̂ as the estimate of the optimal receiver. Then, consider
the following quantity, namely,

υH
(
R̂ − ξIM

)−1

uk

(
υH
(
R̂ − ξIM

)−2

υ

)1/2
, (8)

whereυ ∈ C
K is any vector with a non-zero component in the

direction of û1 andξ = λ1

(
R̂
)

+ ǫ, with λ1

(
R̂
)

being the

maximum eigenvalue of̂R andǫ being a small strictly positive
constant. Indeed,̂uH

1 uk can be arbitrarily well approximated
by the expression in (8) for an arbitrarily smallǫ > 0 (this
follows from a limiting argument by lettingǫ vanish). For
the purpose of analysis, we can useυ = uk (as M,N go to
infinity, with probability one,̂u1 has a non-zero component in
the direction ofuk, for eachk). Then, we finally have

uH
k

(
R̂ − ξIM

)−1

uk

(
uH

k

(
R̂ − ξIM

)−2

uk

)1/2
≡ Û1,k (ξ)

Û
1/2
2,k (ξ)

. (9)



Note that an equivalent procedure follows for the optimal
combiner at the transmitter side by replacing the sample
covariance matrixR̂ with the matrixĈ in (5), anduk with
vk. In particular, using the previous procedure, an arbitrarily
accurate approximation of the SNR estimate in (7) can be
obtained as

ŜNR (ξr, ξc) =

∣∣∣∣∣
K∧M∑

k=1

√
SNRk

Û1,k (ξr)

Û
1/2
2,k (ξr)

V̂1,k (ξc)

V̂
1/2
2,k (ξc)

∣∣∣∣∣

2

,

where V̂1,k (ξ) = vH
k

(
Ĉ − ξIK

)−1

vk and V̂2,k (ξ) =

vH
k

(
Ĉ − ξIK

)−2

vk, and ξr = λ1

(
R̂
)

+ ǫr and ξc =

λ1

(
Ĉ
)

+ ǫc, with ǫr and ǫc being two two arbitrarily small
strictly positive constants.

For the purposes of validating the proposed analytical char-
acterization, we consider a Rayleigh MIMO channel matrix
with particularly low-rank, such that the highest eigenmode
alone essentially characterizes the full diversity gain that can
be achieved over the channel. Note that, apart from simplifying
the numerical validation, such a scenario renders especially
relevant the accurate analysis and estimation of the diversity
gain achieved by a MIMO system. Thus, as an approximation
of ŜNR (ξr, ξc), we consider

S̃NR (ξr, ξc) =

∣∣∣∣∣
√

SNR1
Û1,1 (ξr)

Û
1/2
2,1 (ξr)

V̂1,1 (ξc)

V̂
1/2
2,1 (ξc)

∣∣∣∣∣

2

. (10)

Our analysis builds upon the fact that the expression in
(9) is given in terms of the resolvent of̂R. In particular, an
asymptotic deterministic equivalent of the empirical perfor-
mance measure in (10) can be provided by using the result
on the convergence of Stieltjes transforms of the type in (6)
given by Theorem 1. Concretely, we use the following3:

Corollary 1: In Theorem 1, letx = u1, R = IM , T = IN ,
X = 1/

√
NN andA = 1/

√
NHB , and fixz = ξ, with ξ =

λ1

(
R̂
)

+ ǫ, ǫ > 0. Then, asM,N → ∞, M/N → c < +∞

Û1,1 (ξ)

Û
1/2
2,1 (ξ)

≍ Ū1,1 (ξ)

Ū
1/2
2,1 (ξ)

,

with

Ū1,1 (ξ) = uH
1 Ψ (z)u1, Ū2,1 (ξ) =

∂

∂z

{
uH

1 Ψ (z)u1

}∣∣∣∣
z=ξ

,

where now

Ψ (z) =
(
(1 + δ (ξ))E/KHHH − z

(
1 + δ̃ (ξ)

)
− zIM

)−1

,

Ψ̃ (z) =
((

1 + δ̃ (z)
)
BHHHHB − z (1 + δ (z)) − zIN

)−1

,

and δ (z) and δ̃ (z) are the unique solution to the following
system of equations:{

δ (z) = 1
M Tr [Ψ (z)]

δ̃ (z) = 1
M Tr

[
Ψ̃ (z)

]
.

3Given two random variablesa, b, a ≍ b denotes both quantities are
asymptotic equivalents, i.e.,|a − b| → 0, almost surely.

Finally, based on the previous corollary, we have the follow-
ing asymptotic deterministic equivalent for the approximation
in (10) of the SNR in (7), namely,

Proposition 1: Under the previous statistical assumptions,
for SNRk uniformly bounded for allk, as M,N → ∞,
M/N → c < +∞ ,

S̃NR (ξr, ξc) ≍
∣∣∣∣∣
√

SNR1
Ū1,1 (ξr)

Ū
1/2
2,1 (ξr)

V̄1,1 (ξc)

V̄
1/2
2,1 (ξc)

∣∣∣∣∣

2

, (11)

whereV̄1,1 andV̄2,1 are defined equivalently tōU1,1 andŪ2,1,
respectively, for the covariance matrix̂C.

Proof: It is enough to show that the following quantity
vanishes almost surely, asM,N → ∞, M/N → c < +∞ ,
namely,

Û1,1 (ξr)

Û
1/2
2,1 (ξr)

V̂1,1 (ξc)

V̂
1/2
2,1 (ξc)

− Ū1,1 (ξr)

Ū
1/2
2,1 (ξr)

V̄1,1 (ξc)

V̄
1/2
2,1 (ξc)

,

or, equivalently, the almost surely convergence to zero of

V̄1,1 (ξc)

V̄
1/2
2,1 (ξc)

(
Û1,1 (ξr)

Û
1/2
2,1 (ξr)

− Ū1,1 (ξr)

Ū
1/2
2,1 (ξr)

)
, (12)

and
Û1,1 (ξr)

Û
1/2
2,1 (ξr)

(
V̂1,1 (ξc)

V̂
1/2
2,1 (ξc)

− V̄1,1 (ξc)

V̄
1/2
2,1 (ξc)

)
. (13)

Indeed, since all quantities in (12) and (13) are uniformly
bounded for allK,M,N , this can be readily proved using
the Cauchy-Schwarz inequality to show that the moments of
the random variables (12) and (13) areO (N−p), for p ≥ 2,
and then applying the Borel-Cantelli lemma.

In the following section, we numerically evaluate the ac-
curacy of the deterministic asymptotic equivalent (11) in de-
scribing the transient regime of pilot-aided MIMO transceivers
with limited training.

V. NUMERICAL RESULTS

We numerically validate the analytical characterization of
the transient SNR performance of a training-based MIMO
system. Specifically, we assume that both optimal transmit
beamformer and receive combiner are empirically estimated
from a finite collection of channel observations during a
training phase of given length as described in Section II. In
particular, the empirical performance in terms of averaged
received SNR conditioned to the available training samples,
i.e., E [SNR (N + 1)|y (1) , . . . ,y (N)], is compared with the
large-system performance approximation provided in Section
IV. Figure 1 shows both numerically simulated and theoret-
ically approximated SNR performance for a MIMO system
with K = 10 transmit antennas andM = 8 receive antennas,
versus the length of the training phase (normalized byK). The
noise variance is assumed to be one. A fairly good prediction
of the SNR achieved by a training-based MIMO system can
be appreciated.

The previous analytical characterization can be used in
practice for the evaluation of the loss in SNR performance
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Fig. 1. Simulated and theoretically predicted SNR performance of MIMO
system with empirically estimated optimal transceiver versustraining phase
length (K = 10, M = 8).

due to a finite number of training samples comparable to the
system size, for a given type of channel. In particular, for
instance, given the system dimensions (number of transmit
and receive antennas) as well as the channel characterizinga
certain MIMO wireless scenario, an estimate of the minimum
number of training samples can be obtained such that a
required SNR level is guaranteed.

VI. CONCLUSIONS

We have presented an analytical characterization of the
transient regime of a training-based MIMO system exploiting
the full diversity order of an arbitrarily correlated MIMO
fading channel via optimal beamforming and combining. Since
no channel state information is in practice available at either
the transmitter or the receiver side, the design of the optimal
transmit beamformer and receive combiner is most often based
on a finite collection of samples observed during a training
phase. If the length of the training sequence is comparable in
magnitude to the system size, the MIMO system performance
can be expected to suffer from a considerable degradation.
While the finite-size statistical analysis of the problem is rather
involved, a characterization based on the limiting behavior
in the large-sample asymptotic regime does not provide any
insight into the transient performance. In order to shed some
light on the actual performance under practical conditions, we
have proposed a large-system SNR performance analysis that
builds upon new asymptotic convergence results concerning
the eigenvectors of large-dimensional information-plus-noise
covariance matrices. A power-iteration-based approach allows
for a limiting description of the projection of the sample
principal eigenvector onto the true principal eigenspaces. The
proposed method is numerically validated in the context of a
typical application of training-based MIMO systems.
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