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Abstract—An adaptive iterative (turbo) decision-feedback
equalizer (DFE) for channels with intersymbol interference (ISI) is
presented. The filters are computed directly from the soft decisions
and received data to minimize a least-squares (LS) cost function.
Numerical results show that this method gives a substantial im-
provement in performance relative to a turbo DFE computed from
an exact channel estimate, assuming perfect feedback. Adaptive
reduced-rank estimation methods are also presented, based on
the multistage Wiener filter (MSWF). The adaptive reduced-rank
turbo DFE for single-input/single-output channels is extended to
multiple-input/multiple-output (MIMO) channels with ISI and
multiple receive antennas. Numerical results show that for MIMO
channels with limited training, the reduced-rank turbo DFE can
perform significantly better than the full-rank turbo DFE.

Index Terms—Adaptive filters, multiple-input/multiple-output
(MIMO) channels, space–time processing, turbo equalization.

I. INTRODUCTION

ACHIEVING high spectral efficiencies over frequency-
selective channels requires channel coding and mitigation

of intersymbol interference (ISI). Viewing the code and channel
as a serially concatenated code leads to the application of the
turbo principle for joint equalization and decoding [1], [2].
Initial work on turbo equalization considered a maximum a
posteriori (MAP) symbol-by-symbol equalizer with an MAP
symbol-by-symbol decoder [2]. In order to reduce the complex-
ity of the turbo equalizer, it has been recognized that the MAP
equalizer can be replaced by a decision-feedback equalizer
(DFE) with soft cancellation of ISI [3].

Previous work on turbo decision-feedback equalization has
assumed that the receiver either knows or estimates the channel
[4]–[8]. The channel estimate is then used to compute the
DFE filter coefficients assuming perfect feedback. In practice,
this approach is appropriate given limited training overhead,
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since typically there are relatively few channel coefficients
to estimate compared with the number of filter coefficients.
However, the performance of the turbo equalizer is sensitive
to channel estimation error [9], [10]. Another drawback of
this approach is that even with perfect channel estimates, the
resulting filters are generally suboptimal, due to the assumption
of perfect feedback.

Here we introduce an adaptive turbo equalizer in which the
filter coefficients are directly estimated from the received data
and soft decoder outputs according to a least-squares (LS)
criterion. This approach is motivated by a similar adaptive
approach to turbo multiuser detection for CDMA [11]. When
the number of filter coefficients is larger than the number of
training symbols, it is infeasible to use the training symbols
alone to estimate the DFE filters directly. Consequently, a hy-
brid scheme is proposed in which the channel is estimated from
the training sequence for the first iteration, and in subsequent
iterations, the filters are estimated directly from the soft decoder
outputs. Adapting the filter coefficients directly makes the turbo
DFE less sensitive to channel estimation error and more robust
to error propagation. We observe, in fact, that the LS adaptive
turbo DFE outperforms a nonadaptive turbo equalizer, which
uses a perfect channel estimate and assumes perfect feedback.

Related work on adaptive turbo equalization for single-input/
single-output channels has been presented in [12]. In that work,
a stochastic-gradient algorithm is used to update the equalizer
coefficients. In this paper, we show that adapting the filter coef-
ficients according to an LS criterion is better than the stochastic
gradient approach, particularly for short packet lengths.

We also extend the LS turbo DFE for the single-antenna
channel to a system with an arbitrary number of receive an-
tennas and other cochannel users. Related work on noniterative
space–time equalization is presented in [13]–[15]. Space–time
turbo equalization for multiple-input multiple-output (MIMO)
channels is studied in [16] and [17], assuming both exact
and estimated channels. Here we consider two scenarios:
1) space–time equalization with cochannel interference (CCI)
and 2) a single-user MIMO channel with multiple transmit
and receive antennas. At the receiver, the ISI and CCI are
suppressed or cancelled with an adaptive MIMO DFE. Because
channel estimation is difficult in the presence of strong CCI, in
that situation, we directly estimate the DFE coefficients, which
minimize the LS cost function in the initial iteration as well as
in subsequent iterations.

The number of DFE coefficients increases with the number
of antennas and the channel delay spread. With limited training,
the LS filter estimates degrade as the filter lengths increase,
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Fig. 1. Block diagram of a transmitter and turbo DFE for a single-user single-antenna system.

and the performance of the turbo equalizer is limited by the
estimation error. Furthermore, the complexity of LS estimation
also increases with filter length. To improve performance with
limited training, we apply reduced-rank estimation based on
the multistage Wiener filter (MSWF) [18], [19] (see also [20],
which applies the MSWF to noniterative equalization). Numer-
ical results are presented, which show that with limited training,
the reduced-rank algorithm can perform substantially better
than the full-rank (conventional) LS algorithm. In addition, the
reduced-rank algorithm requires less computation than the full-
rank algorithm when the number of filter coefficients is large.

The outline of the paper follows. In Section II, we present the
adaptive LS turbo DFE for a single-user single-antenna system.
The associated performance is compared with the turbo DFE
using a channel estimate, and the stochastic-gradient DFE. The
reduced-rank turbo DFE is also introduced in this section. In
Section III, we generalize the LS turbo DFE to a multiuser mul-
tiantenna system and a single-user MIMO system. Section IV
concludes the paper.

II. SINGLE-USER SINGLE-ANTENNA SYSTEM

A. System Model

To begin, consider the single-user single-antenna system
model shown in Fig. 1. At the transmitter, a block of informa-
tion bits {b(i)} is convolutionally encoded and interleaved. The
coded interleaved bits {d(i)} are input to a multitone phase-
shift keying (MPSK) modulator (this work is easily extended
to other modulation formats). The resulting TS symbols, {s(i)}
along with a midamble of T0 binary training symbols (moti-
vated by the Enhanced Data rate for Global System for Mobile
communications (GSM) Evolution (EDGE) system [21]), form
a packet that is transmitted over an ISI channel.1 The channel
is modeled as a tapped-delay line with L symbol-spaced taps,
and is represented by the vector h = [h0 · · · hL−1]T, where
(·)T denotes transpose. Here we assume symbol-synchronous
sampling for convenience. A fractionally spaced equalizer can
be used with asynchronous sampling.

1The sequence index i spans a different range for the information bits, coded
bits, and transmitted symbols, corresponding to different sequence lengths. In
what follows, we will refer to i as the time or symbol index, corresponding to
the symbol sequence {s(i)}.

At the receiver, the noisy received sequence {y(i)}, corre-
sponding to a packet, is processed Nf samples at a time. At
time i, the vector of Nf received samples is given by

y(i) = Hs(i) + n(i) (1)

where y(i) = [y(i + δ − 1) · · · y(i + δ − Nf)]T and δ is a
delay, which indicates the position of the cursor. The cor-
responding vector of coded MPSK symbols is s(i) = [s(i +
δ − 1) · · · s(i + δ − Nf − L + 1)]T, and n(i) is a vector of
Gaussian noise samples with covariance matrix σ2I. The Nf ×
(Nf + L − 1) Toeplitz channel matrix is given by

H =




h0 . . . hL−1 0 . . . . . . 0

0 h0 . . . hL−1

...
...

. . .
. . .

...
0 . . . . . . . . . h0 . . . hL−1


 . (2)

B. Turbo DFE

In the first iteration of the turbo-equalization algorithm, the
received sequence {y(i)} is the input to a symbol-spaced DFE
that consists of a feedforward filter f (m) of length Nf , and a
feedback filter b(m) of length Nb. The superscript m denotes
the iteration number, so that for the first iteration m = 1. At
time i, the output of the DFE for the mth iteration is

z(m)(i) =
(
f (m)

)†
y(i) −

(
b(m)

)†
ŝ(m)(i) (3)

where “†” denotes complex conjugate transpose. As explained
in what follows, the Nb × 1 vector ŝ(m)(i) = [ŝ(m)(i + δ −
1) · · · ŝ(m)(i + δ − Nb)]T, which is the input to the feedback
filter, contains soft decisions of the corresponding transmitted
symbols. For m > 1, these values are computed by the MAP
decoder at iteration m − 1. For m = 1, each ŝ(1)(i) is com-
puted directly from the corresponding DFE output z(1)(i), and
used to cancel ISI associated with successive symbols.

For m = 1, the DFE is a causal filter and the first δ elements
of b(1) are set to zero. The delay δ is selected so that the channel
impulse response falls within the span of the feedforward filter.
The DFE outputs {z(1)(i)}, are buffered and used to com-
pute the a priori probabilities {P (z(1)(i)|dj(s(i)) = ±1), j =
1, . . . , log2 M}, where {dj(s(i)), j = 1, . . . , log2 M} is the



SUN et al.: ADAPTIVE TURBO REDUCED-RANK EQUALIZATION FOR MIMO CHANNELS 2791

sequence of log2 M bits corresponding to the MPSK sym-
bol s(i). These probabilities are deinterleaved and fed into
an MAP decoder that generates the a posteriori probabilities
P (dj(s(i)) = ±1|z), where z is the vector of DFE outputs
corresponding to the entire packet. This completes the first
iteration.

In subsequent iterations, the outputs of the MAP decoder
are reinterleaved, and used to compute soft symbol estimates.
The symbol estimates are fed into a noncausal DFE, or ISI
canceller [22], whose output at time i is again given by (3),
where for m ≥ 2 only the δth element in b(m) is set to zero. As
suggested by the notation in (3), the filters are updated in every
iteration, but remain constant for the duration of a packet. In the
final iteration, the MAP decoder outputs hard decisions for the
information sequence.

C. Computations of Filters

In the first iteration, we wish to select filters that minimize
the mean-squared-error (MSE) cost function given by

EMSE = E

[∣∣∣∣s − (
f (1)

)†
y +

(
b(1)

)†
ŝ
∣∣∣∣
2
]

(4)

where the dependence on i is not shown for convenience.
Assuming that the DFE has perfect feedback, i.e., ŝ = s (also,
Nb = Nf + L − 1), the optimum causal filters are [23]

f (1) =
(
H1:δH

†
1:δ + σ2I

)−1

hδ

b(1) = [0Nf×δ Hδ+1:Nf+L−1]
† f (1) (5)

where hk is the kth column of H and Hj:k represents the matrix
comprised of the jth to kth columns of H, and 0Nf×δ denotes
an Nf × δ matrix of zeros.

Note that the MMSE DFE shown here is a time-invariant
filter, which depends only on the channel. In contrast, a time-
varying MMSE filter, which depends on the MAP outputs, is
proposed in [8]. In that case, the MMSE filters must be updated
every symbol, as opposed to once per channel realization for the
time-invariant DFE. Because of the high complexity associated
with the time-varying filter, in what follows, we will use the
time-invariant MMSE DFE as a benchmark for comparison
with adaptive estimation schemes.

Using the midamble as a training sequence, an LS estimate
of the channel vector h is given by

ĥ = arg min
h

i0+T0∑
i=i0+L−1

‖y(i) − HsT (i)‖2 (6)

where i0 is the index for the first training symbol in the packet,
and sT (i) denotes the ith training symbol. For the first iteration,
the adaptive DFE is computed from (5) with the estimated
channel.

For iterations m ≥ 2, the causal DFE is replaced with a
noncausal DFE, which cancels both pre- and postcursor ISI. In
this paper, we consider the following three adaptive methods
for recomputing the filters at each iteration.

1) Channel-Estimated Adaptation: In this approach, the
channel is reestimated at each iteration using the soft symbol
estimates from the previous iteration as additional training. This
type of data-directed channel estimation has been considered
in [24] and [25]. The updated channel estimate is then used to
recompute the minimum MSE (MMSE) filters. For the causal
DFE, these filters are given by (5), whereas for the noncausal
two-sided DFE, the MMSE filters are given by [22]

f (m) =
1∥∥∥h(m)

δ

∥∥∥2

+ σ2

h(m)
δ

b(m) = [H1:δ−1 0Nf×1 Hδ+1:Nf+L−1]
† f (m) (7)

again assuming perfect feedback. The channel-estimated DFE
filter coefficients are computed from (7) with h(m)

δ replaced

by the corresponding channel estimate ĥ(m)
δ . If δ = L, then

the feedforward filter is simply a scaled matched filter and the
feedback filter cancels both pre- and postcursor ISI.
2) LS Direct Adaptation: Instead of first estimating the

channel taps and then computing the filters according to (7),
we can use the soft symbol estimates to compute the filter
coefficients directly. Our objective is to minimize the LS cost
function

ELS =
T∑

i=1

∣∣∣∣ŝ(m)(i) −
(
f (m)

)†
y(i) +

(
b(m)

)†
ŝ(m)(i)

∣∣∣∣
2

(8)

where T = T0 + TS , is the total length of the packet. The
noncausal DFE can be expressed in terms of the concatenated
feedforward and feedback filters

[
f (m)

b̌(m)

]
and input vector x(i) =[ y(i)

š(m)(i)

]
, where š(m)(i) is the vector ŝ(m)(i) with the δth

element deleted, and b̌(m) contains the corresponding elements
of the feedback filter b(m). Using this notation, the filters that
minimize the LS cost function can be written as [23][

f (m)

b̌(m)

]
=R−1

xxRsx

Rxx =
T∑

i=1

x(i)x†(i)

Rsx =
T∑

i=1

x(i)
(
ŝ(m)(i)

)∗
. (9)

The principal advantage of this approach over the preceding
approach, based on channel estimation, is that it does not rely
on the perfect feedback assumption.
3) Least-Mean-Square (LMS) Adaptation: For the sake of

comparison, we also consider the stochastic gradient, or LMS
adaptation of filter coefficients proposed in [12]. In this case,
the filter coefficients are updated as

f (m)(i + 1) = f (m)(i) − αy∗(i)
[
ŝ(m−1)(i) − z̃(i)

]
b̌(m)(i + 1) = b̌(m)(i) + α

(
š(m−1)(i)

)∗ [
ŝ(m−1)(i) − z̃(i)

]
z̃(i) =

(
f (m)(i)

)†
y(i) −

(
b̌(m)(i)

)†
š(m−1)(i) (10)
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Fig. 2. BER versus Eb/N0 (dB) for adaptive and channel-estimated turbo DFEs.

for i = 0, . . . , T − 1, where α is an appropriate step size,
and the filters are initialized as the corresponding filters from
the last iteration, i.e., f (m)(0) = f (m−1)(T ) and b̌(m)(0) =
b̌(m−1)(T ). Note that once the LMS algorithm runs through
the entire packet, the final DFE outputs for the mth iteration are
generated using f (m)(T ) and b̌(m)(T ) in (3).

D. Computation of Priors and Feedback Symbols

The DFE outputs {z(i)} are buffered and used to compute
the a priori probabilities, which are the inputs to the MAP
decoder (to simplify the notation, the iteration index is omitted
in this section). To do this, the filter outputs are modeled as
Gaussian random variables with mean and variance given by

µ =
1
T

T∑
i=1

|ŝ∗(i)z(i)|

σ2 =
1
T

T∑
i=1

|ŝ∗(i)z(i) − µ|2 . (11)

The priors can then be expressed as

P (z(i)|dj (s(i)) = ±1) = K
∑

s∈Ω±
j

e−
|z(i)−µs|2

σ2 (12)

where K is a scaling factor that normalizes the probability
density, and Ω±

j is the set of symbols in the signal constellation
for which the jth bit is ±1.

The MAP decoder outputs the sequence of a posteriori prob-
abilities {P (dj(s(i)) = ±1|z)}. These are used to compute the
sequence of soft symbol estimates {ŝ(i)}. The a posteriori

probability distribution of an MPSK signal constellation at time
instant i is given by

P
(
s(i) = ej 2�π

M |z
)

=
log2 M∏

j=1

P
(
dj (s(i)) = dj

(
ej 2�π

M

)
|z

)
(13)

where � = 0, . . . , log2 M − 1.The soft symbol estimate at time
i is then

ŝ(i) = E [s(i)|z] =
log2 M−1∑

�=0

P
(
s(i) = ej 2�π

M |z
)

ej 2�π
M . (14)

E. Numerical Results

Fig. 2 shows plots of bit error rate (BER) versus Eb/N0,
where Eb is the energy per information bit and N0 = 2σ2,
for different turbo equalizers. In addition to the three adap-
tive schemes previously described, the figure also shows the
matched filter bound, corresponding to the filter in (7) with
perfect feedback (i.e., perfect ISI cancellation). The perfor-
mance of the turbo equalizer based on channel estimation with
perfect channel knowledge (computed from (5) and (7) using
the actual channel h) and soft feedback is also presented for
comparison.

The simulation model is similar to the one described in [12].
The information bits are encoded with a rate-1/2 constraint-
length-5 convolutional code with generator polynomials
[23, 35] (octal). The coded bits are randomly interleaved and
modulated using a Gray-encoded QPSK constellation before
being transmitted over the static Proakis B channel, specified in
[12], with channel taps h = [0.407 0.815 0.407]T. The DFE
feedforward and feedback filters have lengths Nf = 12 and
Nb = 15, respectively. The turbo equalizer iterates ten times,
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Fig. 3. BER as a function of packet length.

and the LMS-algorithm step size is α = 0.0005. The results are
averaged over packets containing 2000 coded QPSK symbols,
and a midamble of 200 binary training symbols.

Fig. 2 shows that the BER for each of the three adaptation
schemes converges to the matched filter bound, with the LS
adaptive turbo equalizer converging at the lowest SNR. In fact,
LS direct adaptation outperforms the nonadaptive turbo equal-
izer with perfect channel knowledge. This is because the adap-
tive technique does not assume perfect feedback to compute the
DFE filters. As expected, the channel-estimated turbo equalizer
performs somewhat worse than the turbo equalizer with perfect
channel knowledge. Finally, the LMS adaptive turbo equalizer
does not rely on the perfect feedback assumption, but because
of its relatively slow convergence, does not perform as well as
the LS turbo DFE. Still, because of the large packet size (2000
symbols), LMS adaptation also provides better performance
than the channel-estimated turbo DFE.

Fig. 3 shows BER versus packet length at an SNR of
4 dB. The length of the packet is increased while keeping
the length of the midamble fixed at T0 = 200 symbols. As
the packet length increases, the LS adaptive turbo equalizer
converges much faster to the matched filter bound than the
LMS and channel-estimated turbo DFEs. It also significantly
outperforms the nonadaptive turbo DFE with perfect channel
knowledge. The performance improvement of the nonadaptive
DFE with packet length reflects the gain associated with longer
interleaving depths. With short packets, the adaptive LS and
channel-estimated turbo equalizers perform about the same as
the turbo equalizer with perfect channel knowledge. This is
because the 200-symbol-long midamble provides an accurate
initialization of the equalizer filters in the first iteration, and
the short packets inhibit an adaptive algorithm from providing
further improvements during subsequent iterations. With LMS
adaptation, we observe a significant degradation in performance

as the packet size decreases. This degradation can be mitigated
to some extent by reducing the step size α.

F. Reduced-Rank Turbo DFE

A property of the LS estimation algorithms previously pre-
sented is that both the complexity and the amount of training
required for acceptable performance increase with the filter
length. This may present a problem with highly dispersive
channels. One method for reducing the amount of training
overhead is reduced-rank estimation of the feedforward and
feedback filters [26, Sec. 8.4]. Here we focus on the class of
adaptive reduced-rank algorithms introduced in [19], which are
motivated by the MSWF [18]. These algorithms can provide a
significant reduction in training when used with adaptive linear
filters [19].

A reduced-rank filter projects the received signal onto a
lower dimensional subspace. Both the filtering and the filter
estimation take place within this subspace. Let SD be an Nf ×
D matrix with column vectors that are a set of basis vectors
for a D-dimensional subspace, where D < Nf . The projected
received vector corresponding to symbol i is then given by

ỹ(i) = S†
Dy(i).

The sequence of projected received vectors {ỹ(i)} is the input
to the linear filter c̃ (D × 1 vector), which has output

z(i) = c̃†ỹ(i).

The vector c̃(i), which minimizes the LS cost function∑
i |s(i) − c̃†(i)ỹ(i)|2, is

c̃ =
(
S†

DRyySD

)−1 (
S†

DRsy

)
(15)
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where

Ryy =
∑

i

y(i)y†(i) (16)

Rsy =
∑

i

ŝ∗(i)y(i). (17)

Here we focus on the reduced-rank algorithm presented in [19],
for which

SD =
[
Rsy RyyRsy R2

yyRsy · · · RD−1
yy Rsy

]
. (18)

To apply reduced-rank filtering to the DFE, we first observe
that the feedforward filter can be represented as the concate-
nation of a linear LS filter with an error-estimation filter [23].
The latter filter is then the feedback filter. A reduced-rank DFE
uses reduced-rank approximations for both of these filters (see
also [11] and [20], which present reduced-rank DFEs in other
related applications).

In the first iteration, we compute the full-rank linear filter as

c = R−1
yyRsy (19)

where in (16) and (17), the sums are over the training midamble
ŝ(i) = s(i) and the reduced-rank approximation of the linear
filter is

c = SDc̃ = SD

(
S†

DRyySD

)−1 (
S†

DRsy

)
(20)

where c̃ is given in (15). In subsequent iterations, the linear
filters still have these forms, but Ryy and Rsy are computed
over the whole packet.

The output error using the soft symbol estimate is

e(m)(i) = ŝ(m)(i) −
(
c(m)

)†
y(i). (21)

Let e(m)(i) = [e(m)(i + δ − 1) · · · e(m)(i + δ − Nb)]T. The
error-estimation filter forms an LS estimate of e(m)(i) given the
other elements in e(m)(i). That is, we select b(m) to minimize∑

i |e(m)(i) − (b(m))†e(m)(i)|2, where the sum is over the
training midamble in the first iteration, and over the whole
packet in subsequent iterations. Also, the first δ components
of b(1) are constrained to be zero, and the δth component of
b(m) is constrained to be zero for m ≥ 2. Let ě(m) contain
the unconstrained components of e(m), i.e., (22), shown at the
bottom of the page. The full-rank error-estimation (feedback)
filter is

b̌(m) = Ř−1
e ře (23)

where

Ře =
∑

i

ě(m)(i)
(
ě(m)(i)

)†
(24)

and

ře =
∑

i

(
e(m)(i)

)∗
ě(m)(i). (25)

The feedforward filter is obtained by convolving the elements
of c(m) with b̄(m), where b̄(m) is the feedback filter b(m) with
the δth component set to 1.

Given this representation for the feedback filter, a reduced-
rank approximation is given by

b̌(m) = Se

(
S†

eŘeSe

)−1
S†

eře (26)

where

Se =
[
ře Řeře Ř2

eře · · · ŘDb−1
e ře

]
(27)

and Db is the associated rank. The feedforward filter f (m) is
the convolution of the reduced-rank approximation of the linear
filter in (20) with the reduced-rank feedback filter in (26).

The ranks D and Db for the first (linear LS) and second (error
estimation) filters, respectively, can be chosen independently. In
what follows, D and Db are chosen to minimize the decision-
error metric MD,Db =

∑T
i=1 |ẑ

(m)
D,Db

(i) − z
(m)
D,Db

(i)|2, where
z
(m)
D,Db

(i) is the reduced-rank DFE output for iteration m at
time i, and ẑ

(m)
D,Db

(i) is the corresponding hard decision on the
transmitted symbol, i.e., the closest symbol in the constellation
(other rank-selection criteria are discussed in [19] and [27]). We
therefore have to reestimate the equalizer and compute the filter
outputs (but not decode) for each choice of rank(s). Since the
ranks that achieve close to full-rank performance are bounded
by (small) constants [19], independent of the filter length,
the computational complexity of the reduced-rank equalizer
with rank estimation still increases linearly with packet size.
To reduce complexity, D and Db are optimized sequentially.
Namely, D is first selected to minimize the decision-error
metric at the output of the linear filter, followed by optimization
of the feedback filter rank Db. Numerical experiments show
that this (suboptimal) adaptive rank-selection method performs
nearly as well as jointly optimal rank selection.

Fig. 4 shows block error rate (BLER) versus number of
training symbols for adaptive full- and reduced-rank DFEs. For
this plot, the feedforward filter has 24 taps, the feedback filter
has 16 taps, Eb/N0 = 18 dB, and the dispersive channel has 13
independent complex Gaussian taps with power-delay profile
[−6,−3, 0,−3,−6,−10, . . . ,−10] dB. The channel is constant
within a burst, but is independent from burst to burst. Each

ě(m) =

{ [
e(m)(i − 1) · · · e(m)(i + δ − Nb)

]T
, m = 1[

e(m)(i + δ − 1) · · · e(m)(i + 1) e(m)(i − 1) · · · e(m)(i + δ − Nb)
]T

, m > 1
(22)
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Fig. 4. BLER versus training symbols for adaptive full-rank and reduced-rank DFEs.

Fig. 5. Histogram of optimized ranks for DFE filters corresponding to the parameters used in Fig. 4 with 26 training symbols.

packet, or block, contains 464 Gray-encoded 8-PSK symbols.
In the numerical examples that follow, the turbo DFE iterates
20 times. The reduced-rank results assume a reduced-rank
channel estimate for the first iteration. These results show that
the reduced-rank algorithms offer a significant performance
gain relative to the full-rank algorithms for the parameters
selected. In general, for a fixed training length, this gain in-
creases with the size of the filters. For short filter lengths, e.g.,
Nf < 10 and Nb < 10, reduced-rank estimation does not offer
a significant performance advantage. With fixed filter lengths,

the performance gain decreases as the training length increases,
since both the reduced-rank (with optimal rank) and full-rank
estimates converge to the MMSE estimate.

Fig. 5 shows a normalized histogram of the optimal ranks
for the feedforward and feedback filters at the 20th iteration
corresponding to the parameters used to generate Fig. 4 with
26 training symbols. The optimal ranks are typically quite
small in comparison with the filter lengths. Depending on the
packet length, estimation of a low-rank filter may require much
less computation than estimating the corresponding full-rank
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Fig. 6. Block diagram of the transmitters (top diagram) and turbo DFE (bottom diagram) for a multiuser MIMO channel.

filter. The optimal ranks are observed to change from itera-
tion to iteration, and generally increase with the number of
iterations.

III. MIMO CHANNELS

A. Multiuser Multiantenna System

In this section, we consider turbo equalization for MIMO
generalizations of the previous single-antenna model. We start
with the multiuser multireceive antenna model, shown in Fig. 6,
in which K cochannel users each transmit with a single transmit
antenna to a receiver with N antennas. The information bits
for each user are coded and modulated as described previously,
although the coding and modulation schemes can differ across
users. Here we assume that the interfering users are in different
cells, hence only the desired user’s symbols are estimated and
fed back for ISI cancellation.

The channel between user k and antenna n is represented by
the vector hnk = [h(n,k)

0 · · · h
(n,k)
L−1 ]T where L is the maximum

impulse-response length across users and antennas. Letting
yn(i), 1 ≤ n ≤ N , denote the vector of received samples at
time i on antenna n, the stacked vector y(i) = [yT

1 · · · yT
N ]T

again satisfies (1), where sT(i) = [sT
1 · · · sT

N ], sk being the
vector of transmitted symbols from user k, and n is the asso-
ciated (Nf · N) × 1 noise vector with an identity covariance
matrix. The channel matrix is

H =


 H11 · · · H1K

...
HN1 · · · HNK


 (28)

where Hnk is the Nf × (Nf + L − 1) Toeplitz channel matrix
formed from hnk, as in (2).

Suppose user 1 is the desired user. The output of the DFE is
given by

z
(m)
1 (i) =

(
f (m)
1

)†
y(i) −

(
b(m)

1

)†
ŝ(m)
1 (i) (29)

where ŝ(m)
1 (i) = [ŝ(m)

1 (i + δ − 1) · · · ŝ
(m)
1 (i + δ − Nb)]T is

the Nb × 1 vector of soft symbol estimates for user 1. In
contrast to the single-user single-antenna model, here the feed-
forward and feedback filters are directly computed from the soft
estimates according to an LS cost function in both the initial and
subsequent iterations. This is because the MMSE solution for
the filters depends not only on the desired user’s channel, but
also on the interferers’ channels, which are difficult to estimate
in the absence of training information from the cochannel users.
Also, the total number of channel parameters in this case may
be more than the number of filter coefficients.

In the first iteration, the DFE must be a causal filter, hence
the first δ elements of ŝ1(i) cannot contribute to z

(1)
1 (i), and the

first δ elements of b(1)
1 are set to zero. In succeeding iterations,

estimates of precursor symbols are available, and only the δth
element of b(m) is constrained to be zero. To compute the
DFE filters, we therefore define (30), shown at the bottom of
the page. The full-rank LS filters are then given by (9), where
xT(i) = [yT(i) (š(m)

1 (i))T], and the sum in (9) is over the
training midamble in the first iteration, and over the whole
packet in subsequent iterations.

Reduced-rank estimates of the feedforward and feedback
filters are again obtained by first computing c1 from (20),
where the symbol estimate ŝ(m) is replaced by ŝ(m)

1 . The corre-

sponding error e(m)
1 (i) = ŝ(m)

1 (i) − (c(m)
1 )†y(i) is used in (26)

to compute the error-estimation filter b(m) [to make the di-
mensions of the feedback filter and corresponding input vector

š(m)
1 (i) =




[
ŝ
(m)
1 (i − 1) · · · ŝ

(m)
1 (i + δ − Nb)

]T

, m = 1[
ŝ
(m)
1 (i + δ − 1) · · · ŝ

(m)
1 (i + 1) ŝ

(m)
1 (i − 1) · · · ŝ

(m)
1 (i + δ − Nb)

]T

, m > 1
(30)
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Fig. 7. BLER versus Eb/N0 for full- and reduced-rank space–time turbo DFEs. There are two cochannel users and multiple receiver antennas.

Fig. 8. Block diagram of transmitter and turbo DFE for a single-user multiantenna channel. S/P refers to the conversion of a serial symbol stream to parallel
symbol streams across transmit antennas.

consistent, we must again define an error vector ě(m)
1 (i), which

is analogous to š(m)
1 in (30)].

Fig. 7 shows BLER versus Eb/N0 for a system with two
equal-power cochannel users, each with one transmit antenna,
and multiple receiver antennas. Each channel has L = 5 equal-
power taps. The block-fading channel coefficients are complex
Gaussian, and are independent across taps and users. The packet
format corresponds to an EDGE system. A midamble of train-
ing symbols and three tail symbols on each side are inserted into
the 8-PSK modulated symbols to form a packet. Namely, the
block length (interleaving depth) is 1392 bits, which spans four
bursts with 116 symbols each. A training sequence of 26 bits
is added to each burst. The feedforward and feedback filters for
each antenna have six taps each. Curves corresponding to both
adaptive full- and reduced-rank turbo DFEs are shown. The
results are averaged over channel realizations. For comparison,
we also show the MMSE bound, which corresponds to perfect
ISI cancellation for the desired user (since only symbols from
the desired user are fed back), and a linear MMSE filter to
suppress CCI.

The results show that with three receive antennas, the
reduced-rank turbo DFE offers a marginal performance gain
relative to the full-rank DFE. With four antennas, the per-
formance gain is quite large. The performance of the full-
rank DFE with four antennas is worse than that with three
antennas. This can be explained by observing that in going
from three to four antennas, the number of feedforward filter
coefficients increases from 18 to 24. Since there are only 26
training bits, the estimation problem for the full-rank DFE
becomes ill-conditioned with four antennas. The performance
of the reduced-rank DFE does not degrade from the increase
in the number of filter coefficients associated with additional
receiver antennas, hence the reduced-rank algorithm can still
exploit available diversity.

B. Single-User MIMO System

Consider now a single-user MIMO system with K transmit
antennas. As shown in Fig. 8, we assume that the block of in-
formation bits is convolutionally coded, interleaved, modulated,
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Fig. 9. BLER versus Eb/N0 for full- and reduced-rank turbo MIMO DFEs. There are two transmitters, and curves are shown for both two and three receive
antennas.

and then split into equal-length subblocks, which are assigned
to each of the transmit antennas. The midamble of training
symbols and tail symbols are inserted into subblocks separately
to form one packet for each antenna. The transmit antennas are
analogous to the K cochannel users in the preceding section. In
contrast with the preceding situation, the receiver now attempts
to demodulate all K transmitted bit streams, so that the MIMO
feedback filter in the DFE attempts to cancel the corresponding
CCI, in addition to the ISI. The system model in (1) still applies;
however, we must compute feedforward and feedback filters for
each transmit antenna. The K DFE outputs must be buffered
and merged to reconstruct the original transmitted block. This
single symbol stream is then deinterleaved and decoded to
obtain the original packet.

Let f (m)
k and b(m)

k denote the feedforward and feedback fil-
ters corresponding to transmit antenna k at iteration m. For the
first iteration, only the soft estimates ŝ(1)

k are fed back through
b(1)

k to cancel postcursor ISI. That is, the DFE does not attempt
to cancel CCI in the first iteration, since the symbol estimates
from other antennas are error prone, and would cause sub-
stantial error propagation. In subsequent iterations, the vector
ŝ(m)(i) = [ŝ(m)

1 (i), . . . , ŝ(m)
K (i)] is fed back, which contains all

estimates of symbols in s(i) that interfere with sk(i). That
is, the feedback filter attempts to cancel pre- and postcursor
ISI and all CCI. Each feedback filter has KNb coefficients.
Hence, for m = 1, z

(1)
k (i) is given by (29), and for m > 1,

z
(m)
k (i) = (f (m)

k )†y(i) − (b(m)
k )†ŝ(m)(i).

We can again estimate a reduced-rank DFE for each trans-
mitter antenna k = 1, . . . , K. The output error corresponding
to transmitter k is

e(m)
k (i) = ŝ(m)

k (i) −
(
c(m)

k

)†
y(i) (31)

where ck is the linear equalizer for transmitter k, computed
according to (20). For the first iteration, the error-estimation
filter for each k is computed exactly the same way as described
in Section III-A. In subsequent iterations, we compute an LS
estimate of the error e(m)

k (i) given all available output errors
corresponding to all transmit antennas. That is, we define

e(m)(i) =
[(

e(m)
1 (i)

)T

· · ·
(
e(m)

K (i)
)T

]T

and

ě(m)
k,K(i) =

[(
e(m)
1 (i)

)T

· · ·
(
ě(m)

k (i)
)T

· · ·
(
e(m)

K (i)
)T

]T

where ě(m)
k (i) is defined in the preceding section for m ≥ 2

and k = 1, . . . , K. The error-estimation filter b̌(m)
k estimates

e(m)
k (i) from ě(m)

k,K(i). Both full- and reduced-rank error-
estimation filters can be computed, as previously described.
For the numerical results, which follow, the ranks associated
with different receive filters, corresponding to different transmit
antennas, are chosen to optimize performance, and generally
vary across receivers.

Fig. 9 presents BLER versus Eb/N0 for a single-user MIMO
channel with two transmit antennas. Results are shown for
two and three receive antennas. Each channel, corresponding
to a transmit–receive antenna pair, contains L = 5 complex
Gaussian taps with power-delay profile [−2,−1, 0,−1,−2] dB.
The transmitted packets again follow the EDGE format
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Fig. 10. BLER versus training for full- and reduced-rank turbo MIMO DFEs. There are two transmit and three receive antennas.

previously described. Each feedforward and feedback filter has
seven taps. The matched filter bound in this case corresponds
to perfect MIMO channel knowledge and perfect feedback
for all transmit antennas. With two receive antennas, the full-
and reduced-rank DFEs give similar performance, whereas
with three receiver antennas, the reduced-rank DFE offers a
substantial performance gain. In both cases, the performance
improves as the number of receive antennas (Rx) is increased
from two to three. Fig. 10 shows BLER versus training interval
for the MIMO system with three receive antennas. Results are
shown for Eb/N0 = 6 and 6.5 dB. The transmitted packet still
corresponds to an EDGE system, except that we vary the length
of the midamble. For the cases shown, the reduced-rank DFE
requires significantly less training than the full-rank DFE.

IV. CONCLUSION

An adaptive turbo DFE has been presented in which the
filter coefficients are computed directly from the input samples
and the soft decisions at the output of the MAP decoder. The
filters are selected to minimize a LS cost function. Numerical
results show that this method gives a substantial performance
improvement relative to both a turbo DFE computed from
an exact channel estimate assuming perfect feedback, and an
adaptive turbo DFE, which uses the LMS algorithm [12].
Reduced-rank estimates of the DFE filters have also been
presented, which require less training overhead, relative to full-
rank estimates.

The adaptive turbo DFE was extended to MIMO channels.
Two situations were considered: 1) the feedback filter only
attempts to cancel ISI for each symbol stream and 2) the
feedback filter attempts to cancel all ISI and CCI. Reduced-
rank estimation algorithms were also presented in this context.
As the number of antennas increases with limited training, the

performance becomes limited by estimation error. In that case,
the reduced-rank DFE can perform substantially better than the
full-rank DFE. Of course, this performance gap diminishes as
the training interval increases. We therefore conclude that with
limited training, the reduced-rank DFE can more effectively
exploit available diversity.
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