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Abstract—We study the performance of joint signature-receiver
optimization for direct-sequence code-division multiple access
(DS-CDMA) with limited feedback. The receiver for a particular
user selects the signature from a signature codebook, and relays
the corresponding index bits to the transmitter over a noiseless
channel. We study the performance of a random vector quantiza-
tion (RVQ) scheme in which the codebook entries are independent
and isotropically distributed. Assuming the interfering signatures
are independent, and have independent and identically distributed
(i.i.d.) elements, we evaluate the received signal-to-interference
plus noise ratio (SINR) in the large system limit as the number of
users, processing gain, and feedback bits all tend to infinity with
fixed ratios. This SINR is evaluated for both the matched filter
and linear minimum mean-squared error (MMSE) receivers. Fur-
thermore, we show that this large system SINR is the maximum
that can be achieved over any sequence of codebooks. Numerical
results show that with the MMSE receiver, one feedback bit per
signature coefficient achieves close to single-user performance.
We also consider a less complex and suboptimal reduced-rank
signature optimization scheme in which the user’s signature is
constrained to lie in a lower dimensional subspace. The optimal
subspace coefficients are scalar-quantized and relayed to the
transmitter. The large system performance of the quantized re-
duced-rank scheme can be approximated, and numerical results
show that it performs in the vicinity of the RVQ bound. Finally,
we extend our analysis to the scenario in which a subset of users
optimize their signatures in the presence of random interference.

Index Terms—Asymptotics, code-division multiple access
(CDMA), feedback, large system analysis, reduced-rank signa-
ture, signature optimization, vector quantization.

I. INTRODUCTION

I NTERFERENCE poses a major limitation on the perfor-
mance of direct-sequence code-division multiple access

(DS-CDMA). It has been recognized that in addition to in-
terference suppression at the receiver, it is also possible to
avoid interference by optimizing the signature sequences.
Joint signature–receiver optimization with both ideal and fre-
quency-selective channels has been discussed in [1]–[16]. For
the most part, those studies assume that both the mobiles and
base station have perfect knowledge of the signatures and the
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channel. Of course, the performance generally degrades when
partial, or limited channel information is available. Here we
are interested in the performance degradation due to limited
feedback, i.e., the receiver can relay only a finite number of
bits back to the transmitter. Our objective is to characterize the
performance as a function of the amount of feedback allowed.

We analyze the performance of signature optimization
with limited feedback for a CDMA model with additive
white Gaussian noise and perfect power control (no fading).
Both matched filter and linear minimum mean-squared error
(MMSE) receivers are considered, and the receiver is assumed
to have perfect knowledge of the interference-plus-noise co-
variance matrix. This implies that the receiver can compare the
received signal-to-interference-plus noise ratio (SINR) asso-
ciated with different signatures, and can compute the optimal
signature for the corresponding user. (In practice, both the
covariance matrix and optimal signature can be estimated with
a training sequence.) The linear receivers considered have low
complexity, and are optimal with unlimited feedback. We start
by assuming that a single user optimizes his signature in the
presence of fixed interfering signatures, which are independent,
and contain independent and identically distributed (i.i.d.)
elements. This scenario may correspond to a peer-to-peer
network in which the transmitter adapts its signature to avoid
interference from other stationary users.

Given feedback bits, the receiver can select a signature
from a signature codebook containing signatures. The se-
lected signature maximizes the received SINR. The problem,
then, is how to construct the codebook to maximize the received
SINR averaged over the signatures. This appears to be difficult
for a finite-size system, i.e., with finite number of users , and
processing gain . We therefore instead consider a large system
limit in which and all tend to infinity with fixed ratios

, which is the system load, and , which is the number
of feedback bits per signature element.1

We evaluate the large system SINR of a random vector quan-
tization (RVQ) scheme in which the signatures in the codebook
are independent and isotropically distributed. Furthermore, for
both the matched filter and MMSE receivers we show that this
limiting SINR is the maximum that can be achieved over any se-
quence of signature codebooks. This result relies on the fact that
in the presence of fixed, i.i.d. interfering signatures the optimal
signature, namely, the eigenvector of the interference-plus-noise
covariance matrix corresponding to the smallest eigenvalue, is
isotropically distributed in the large system limit (e.g., see [17]).
Numerical results show that the large system RVQ results accu-
rately predict the performance of finite-size systems. The nu-
merical results also show that with the matched-filter receiver,

1Additional feedback is needed to specify the channel gain for power control
and adaptive modulation. However, since that feedback does not scale with the
system size, it becomes negligible in the large system limit.
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one feedback bit per signature coefficient can typically achieve
an SINR within 1 dB of the single-user bound. The MMSE re-
ceiver requires significantly less feedback to achieve the same
performance.

A major drawback of RVQ is computational complexity.
Namely, in general, the optimal quantized signature must be
found by exhaustive search, and the number of entries in the
codebook increases exponentially with the number of feed-
back bits. We therefore consider a scalar-quantized version
of the reduced-rank signature scheme introduced in [15]. A
reduced-rank signature is constrained to lie in a -dimensional
random subspace known to both the receiver and
transmitter. The subspace coefficients are optimized, and
each is quantized with the same scalar quantizer. For a fixed
number of feedback bits the dimension, or rank can be
optimized. Namely, as increases, there are more degrees of
freedom with which to avoid interference, but also more coef-
ficients to quantize, and hence more performance degradation
due to quantization error. The large system performance of
reduced-rank signature optimization is evaluated both with and
without scalar quantization. Numerical results show that this
scheme (with optimized rank) typically performs within 1 dB
of the RVQ bound.

We also extend our results to the scenario in which a group of
users optimizes their signatures in the presence of fixed, random
interference. Namely, we evaluate the large system performance
of RVQ, and again compare with the performance of reduced-
rank signatures.

Related work on joint transmitter–receiver optimization
with limited feedback has been presented in [16], [18]–[22].
(See also [23]–[25], which consider feedback of time-varying
channel statistics without an explicit constraint on the feedback
rate.) With the exception of [16, Ch. 7], which evaluates the
performance of scalar quantization schemes for CDMA via
simulation, that work is motivated by multiantenna systems.
The feedback is therefore used to specify spatial signatures, in-
stead of temporal signatures. Our large system approach differs
from the approach taken in those references, and allows us to
compute an explicit upper bound on the performance of any
signature quantization scheme. Application of this approach
to multiple-input/multiple-output channels has been recently
presented in [26], [27].

The rest of the paper is organized as follows. Section II
introduces the system model, and Section III describes RVQ
and characterizes its performance in the large system limit.
Section IV discusses reduced-rank signature optimization with
scalar quantization. The performance of group signature opti-
mization with limited feedback is characterized in Sections V,
and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a synchronous discrete baseband CDMA model
with users and processing gain . The received vector
for a particular symbol is given by

(1)

where is the signature for user is the trans-
mitted symbol for user , and is the additive white Gaussian
noise vector with covariance matrix , where is the iden-
tity matrix. We consider an ideal model to simplify the perfor-
mance evaluation. The signature optimization methods, to be
described, apply directly to an asynchronous model, and are
easily extended to account for multipath, assuming the receiver
knows (or estimates) the channel.

The performance of each user depends on the assigned
signature set . The users and receivers can jointly adapt
and update the signatures via a feedback channel. We start by
assuming that a single user, corresponding to , optimizes
his signature in the presence of fixed interfering signatures, cor-
responding to . This is motivated by a peer-to-peer
scenario in which a user attempts to avoid interference from
other stationary random users.2 The interfering signatures are
assumed to be independent, and to contain i.i.d. elements
with zero mean and variance , so that and

almost surely as for each .
Power variations across users can also be incorporated in the
following analysis; however, because of the additional compli-
cations that arise, here we focus on the equal power scenario.
The performance of group signature optimization with lim-
ited feedback, motivated by the multiple-access channel, is
addressed in Section V.

We assume that user 1 has a linear receiver, consisting of the
vector . The performance measure is the SINR at the

output of , given by

(2)

where denotes Hermitian transpose and is the interference-
plus-noise covariance matrix given by

(3)

where is the signature matrix whose columns
are the interfering signatures . The matrix is
known at the receiver, but not the transmitter.

We will consider two linear receivers for user 1, the matched
filter, and the linear MMSE receiver. The matched filter is given
by

(4)

with corresponding output SINR

(5)

The matched filter is relatively simple to analyze, and is robust in
an adaptive mode with limited training for signature estimation
[15]. The MMSE receiver maximizes the output SINR, and is
given by

(6)

2In the peer-to-peer scenario, the receivers are not colocated, so thatrrr depends
on the user index k.
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where the received covariance matrix , and
is the signature matrix containing all signatures. Substi-
tuting (6) and (3) into (2) gives the output SINR

(7)

III. RANDOM VECTOR QUANTIZATION

Ideally, the signature for user 1, , should be chosen to maxi-
mize the received SINR. It is easily shown that for a fixed , the
optimal signature . Rewriting the MMSE receiver
in (6) as , where is a constant,3 and substituting
in the preceding expression for shows that the optimal sig-
nature is an eigenvector of . Furthermore, (7) implies that
this eigenvector corresponds to the minimum eigenvalue. That
is, the optimal signature lies in the direction of least interference
plus noise [11], [16]. Furthermore, with the optimized signature,
the MMSE and matched-filter receivers are the same.

In practice, the receiver must relay a quantized version of
the optimal signature back to the transmitter. Since the receiver
knows , it can compute the optimal signature; however, it is
allowed to relay only a finite number of feedback bits to the
transmitter. We assume that the feedback does not incur any er-
rors. In general, the receiver can choose the signature from a
signature codebook containing signatures. This codebook
is designed a priori, and is known at both the transmitter and
receiver. The problem, then, is how to design the codebook to
maximize the SINR, averaged over the random signatures, sym-
bols, and noise. This can be interpreted as a vector quantiza-
tion problem, except that the performance objective is received
SINR, rather than the fidelity of the quantized signature.

We denote the signature codebook for user 1 as

(8)

The receiver selects the signature, which maximizes the SINR

(9)

where is the SINR resulting from signature . Given statis-
tical properties of the interfering signatures, it is generally dif-
ficult to construct the optimal codebook and evaluate its per-
formance for any particular set of processing gain, number of
users, and feedback bits.4 However, we will see that for the
matched-filter receiver, a tight upper bound on the optimal per-
formance can be derived in the large system limit in which

with fixed normalized load , and
normalized feedback bits per dimension .

We illustrate the large system limit by first considering two
extreme cases, no feedback and unlimited feedback

. When , the transmitter has no knowledge
of the interference covariance matrix. Since for large the in-

3This follows from (6) and the matrix inversion lemma.
4A Lloyd–Max algorithm is used to construct an optimal quantizer for a beam-

former in [18], and a precoding matrix for a multiple-input/multiple-output
channel in [21]. This scheme is quite complicated and the associated perfor-
mance is difficult to evaluate.

terfering signatures are isotropically distributed, the transmitter
also chooses from an isotropic distribution. The SINR is then
a random variable, which converges almost surely to a determin-
istic value in the large system limit. The asymptotic SINR at the
output of the matched filter is given by [28]

(10)

For the MMSE receiver, the asymptotic SINR with random sig-
natures satisfies the fixed-point equation [29]

(11)

With unlimited feedback, the signature is the eigenvector of
corresponding to the minimum eigenvalue, and the SINRs

for the matched filter and MMSE receivers are given by

(12)

That is, when the signature is orthogonal to the inter-
fering signatures, giving single-user performance. When ,
the SINR is the minimum eigenvalue of , which converges
in the large system limit to the value shown.

As the size of the interference-plus-noise covariance matrix
grows according to the large system limit, the eigenvectors
become isotropically distributed [17]. This motivates an RVQ
scheme in which the (random) codebook entries are indepen-
dent and isotropically distributed. We will show that RVQ is
optimal in the large system limit for both linear receivers, i.e.,
it achieves the maximum large system SINR.

A. Matched Filter

Maximizing the SINR with a matched filter, given by (5), is
equivalent to minimizing the interference power, i.e.,

(13)

where is the interference power corresponding to signature
. The minimum interference is therefore given by

(14)

We are interested in computing the average

(15)

i.e., the expectation is with respect to both the codebook and the
set of interfering signatures.

For RVQ, the vectors are i.i.d., hence the corresponding
interference terms are also i.i.d., conditioned on the inter-
fering signature matrix . Given the probability density func-
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tion (pdf) for given , and the cumulative distri-
bution function (cdf) , the cdf for given can be
expressed as

(16)

and the expected interference is given by

(17)

Closed-form expressions for and are given
in [30] (see (56) in Appendix A), and depend only on the eigen-

values of the interference covariance matrix . To empha-
size this property, in what follows we will write the conditional
cdf as where denotes the set of eigenvalues of

. Evaluating (17) for finite appears to be diffi-
cult, and must be done numerically. We therefore consider the
large system limit . In this limit, the empirical
distribution of eigenvalues in the set converges to a determin-
istic distribution, independent of the particular realization of
[31].

As , it can be shown that each converges
to in the mean-square sense. That is, ,
and the variance goes to zero as . Hence, for any fixed

. However, if we also let with fixed ,
then as increases, is the minimum of an exponentially
increasing number of samples from the cdf . In that
case, converges to a deterministic limit between zero, cor-
responding to , and , corresponding to . This
limit is given by the following theorem.

Theorem 1: As with fixed ratios
and , the interference power

with RVQ converges in the mean-square sense to

(18)

Furthermore, , where satisfies

(19)

The proof relies on the asymptotic theory of extreme order
statistics [32] and is given in Appendix A. Note that for ,
the bound is tight when , in which case , and
when , in which case . The large system SINR
for RVQ is therefore given by

(20)

The lower bound on the minimum interference power
in Theorem 1 is obtained by conditioning on the codebook in
(15), instead of conditioning on . In that case, is random,

and given has a Gaussian distribution with zero mean
and variance . Therefore, the ’s, conditioned on , are

identically distributed with a Gamma pdf, which has mean
and variance , and is given by

(21)

where is the complete Gamma function.
Evaluation of is complicated by the fact that the ’s,

conditioned on , are not independent. (That is, they all depend
on the same random matrix .) It is shown in the proof of The-
orem 2 that replacing the ’s with i.i.d. random variables gives
a lower bound on the minimum interference power. Applying
the theory of extreme order statistics in that case gives

which is shown to satisfy (19).
In general, we can consider an arbitrary sequence of signature

codebooks where , and
for each . Let denote the corresponding SINR averaged
over random interfering signatures.

Theorem 2: For any sequence of signature codebooks

The proof is given in Appendix B.
The theorem states that with a matched-filter receiver, RVQ is

asymptotically optimal in the sense that it maximizes the large
system SINR. Hence, the performance of RVQ serves as an
upper bound on the large system performance of any quanti-
zation scheme. Note that RVQ is suboptimal for a finite-size
system, since signatures in an optimal codebook should be or-
thogonal. (The RVQ signatures become orthogonal as .)
Still, numerical comparisons with other optimized schemes [19]
in the context of beamforming with limited feedback show that
RVQ performance is indistinguishable from the optimized per-
formance even for small systems [33].

B. MMSE Receiver

In this case, the receiver selects the signature from the code-
book , which maximizes the corresponding SINR, i.e.,

(22)

where denotes the SINR corresponding to . The SINR
with RVQ is therefore,

(23)

where the ’s are independent, conditioned on , because
the quantized signatures are independent. The SINR averaged
over the RVQ codebook is therefore,

(24)

where and are, respectively, the cdf and pdf for
, given , and depend only on the eigenvalues of or
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equivalently, the eigenvalues of . As for the matched-filter
receiver, we again write instead of to emphasize
this fact.

In the large system limit, the SINR converges to
a deterministic limit , which is given in the following
theorem.

Theorem 3: As with fixed and
, the SINR converges in the mean-square sense

to

(25)

Furthermore, for any sequence of signature codebooks
with associated SINRs .

In other words, RVQ achieves the maximum large system
SINR, which depends on the distribution of . The proof is
given in Appendix C, and again relies on the asymptotic theory
of extreme order statistics [32].

To evaluate the large system SINR for RVQ in Theorem 3,
, we require the distribution of the SINR with

an MMSE receiver, given . This cdf is given by (56) in Ap-
pendix A (for ), where in this case the ’s are the eigen-
values of . As for the matched-filter receiver, the inverse of
the cdf given in (56) appears to be difficult to evaluate analyti-
cally, which prevents us from evaluating (25) directly. An upper
bound on the large system SINR can be obtained by following
the approach used for the matched filter. Namely, we condition
on the codebook , and replace the random variables
by independent random variables having the same distribution.
This gives

(26)

where is the distribution of conditioned on .
The exact expression for is unknown, and appears to
be difficult to evaluate. However, we can resort to a Gaussian ap-
proximation for , which is motivated by the following
lemma.

Lemma 1 [17, Theorem 4.5]: As

(27)

where is the large system SINR with randomly assigned sig-
natures given in (11) and

(28)

Hence, for large is approximately Gaussian with
mean and variance . Evaluating (26) with this approxi-
mation gives5

(29)

5The limit in (26) for fixed K and N is evaluated in [32, Sec. 2.3.2] for a
zero-mean, unit-variance Gaussian cdfG ( � ). Evaluation of the limit in (25)
with a different mean and variance is a straightforward extension.

Fig. 1. SINR (in decibels) for RVQ with matched-filter and MMSE receivers
versus normalized feedback �B. Both large system and simulated results are
shown.

This approximation is accurate for small . Namely, when
However, as

, and hence, exceeds the single-user bound. This
is because we are approximating by a Gaussian pdf,
which has infinite support.

C. Numerical Example

Fig. 1 shows plots of large system SINR with RVQ versus
normalized feedback for both the matched-filter and MMSE
receivers with and , and background signal-to-noise
ratio (SNR) 8 dB. The large system upper bound for the matched
filter is shown, which is obtained by solving (19). The MMSE
results, given by (29), are based on the Gaussian approxima-
tion. Also shown in the figure are discrete points corresponding
to Monte Carlo simulations with . The large system re-
sults for the matched filter accurately predict finite system per-
formance. These results show that the Gaussian approximation
for the MMSE receiver is especially accurate for small .

For the example shown, to achieve the single-user bound, the
MMSE receiver requires about one bit per dimension, whereas
the matched filter requires about two bits per dimension. How-
ever, the matched filter shows a much larger performance im-
provement with a small amount of feedback, relative to no feed-
back.

IV. REDUCED-RANK SIGNATURE WITH SCALAR QUANTIZATION

A drawback of vector quantization schemes in general is com-
plexity. Namely, the size of the codebook, and hence the com-
plexity, grows exponentially with the number of feedback bits

. We therefore seek simpler, suboptimal quantization schemes.
For example, one possibility is to quantize each element of the
optimal signature with the same scalar quantizer. To reduce the
number of quantized coefficients, we can apply reduced-rank
signature optimization, as proposed in [15]. Namely, the optimal
signature is projected onto a -dimensional subspace, where
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, which is known at the transmitter. The receiver then re-
lays the scalar-quantized coefficients back to the transmitter.

With unlimited feedback, the performance of reduced-rank
signature optimization increases monotonically with , i.e.,
larger implies more degrees of freedom for interference
avoidance. Limited feedback introduces the following tradeoff:
as the number of dimensions increases, there are more coef-
ficients to quantize, resulting in higher quantization error, but
also more dimensions available for interference avoidance.
Hence, there is generally an optimal dimension that depends on
the load, the number of feedback bits, and (to a lesser degree)
the noise level. In what follows, we first present the large
system performance of reduced-rank signature optimization
with unlimited feedback as a function of the dimension , and
subsequently evaluate the performance with scalar quantiza-
tion.6

A. Reduced-Rank Performance With Unlimited Feedback

A reduced-rank signature is an vector, which is con-
strained to lie in a -dimensional subspace, , i.e.,

(30)

where is the matrix of basis vectors, and is the
-vector of combining coefficients, all for user . Since the

transmitter and receiver have no a priori knowledge of the inter-
ference, we assume that is a random unitary matrix known

to the transmitter and receiver, i.e., . We refer to
as the rank of the signature. It represents the available degrees
of freedom for interference avoidance.

The optimized SINR (i.e., maximized over ) increases with
. Note that corresponds to conventional power control

(i.e., the signature is scaled by a constant factor), and
corresponds to the optimized (full-rank) signature discussed in
Section III. Varying allows a tradeoff between achievable per-
formance and the number of coefficients to be estimated and fed
back to the transmitter.

We wish to select to maximize

(31)

where is a Lagrange multiplier for the power constraint.
The solution to this problem with matched-filter and MMSE
receivers is presented in [15]. Namely, the optimal with a

matched filter is the eigenvector of corresponding to
the minimum eigenvalue, which is the interference power. As

with fixed normalized rank and
normalized load , the eigenvalue distribution of the

matrix converges weakly to a deterministic function,
and the minimum eigenvalue converges to a deterministic
value. The large system SINR at the output of the matched
filter, evaluated in [15], is

(32)

for . Setting gives the large system SINR
with a random signature, and setting gives the single-user

6The performance of reduced-rank signature optimization with RVQ could
also be analyzed by combining the following results with the previous analysis
of RVQ. Here we only consider scalar quantization of the reduced-rank coeffi-
cients to simplify the receiver.

Fig. 2. SINR (in decibels) with the MMSE receiver and reduced-rank
signature optimization versus normalized rank �D. Both large system and
simulated performance are shown.

SINR, since there are enough degrees of freedom to completely
avoid all interferers.

For the MMSE receiver, we substitute the expression for
SINR from (7) into (31) and maximize with respect to . The

optimal is the eigenvector of corresponding to
the maximum eigenvalue, which is the corresponding SINR.
The large system SINR with reduced-rank signature, ,
can be evaluated as follows.

Theorem 4: As , the SINR with the re-
duced-rank signature, converges to the real root of the
following quartic equation:

(33)

for , where through can be written as finite
polynomials containing and .

The proof and explicit expressions for through are given
in Appendix E. There can be multiple real roots of (33); how-
ever, only one corresponds to a feasible solution. The proof re-
lies on free probability theory [34]. (A related eigenvalue result
for a different matrix is presented in [35].) If , then (33)
becomes a quadratic equation, the solution to which is the large
system SINR with random signatures [29].

Fig. 2 compares the large system SINR with simulation re-
sults for and , and the background SNR is 8 dB.
Results are shown for loads and . The ana-
lytical results are within a small fraction of a decibel from the
simulated results. We also note that at , the SINR for
all loads is within 1 dB of the single-user performance.

B. Performance With Scalar Quantization

We now assume that the receiver quantizes each of the
coefficients in the reduced-rank signature vector with the
same scalar quantizer, and relays bits back to the transmitter.
As before, we take , and assume random interferers. Each
coefficient is therefore quantized with
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Fig. 3. The empirical pdf of a combining coefficient [��� ] for N = 16 and
D = 6, and its Gaussian approximation.

bits. Let and be the quantized coefficient vector and the
quantization error vector for user 1, respectively. Hence,

(34)

Here we wish to design a scalar quantizer for each that
minimizes the mean-squared error (MSE) . (This
is in contrast with a vector quantization scheme, which di-
rectly maximizes received SINR.) This is the objective of the
Lloyd–Max algorithm [36], [37], which requires the pdf for

. This pdf appears to be difficult to obtain exactly; how-
ever, numerical observations show that it can be approximated
as Gaussian with zero mean and variance . An example is
shown in Fig. 3.

In what follows, we compute the large system SINR using this
quantization scheme for both matched and MMSE filters. In this
case, we must let and all tend to infinity with fixed
ratios and .

1) Matched Filter: The quantized signature vector for
user 1 is

(35)

which must be renormalized to satisfy the power constraint. The
corresponding SINR at the output of the matched filter is

(36)

Combining with (34), (35), and (3), and using the fact that

, the averaged SINR is given by

(37)

where the expectation is over the distribution of the quantization
noise. As with fixed and , we show

Fig. 4. SINR (decibels) versus normalized rank D=N for the optimized
reduced-rank signature with a matched filter. Plots are shown for different loads
�K and normalized feedback �B.

in Appendix F that the SINR in (37) converges to a limit, which
can be approximated as

(38)

where is defined in (32) and

(39)

is the asymptotic quantization noise power defined in [37], and
gives an accurate estimate of the actual quantization noise power
when the number of feedback bits per reduced-rank coefficient

is large. (Alternatively, for small we can
compute directly from (152) in Appendix F.) The
optimal , which maximizes , can be easily computed
from (38) for given , and SNR.

Fig. 4 compares the large system analytical results obtained
from (38) with simulated results for different and

and SNR 8 dB. The SINR for user 1 is plotted versus
. These results illustrate the tradeoff between the quantiza-

tion error and the available degrees of freedom to avoid inter-
ference. That is, for small , the performance is limited by
the available degrees of freedom, whereas for large , the
performance is limited by quantization error. For and

, the maximum SINR is achieved at , and the
difference in SINRs for full-rank and optimized reduced-rank
signatures is about 3 dB.

The large system SINR is within a fraction of a decibel from
the simulated results for . When , the
approximation (38) becomes inaccurate for large (i.e.,
corresponding to near-full-rank performance), so that the large
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Fig. 5. SINR (decibels) versus normalized rank D=N for the optimized
reduced-rank signature with the MMSE receiver. Plots are shown for different
loads �K and normalized feedback �B.

system results deviate more from the simulated results in this
region.

2) MMSE Receiver: The SINR with quantized reduced-rank
signature and MMSE receiver is given by

(40)

where the quantized signature must be renormalized to satisfy
the power constraint. In analogy with the matched filter, we can
approximate the large system SINR at the output of MMSE re-
ceiver as

(41)

where is given in (11) and is the real root of (33).
The derivation of (41) is similar to the derivation of (38), and
is omitted. The second term in (41) represents the performance
degradation due to quantization.

Fig. 5 compares the large system analytical results obtained
from (41) with simulated results for different and

with SNR 8 dB. The SINR for user 1 is again shown versus
. As expected, for given the SINR with the MMSE

receiver is higher than that with the matched filter. For the larger
load, , the tradeoff between quantization error and de-
grees of freedom for interference avoidance is not apparent,
since the quantized full-rank signature with one bit per coeffi-
cient performs nearly as well as a quantized reduced-rank signa-
ture. This is in contrast to prior results with the matched filter, for
which the preceding tradeoff leads to a more pronounced max-
imum. This can be attributed to the additional interference sup-
pression capability of the MMSE receiver. The large system re-
sults accurately predict the simulated results except when
is close to one.

Fig. 6 compares the large system performance of the scalar-
quantized reduced-rank signature, the scalar-quantized full-rank

Fig. 6. SINR versus normalized feedback �B for the optimized reduced-rank
signature (RR) with scalar quantization (SQ), the optimized full-rank signature
with scalar quantization, and RVQ.

signature, and RVQ. The figure shows SINR versus normalized
feedback for both the MMSE and matched-filter receivers.
The reduced-rank results correspond to the optimal . The large
system SINRs for RVQ are evaluated from Theorem 1 for the
matched filter and (29) for the MMSE receiver. The reduced-
rank SINRs are evaluated from (38) and (41). The full-rank re-
sults are from simulation with . These results show
that the SINR for the reduced-rank scheme with optimal rank is
within 1 dB of RVQ, and is substantially greater than the SINR
for full-rank optimization with scalar quantization. In particular,
scalar quantization of the full-rank signature is not possible for

. The gain from using optimized reduced-rank signatures,
relative to full-rank signatures, is greater for the matched filter
than for the MMSE receiver, although the MMSE receiver gives
significantly better performance than the matched filter. We re-
mark that the reduced-rank results are insensitive to a subop-
timal choice of , as long as it is in the vicinity of the optimal .

V. GROUP SIGNATURE OPTIMIZATION WITH LIMITED

FEEDBACK

So far, we have considered the situation in which only one
user optimizes his signature in the presence of fixed, random
interfering signatures. Now we consider the situation in which
a group of users optimizes their signatures in the presence of
fixed, random interference. The objective is to maximize the av-
erage SINR over all users in the group. For example, the opti-
mizing users could be mobiles within a particular cell, in which
case the interfering users are in other cells. The receiver can se-
lect a set of signatures for the group of users from an expanded
codebook, and feed back the corresponding index bits. We again
analyze the large system performance of RVQ with matched and
MMSE filters, and compare with scalar-quantized reduced-rank
signatures.
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Let be the number of optimized signatures and be
the number of interfering signatures. The total number of users
is . Suppose that is the
signature set for the optimizing users and is
the signature set for the interfering users. The SINR at the output
of the matched filter averaged over the users is given by

(42)

(43)

where and . Given
feedback bits, the set of signatures can be selected from a

codebook , namely, the receiver selects

(44)

The optimal signature matrix with unlimited feedback has
columns, which are eigenvectors of . Here we define the
RVQ codebook as having elements, which are independent and
isotropically distributed . The denominator of (43)

therefore simplifies to , and the minimum
interference is

(45)

which is a random variable whose distribution is difficult to eval-
uate for finite and . We again study the asymptotic, or large
system interference as with fixed ratios

, , and . Because
there are now signature coefficients, and grows lin-
early with , the number of feedback bits increases as .

In analogy with Theorem 1, converges in the mean-square
sense to

(46)

where is the cdf for given the matrix . Evalu-
ation of remains an open problem. Hence, as in the
single-user analysis, to obtain a lower bound on large system in-
terference power, we condition on the codebook with random

. Given , the central limit theorem implies that each diag-

onal element of converges to a Gaussian random variable
as , so that converges to a Gamma random variable
with mean and variance . This cdf, which
we denote as , is similar to the cdf for the interference
power in the single-user case discussed in Section III, except
that here the variance goes to zero as instead of . In
analogy with the single-user analysis, it follows that

where satisfies

(47)

for and . For , the bound is again tight
when , in which case , and when , in
which case . The numerical example, which follows,
shows that the bound is very close to the simulated results. The
large system SINR is upper-bounded by

- (48)

For the MMSE receiver with group signature optimization the
performance objective is sum MSE given by

(49)

(50)

where the received covariance matrix .
To evaluate the limiting performance, we require the cdf of
for finite . This cdf is difficult to determine exactly, so that
we instead minimize the following upper bound on the average
MSE derived in Appendix G:

(51)

Minimizing this bound is equivalent to minimizing . There-
fore, the large system average MSE satisfies

(52)

where convergence is in the mean-square sense, is accu-
rately approximated by , which satisfies (47), and the latter
limit converges for and .

To simplify the feedback scheme, we again apply reduced-
rank signature optimization with a scalar quantizer. For group
optimization, each signature is projected onto a different
random subspace spanned by the columns of the matrix [15].
Here we assume that is a set of independent,
random unitary matrices known a priori to both the transmitter
and receiver.

The optimized set of reduced-rank signatures
corresponds to a fixed point in which each is an eigen-

vector of the the corresponding interference-plus-noise covari-

ance matrix (i.e., for the matched filter and
for the MMSE filter). Such a fixed point can typically be found
numerically by alternately updating the users’ signatures and
receivers until the performance objective (i.e., average SINR
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Fig. 7. SINR (decibels) versus normalized feedback ^B with group
signature optimization and a matched filter. Results are shown for RVQ,
and scalar-quantized reduced-rank signatures.

Fig. 8. Average MSE (decibels) versus normalized feedback ^B with group
signature optimization and an MMSE receiver. Results are shown for RVQ and
scalar-quantized reduced-rank signatures.

or sum MMSE) converges.7 Determination of the large system
performance of group reduced-rank signature optimization is an
open problem. For the numerical results, which follow, the fixed
points are computed numerically, and as in Section IV, each el-
ement of each signature , is quantized with a
scalar quantizer optimized for a Gaussian pdf with
feedback bits.

Figs. 7 and 8 compare the performance of group RVQ and
scalar-quantized reduced-rank signatures with matched-filter
and MMSE receivers. Fig. 7 for the matched filter shows SINR
averaged across users, and Fig. 8 for the MMSE receiver shows

7The signatures can also be updated sequentially across users, as in [11]. Here
we do not investigate associated convergence and uniqueness issues, but note
that for the numerical results, which follow, the iterative algorithms simulated
consistently converged to the same fixed point from different initial conditions.

averaged MSE. Parameters are and
SNR 10 dB. Simulated RVQ performance with is
also shown, along with simulated results for scalar-quantized
reduced- and full-rank (i.e., ) signatures with .
The reduced-rank results are optimized with respect to the rank

. (Note that the size of the RVQ codebook grows as ,
so that the RVQ simulation is restricted to relatively small .)

For the matched-filter receiver, the large system upper bound
on RVQ performance accurately estimates the simulated perfor-
mance. For the MMSE receiver, the approximate large system
performance is shown. The results show that RVQ achieves
the single-user bound with . Reduced-rank performance
shows a significant degradation relative to RVQ (e.g., 2.5 dB
with the matched filter when ), but is still significantly
better than direct scalar quantization of the optimal (full-rank)
signatures (again, about 2.5 dB for the previous example). The
MMSE results show that to achieve a target MSE, scalar-quan-
tized optimal signatures require about one bit per coefficient
more feedback than scalar-quantized reduced-rank signatures.

VI. CONCLUSION

We have analyzed the performance of CDMA signature opti-
mization with linear receivers and limited feedback. A key fea-
ture of this analysis is the computation of large system perfor-
mance, where in addition to keeping the ratio of users to pro-
cessing gain fixed, the number of feedback bits per signature
coefficient is also constant. In this large system limit, the perfor-
mance of RVQ gives an upper bound on the performance of any
signature quantization scheme. For single-user signature opti-
mization the numerical example shows that one feedback bit per
signature coefficient with a matched-filter receiver gives a re-
ceived SINR, which is about 1 dB from the single-user bound.
With an MMSE receiver, one feedback bit per coefficient can es-
sentially achieve the single-user SINR. Group optimization re-
quires significantly less feedback (0.25–0.5 bit per coefficient)
to achieve this performance.

To simplify the signature quantizer at the receiver, we con-
sidered reduced-rank signature optimization with a scalar quan-
tizer. Selecting the optimal rank gives a substantial increase in
SINR over (full-rank) scalar quantization of the optimal signa-
ture, especially with the matched-filter receiver. Our numerical
results for single-user optimization show that the reduced-rank
scheme with optimal rank performs in the vicinity of the RVQ
bound. Specifically, to achieve an SINR within 0.5 dB of the
single-user bound with an MMSE receiver, reduced-rank opti-
mization requires about 0.5 bit per coefficient more than RVQ.
For group adaptation, the reduced-rank results are further away
from this bound, but still offer substantial gains relative to scalar
quantization of the optimal signatures.

Although we have considered an idealized CDMA model,
some of our results have wider applicability. For example, the
asymptotic optimality of RVQ is essentially a consequence of
isotropic interfering signatures, hence, we expect that RVQ
is asymptotically optimal in more general scenarios than the
one considered here. For example, those scenarios include
i.i.d. power assignments across users, asynchronous users with
independent, uniformly distributed delays, flat fading with
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independent channel gains, and any frequency-selective fading
model in which the set of received signatures are isotropically
distributed. However, computing the large system performance
in those scenarios may be difficult, since the interference
distribution is more complicated than for the idealized CDMA
model.

The techniques discussed here can also be applied to mul-
tiantenna systems, where limited feedback is used to determine
spatial (or possibly space–time) signatures [26], [27]. Here (and
in [26], [27]) we have assumed slowly changing interference
and channels so that the receiver has sufficient time to obtain
an accurate estimate of the optimal signature, and feed back the
quantized coefficients to the transmitter. Additional issues for
future study include the effect of signature estimation at the re-
ceiver with limited training, and the performance in the presence
of channel mismatch due to time-selective fading. Finally, in-
teresting systems issues include throughput optimization over a
full-duplex link, taking into account the feedback overhead (see
[38]), and evaluating feedback strategies in the context of other
network configurations (e.g., the downlink).

APPENDIX

A. Proof of Theorem 1

Let the number of vectors in codebook be . As
, the cdf of for a given , de-

noted as , becomes degenerate at the minimum eigen-

value of , which is the minimum possible value of . The
following lemma states that with appropriate normalizing con-
stants and converges weakly to a Weibull
random variable with cdf .

Lemma 2: There exist and such that as

(53)

for all where

(54)

and .
Proof: This follows from [32, Theorem 2.1.5]. First we

observe that with RVQ, the interference terms ’s for given
are i.i.d. since the ’s are i.i.d. According to [32, The-

orem 2.1.5], the lemma holds provided that

(55)

where . With isotropically dis-
tributed ’s, the cdf for conditioned on , assuming

, is given by [30]

for (56)

where are the ordered eigenvalues

of . The corresponding pdf for an underloaded system
is somewhat more complicated, so that for conve-

nience, in what follows we only consider an overloaded system
. An alternative approach to proving the theorem for

an underloaded system, which does not rely on a specific form
for the distribution , is given in Appendix C (Proof of
Theorem 3).

For small such that

Substituting and with small into (55),
we can evaluate the limit as follows:

(57)

(58)

Since for , we can apply [32, The-
orem 2.1.5].

Theorem 2.1.5 in [32] states that the normalizing sequences
can be chosen as

and (59)

From Lemma 2 and [39, Theorem 25.1.2]

(60)

as . The sequence is deterministic and
[40]. Taking the large system limit gives

(61)

(62)

(63)

where we have used the fact that . Furthermore, as
, the variance

(64)

since . This establishes that converges to

(65)

in the mean-square sense. Since the inverse of the cdf is
difficult to analyze, we are not able to evaluate the limit in (65)
directly. Instead, we derive a lower bound for this limit.

Given , and assuming is random with i.i.d. Gaussian el-
ements each with zero mean and variance , the interference
power is a Gamma random variable with pdf given by (21).



3486 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 10, OCTOBER 2005

In this case, the ’s given are not independent. It is shown
in the Proof of Theorem 2 (see Appendix B) that replacing the

’s with independent random variables having the same dis-
tribution gives a lower bound on the expected minimum inter-
ference power. Specifically, this lower bound is

(66)

Next we evaluate the right-hand side of (66), which gives the
lower bound in the theorem.

From (21), we wish to find the limit as of
the that satisfies

(67)

(68)

We first rewrite this as

(69)

In the large system limit, the right-hand side of (69) converges
to

(70)

(71)

(72)

where we have applied Stirling’s formula for . We will
show that the limit of the left-hand side of (69) is upper- and
lower-bounded by , which will complete the
proof.

Let , which is the integrand in (69).
To derive bounds on the left-hand side of (69), we first show
that for large enough and is convex for .
A direct calculation shows that for

which implies that is convex in that region. As
for . Hence, we

can always choose and large enough so that

Since for large enough and is convex in the region
of the integral

(73)

(74)

so that

(75)

(76)

The area under for is lower-bounded
by the area of the triangle formed by the set of points

. (The last point
is the -intercept of the line tangent to at .) Hence,
we have

(77)

(78)

and

(79)

(80)

This completes the proof.

B. Proof of Theorem 2

Let denote the interference power
associated with the th signature for a given , and
let denote the cdf for conditioned on . Note that
because the interfering signatures are i.i.d., is invariant to
any choice of on the unit sphere, and hence does not depend
on . To prove the theorem we first show that

(81)
The expression on the right-hand side corresponds to a random,
independent choice of signatures in for each . We subse-
quently show that the left-hand side is maximized when the ’s
are isotropic, corresponding to RVQ.
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To show (81), we observe that because , the fol-
lowing statement holds for :

(82)

where

(83)

Taking the expectation of both sides in (82) and the large system
limit, we obtain

(84)

The term on the left-hand side within the limit is

(85)

(86)

(87)

where is the pdf for . To tighten the bound, we maxi-
mize with respect to . Setting

(88)

gives

(89)

Substituting for in (87) and taking the large system limit gives

(90)

(91)

The limit in (90) is indeterminate since the integral goes to
zero. That is, the limiting interference power and

. Applying l’Hôpital’s rule gives

(92)

(93)

(94)

(95)

where is given by (89). This establishes (81), and shows that
the entries of the optimal codebook are independent.

It remains to show that each entry of the codebook should
be chosen from an isotropic distribution. This follows from
the observation that the optimal signature vector , i.e., the
eigenvector of corresponding to the minimum eigenvalue,
is asymptotically isotropically distributed [17]. Namely, let
denote the space of all -dimensional, unit-norm vectors, and
let and denote small nonoverlapping cones in with
the same volume. Because is isotropically distributed

Suppose that, according to the distribution , we allocate
vectors to . Conditioning on

, so that , the interference
power is , where denotes the
asymptotic interference conditioned on . We
wish to minimize this over subject to
being constant.

Because is isotropically distributed, . Fur-
thermore, both and are decreasing
with (i.e., the marginal reduction in interference diminishes
as new vectors are added to the codebook ), so that the min-
imum occurs at . Consequently, the distribution of
vectors in the codebook should be uniformly distributed over
the unit sphere, in which case becomes the distribution

(i.e., (56) when ).

C. Proof of Theorem 3

Here we prove the theorem for . The proof for
is similar to the proof of Theorem 1 and is therefore omitted. The
following proof is more involved than that for the matched-filter
receiver since an explicit expression for the cdf of given

is unavailable. Let given , and let
denote its cdf. As , the following lemma

states that converges weakly to the nondegenerate
Gumbel random variable with cdf .

Lemma 3: There exist and such that as

(96)

for all , where

(97)

and as .
Proof: This follows from [32, Theorem 2.1.3]. We again

observe that the random variables for a given are
i.i.d. Following the proof of [32, Theorem 2.1.3], it is sufficient
to show that

(98)

where

(99)

and .
Let

(100)
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From [32, p. 103]

for (101)

so that it remains to show that

(102)

By writing

(103)

we can evaluate the limit of each fraction on the right-hand side.
Following the proof of Theorem 2.1.3 in [32], it can be shown
that for any

(104)

where and that

(105)

We show in Appendix D that

(106)

where as . Combining (103)–(105) implies
(102), which in turn implies (98), (99), and the lemma.

From [32, Theorem 2.1.3], the normalizing sequences are

(107)

(108)

Therefore,

(109)

(110)

where we have used the fact that is bounded and
as . Furthermore, as in the proof of Theorem
1, it is straightforward to show that as

.
To prove the inequality in the theorem, we define as the

SINR corresponding to for a given , and as
the associated cdf, which is independent of . (Note that
corresponds to being chosen from an arbitrary cdf, whereas

, defined earlier, assumes that is isotropically dis-
tributed.) As in the proof of Theorem 2, we first show that

(111)

which implies that the codebook entries should be indepen-
dent. We then show that each vector should be isotropically dis-
tributed.

Since , we have for

(112)

Taking expectation and the large system limit gives

(113)

and the which minimizes the right-hand side is

(114)

Substituting for in (113) gives (111).
As with the matched-filter receiver, the optimal signature

vector with the MMSE receiver, i.e., the eigenvector of
corresponding to the maximum eigenvalue, is again isotrop-
ically distributed as . Following an analogous
argument as for the matched filter shows that the asymptotic
SINR is maximized when each is uniformly distributed over
the unit sphere. (Here we use the fact that the asymptotic SINR

is concave increasing, where each is constrained to
lie in a small cone .) Hence,

(115)

where is the cdf of with RVQ.

D. Derivation of (106)

For

(116)

We are interested in the behavior of this function as .
We express

(117)

(118)

(119)

where and are the eigenvalues and eigenvectors of
, respectively, and is the angle between and . Each

eigenvector is isotropically distributed [17], i.e., uniformly dis-
tributed over the unit sphere as . For a given and ,
the probability that is the area of the surface of the
corresponding -dimensional spherical cap normalized by the
total surface area of the sphere, i.e.,

(120)
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where as . (A similar computation in a related
context is given in [20].) Conditioned on and , we
have

(121)

Now is close to when is close to an eigen-
vector with corresponding eigenvalue . Since there are

eigenvectors with this eigenvalue, and because being in the
vicinity of any one of those eigenvectors are mutually exclusive
events as , we have

(122)

where uniformly as . Differentiating
gives the pdf

(123)

where as . Therefore, we can write

(124)

where as , and as .
Differentiating gives

(125)

where as .

E. Proof of Theorem 4

In what follows, we determine the limiting eigenvalue dis-

tribution of the matrix , which has the same

maximum eigenvalue as . This derivation relies on
results from free probability theory and its application to large
random matrices. (See [34], [35], [41]–[43] for a more detailed
treatment of this topic.)

The empirical eigenvalue distribution (e.e.d.) of an
matrix with eigenvalues is defined as
where . As , the e.e.d. for cer-
tain classes of random matrices converges weakly in distribution
to a deterministic distribution, which we denote as . In
particular, this is true for as with fixed
and .

We first note that from [34, Proposition 4.3.9], the family

is asymptotically free almost everywhere as
. Hence, we have

where denotes free multiplicative convolution. To evaluate

, we first note that the eigenvalues of are either zero
or one so that

(126)

For a distribution , let

(127)

which is the -transform of the moments of . We will use
the shorthand notation to denote . Evaluating the free
multiplicative convolution gives

(128)

We skip the details, since a similar result appears in [42,
eq. (29)].

To solve for in (128), we must obtain an expression
for . Using the fact that the eigenvalues of are the

inverse eigenvalues of , it is straightforward to show that

(129)

where is the Stieltjes transform of
, and satisfies the fixed-point equation [29, Theorem 4.1]

(130)

Substituting (130) into (129), we have

(131)

We also note that

(132)

Combining (128), (131), and (132) gives, after some algebraic
manipulation

(133)

where

(134)

(135)

(136)

(137)



3490 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 10, OCTOBER 2005

If is continuous at , then the corre-
sponding distribution is unique, and the corresponding
pdf at is given by [31]

(138)

If the maximum eigenvalue in the large system limit is , then
evaluated at must be zero. The right-hand side of

(138) is zero when is real. That implies that the
root of (133), which gives , must be real. The cubic equa-
tion (133) has only real roots when the following equation holds
[44]:

(139)

Simplifying the preceding equation leads to the quartic equation
(33) in Theorem 4, where the constants are as follows:

(140)

(141)

(142)

(143)

(144)

F. Derivation of (38)

Substituting (34) into (37), and expanding the interference
term in the denominator gives

(145)

Each term can be evaluated as follows. First, since is the
eigenvector of corresponding to the minimum
eigenvalue, the first term in (145) converges to [15]

(146)

for .

Next, we take the large system limit of the cross term in (145),
which gives

(147)

To evaluate (147), we examine the correlation between the coef-
ficients and . To simplify the notation, we will refer
to these as and , respectively. When the quantizer is op-
timal in the MSE sense, the quantized output power is given by
[45]

(148)

Expanding the square on the left-hand side, we have

(149)

so that

(150)

where .
To evaluate the last term in (145), we make the approximation

that is independent of matrix . This approxi-
mation is accurate for moderate to large normalized feedback

. For small strongly depends on , which, in

turn, depends on . Taking the large system limit with
the independence assumption gives

(151)

The quantization noise power can be computed as

(152)

where the number of quantization levels
, are the decision thresholds, is the quantized value,

and is the pdf of . As stated earlier, we will approximate
as Gaussian with zero mean and variance . For large ,

the quantization noise power in (152) is given by [37]

(153)

(154)

Combining (37), (146), (150), (151), and (154) gives the approx-
imation (38).

G. Derivation of (51)

Using any receiver other than the MMSE receiver can only
increase the sum MSE. Consider the following receiver:

(155)
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which is the optimal receiver constrained to lie in the subspace
spanned by the columns of . The corresponding MSE is

(156)

(157)

and the sum MSE can be written as

(158)

(159)

(160)

where the last equality holds because is orthonormal. Let
(i.e., the covariance matrix excluding the

signatures in ), and denote the th eigenvalue of the matrix
. We have

(161)

(162)

(163)

(164)

(165)

(166)

(167)
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