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Abstract—The performance of adaptive least squares (LS) fil-
tering is analyzed for the suppression of multiple-access interfer-
ence. Both full-rank LS filters and reduced-rank LS filters, which
reside in a lower dimensional Krylov space, are considered with
training, and without training but with known signature for the de-
sired user. We compute the large system limit of output signal-to-in-
terference-plus-noise ratio (SINR) as a function of normalized ob-
servations, load, and noise level. Specifically, the number of users

, the degrees of freedom , and the number of training sym-
bols or observations all tend to infinity with fixed ratios
and . Our results account for an arbitrary power distribution
over the users, data windowing (e.g., recursive LS (RLS) with ex-
ponential windowing), and initial diagonal loading of the covari-
ance matrix to prevent ill-conditioning. Numerical results show
that the large system analysis accurately predicts the simulated
convergence performance of the algorithms considered with mod-
erate degrees of freedom (typically = 32). Given a fixed, short
training length, the relative performance of full- and reduced-rank
filters depends on the selected rank and diagonal loading. With an
optimized diagonal loading factor, the performance of full- and re-
duced-rank filters are similar. However, full-rank performance is
generally much more sensitive to the choice of diagonal loading
factor than reduced-rank performance.

Index Terms—Adaptive filter, large system analysis, least
squares (LS), reduced-rank filters.

I. INTRODUCTION

ADAPTIVE least squares (LS) filtering is a standard tech-
nique, which has been widely studied and applied to many

communications applications, such as equalization and inter-
ference suppression, echo cancellation, and array processing
[1]–[3]. Typically, the performance of the adaptive LS filter is
described in terms of an output fidelity measure, such as mean-
squared error (MSE) or signal-to-interference-plus-noise Ratio
(SINR), which depends on the amount of training, or observed
data. Related reduced-rank filtering techniques (adaptive and
nonadaptive) have been presented in [4]–[12]. A reduced-rank
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LS filter resides in a lower dimensional subspace, and can po-
tentially perform better than a conventional (full-rank) LS filter
with short training lengths [5], [11]–[14]. In addition, for some
applications, the reduced-rank filter may be less complex than
the analogous full-rank filter.

In this paper, we analyze the performance of adaptive
full- and reduced-rank LS filtering when used to suppress
multiple-access interference. Relevant applications are code-di-
vision multiple access (CDMA) with short signatures, and
communications through multiple-input/multiple-output
(MIMO) channels. Our analytical approach differs from prior
work [1], [15]–[17] on the convergence of adaptive algorithms
in that we focus on large system performance with randomly
assigned signatures. Namely, we evaluate the output SINR of
the adaptive filter as the number of users (or transmit antennas)

, the degrees of freedom (e.g., processing gain or number
of receive antennas), and the number of training symbols or
observations all tend to infinity with fixed ratios
and . In this case, is the normalized system load and

is the number of training symbols or observations normalized
by the degrees of freedom. This approach is motivated by re-
cent large system performance analyses of the linear minimum
mean-square error (MMSE) receiver for CDMA with random
spreading [18], [19]. Related work, which also has taken this
approach, is presented in [20].

Our analytical results are used to compare the performance of
full- and reduced-rank LS filters. The reduced-rank filters reside
in a lower dimensional Krylov subspace, and have been pro-
posed and studied in [8], [10]–[14], [19], [21]–[24]. (See also
[25]–[29], which consider closely related filters.) This choice is
motivated by the multistage Wiener filter (MSWF) implemen-
tation presented in [8], and the subsequent analysis in [19]. The
MSWF is relatively simple compared with other reduced-rank
filters, which require an eigendecomposition of the sample co-
variance matrix [4], [6], [9], [20]. Furthermore, it is shown in
[19], [22] that the MSWF can achieve essentially full-rank per-
formance with much lower rank than the other reduced-rank fil-
ters. For the MSWF, this rank does not scale with system size

and , unlike the reduced-rank filters based on eigendecom-
position. Adaptive filters based on the MSWF are presented in
[12] along with simulation results, which show that the adaptive
MSWF converges significantly faster than a full-rank LS filter.

The large system SINR is evaluated for full- and reduced-rank
LS filters with a training sequence, and without a training
sequence, but with known signature for the desired symbol
sequence (i.e., corresponding to a CDMA user). Our results
account for an arbitrary power distribution over the users,
arbitrary data windowing, and initial diagonal loading of the
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sample covariance matrix. Data windowing allows past data
to be discounted, the standard example being recursive LS
(RLS) filtering with exponential windowing. Diagonal loading
of the sample covariance matrix refers to initializing the sample
covariance matrix as a small positive constant times the identity
matrix, and is needed to prevent ill-conditioning with RLS
filtering.

As , the output SINR of the (conventional) full-rank
LS adaptive filter converges to the large system SINR for the
MMSE filter. In contrast, for RLS adaptation with exponential
weighting, as the normalized training length , the output
SINR does not generally converge to the SINR for the MMSE
filter. This is because exponential weighting effectively creates
a finite-length data window, which prevents the adaptive filter
from converging to the corresponding MMSE filter.

Large system convergence analysis requires evaluation of
the moments of the corresponding sample covariance matrix.
Without data windowing, the moments can be evaluated from
expressions given in [30], [31]. We show that evaluation of
the moments with data windowing is equivalent to solving a
combinatorial (coloring) problem, which reduces to a simpler
coloring problem without data windowing. These problems
have closed-form solutions. An independent derivation of the
large system moments considered here, which uses the theory
of noncrossing partitions, is given in [23]. (See also [24], [32].)
In that work, the moments are used to evaluate the large system
performance of complex linear MMSE full- and reduced-rank
filters with multiple antennas.

Numerical results are presented, which show that the large
system analysis accurately predicts the performance of simu-
lated finite systems (i.e., for nearly all cases considered).
A reduced-rank LS filter with appropriate rank typically re-
quires significantly less training than the analogous full-rank
LS filter, which is consistent with the results in [12]. We
show, however, that given a specific training length , diag-
onal loading can significantly improve the performance of the
full-rank LS filter. In contrast, the reduced-rank filter is less
sensitive to both diagonal loading and exponential windowing.
(Related results, based on simulation, are presented in [11].)
Also, when is sufficiently large, a low-rank filter requires less
computation than the full-rank filter. We also present numerical
results, which illustrate the effect of exponential windowing
on the convergence of full-rank RLS filters. Additional large
system numerical results, which also take into account the
combination of partial despreading [33] with the reduced-rank
filters considered here, are presented in [34] and [35].

We start with an analysis of full-rank LS filters. The model
and filters are specified in the next section, and in Section III,
we present our results on large system transient behavior (i.e.,
output SINR as a function of normalized training, or observa-
tions). The analytical approach, which is used to evaluate the
large system moments of the sample covariance matrix, is de-
scribed in Section IV. Expressions for the (negative) moments
needed to evaluate the full-rank large system SINR are given in
Section V. We then present large system transient results for re-
duced-rank LS filters in Section VI. A method for computing the
positive moments needed to evaluate the reduced-rank SINR,
and full-rank SINR with data windowing, is presented in Sec-

tion VII. Numerical results are given in Section VIII. Proofs and
derivations are presented in the Appendices.

II. LINEAR LEAST SQUARES FILTERS

To simplify the analysis, we assume the idealized complex
baseband model

(1)

where is the matrix of random sig-
natures with independent and identically distributed (i.i.d.) ele-
ments, is the signature for user is the diagonal matrix
of amplitudes, is the vector containing symbols at time

(e.g., across users or antennas), and is the noise vector,
which has covariance matrix . We assume that the symbol
variance for all and , where is the

th symbol corresponding to the th symbol stream (i.e., user
or transmit antenna).

Throughout this paper, we will assume that the elements of
signature matrix are Gaussian, although numerical results
indicate that our analysis is applicable to more general distri-
butions (e.g., binary). We denote as the diagonal
matrix of received powers, which are chosen from a distri-
bution with finite moments. We also assume that ,
and are independent.

In this section and the next, we consider only full-rank filters.
Results for reduced-rank filters are subsequently presented in
Section VI. In what follows, we assume that user 1 is the desired
user. The RLS filter at time , denoted as , minimizes the cost
function

(2)

where “ ” denotes complex conjugate transpose,
is part of a training sequence, and

is a data windowing sequence. For example, exponential
data windowing implies that . The LS solution
with diagonal loading is

(3)

where

(4)

(5)

and is the diagonal loading term, which can be used to
avoid ill-conditioning of the matrix for small . (Note that

in (2) is minimized when .) Similarly, given the
desired user’s signature , we define a “blind” LS filter as

(6)

In the presence of a time-varying channel, the recursions

(7)

(8)
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with can be used to track the time-varying steering vector
and covariance matrix. (This corresponds to (4) and (5) with
exponential weighting and .) In what follows, an LS
filter refers to (3)–(5) with for all , whereas an RLS
filter implies nonuniform data weighting (e.g., exponential with

). As , the LS filter converges almost surely
to the MMSE filter , where is the covariance matrix

(9)

We emphasize that this is not true for RLS filters.
Let

(10)

(11)

(12)

be the matrices of received vectors, noise vectors, and
matrix of transmitted symbols, respectively. We can write

(13)

(14)

(15)

where denotes the th column of the matrix , and
is a diagonal data windowing matrix. For the LS filter

without diagonal loading, and . With ex-
ponential weighting .

The output SINR for RLS and LS filters with training sym-
bols, conditioned on the signature matrix , can be evaluated as

(16)

where is the matrix of signatures for the in-
terferers (i.e., columns two through of ), is the diagonal
matrix of interference amplitudes, and is the received power
for user 1. The same expression applies to the blind RLS and LS
filters, where is replaced by .

We are interested in evaluating the average SINR as a function
of where the average is with respect to the symbols, noise, and
the random spreading sequences. This appears to be intractable;
however, we are able to evaluate the large system limit of
as . We find that this limit
accurately predicts the performance of finite systems.

III. LARGE SYSTEM SINR

In this section, we give expressions for the large system
output SINR for the LS and RLS filters presented in the pre-
ceding section. These expressions depend on the moments
of the sample covariance matrix. In analogy with prior large
system results for MMSE filters [18], the SINR converges to a

deterministic limit for fixed and . Computation of the large
system moments is discussed in subsequent sections.

We first define a large system data window length . To mo-
tivate this definition, observe that any finite window length
becomes negligible in the large system limit as . For
example, in the case of exponential weighting, if then
for any fixed as and the effec-
tive large system window length is zero. Therefore, we must let
the window length in proportion to . The effective
window length is therefore defined as

Defining the average window length with exponential win-
dowing as , the large system window length is
then

and for fixed , we have for a finite system

As with rate depending on the effective
window length.

In what follows, we will need the large system moments of
defined as

and assumed to be finite. For exponential windowing with fixed
, we have

(17)

We will also need the function

(18)

To assess the effect of the diagonal loading term in (14),
we normalize with respect to the training interval . That
is, if , then in the large system limit, in (14)
should decrease as . We therefore let

, where is a constant.
Let be the sample covariance matrix for the received in-

terference plus noise

(19)

where is the matrix of transmitted symbols
from interferers, and let

(20)
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We will often omit the dependence on and .

Theorem 1: If has i.i.d. Gaussian elements, then as
, with and

converges in probability to a deterministic limit for
.

An outline of the proof is given in the next section, and
the formal proof is given in Appendix I. Convergence of the
eigenvalue distribution of to a deterministic limit then
follows from the Moment Convergence Theorem (see [36]).
This, in turn, implies the convergence of and to the
corresponding limits, which appear in the expressions for large
system SINR.

The next theorem presents the large system SINR for the
most general model, which includes diagonal loading, a gen-
eral power distribution, and a general data window. Although
this expression is complicated, the corresponding expression
without diagonal loading and uniform data windowing is rela-
tively simple, and is presented as a corollary. Another corollary
presents the expression for large system SINR with data win-
dowing and infinite training. That can be used to compute the
degradation in steady-state SINR due to different windowing
schemes.

Theorem 21: As , with and
, the output SINR for the RLS filter with obser-

vations, given in (16), converges in probability to

(21)

where is the limit distribution of received powers across
users, denotes expectation over the power distribution

blind RLS

with training (22)

blind RLS
with training

(23)

and

(24)

(25)

1The authors thank M. Peacock for correcting a mistake, which appears in the
corresponding theorem in [37], and in our original submission.

and

(26)

The proof is given in Appendix II.
For the case where each user is received with the same power,

, (21)–(23) become

(27)

where and are defined by (22) and (23) with .
The corresponding result for an adaptive LS filter with uni-

form data windowing and diagonal loading is obtained by set-
ting and in Theorem 2. This is stated as the
following corollary where

(28)

is the th moment of the interference-plus-noise covariance ma-
trix , and

(29)

i.e., and have the same large system moments. Note that
is the large system output SINR for the MMSE receiver

[18].

Corollary 1: For the LS filter without diagonal loading, as
, the output SINR converges in probability to

blind LS (30)

with training. (31)

The proof is given in Section V. Corollary 1 is motivated by
a similar result for the blind LS filter presented in [20].2 Corol-
lary 1 implies the following properties for adaptive LS filters.

1) For both LS filters, as from above, . That
is, the large system output SINR is zero for .

2) If the output SINR for the MMSE filter is large,
then the SINR with training is approximately

2The analogous result in [20] is an approximation, which is valid for large �.
Specifically, the factor (1)=(�� 1) in (30) appears as (1=�) in [20]. Training-
based algorithms are not considered in [20].
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and the degradation due to estimation error is .
When , the output SINR for the LS filter
with training is approximately , i.e., 3 dB below the
SINR for the MMSE filter, which is consistent with the
classical result presented in [15].

3) If the SINR for the MMSE filter satisfies , then
the LS filter with training performs better than the blind
LS filter, and vice versa if .

4) As observed in [20], the blind LS filter is estimation
error limited. Namely, as , the output SINR
approaches . For example, when , the output
SINR is zero, independent of the power of the desired
user. In contrast, the LS filter with training is not estima-
tion error limited for . Namely, as , the
output SINR goes to infinity in proportion with .

Exponential weighting of the data effectively creates a fi-
nite-length window, so that as , the RLS filter does not
converge to the MMSE filter. The large system SINR with infi-
nite training is given as the following corollary to Theorem 2.

Corollary 2: As , the large system output SINR for
the RLS filters with exponential windowing converges in prob-
ability to

(32)

where

blind RLS

with training

blind RLS
with training

and

and

(33)

The proof is given in Appendix II-B. Corollary 2 shows that
with infinite training, the asymptotic output SINR depends on
both the normalized window length and the diagonal loading
constant .

Examining the preceding expressions, it becomes apparent
that computing the large system SINR requires the evaluation
of the asymptotic moments

for and

A method for computing these moments is described in the next
section.

IV. ANALYTICAL APPROACH

In this section, we illustrate our approach to computing the
large system moments, which appear in the SINR expressions
presented in the preceding section. Equivalently, we wish to de-
termine the large system eigenvalue distribution of the sample
covariance matrix . We first show how that distribution can
be derived in the absence of noise, and without data windowing
and diagonal loading. We then show how those features can be
included in the basic approach.

Ignoring the presence of noise, setting for all (no
data windowing) and (no diagonal loading), from (19)
we have that

(34)

where and are the matrices of eigenvectors
and eigenvalues associated with the covariance matrix

, and . It is easy to
show that and have
the same nonzero eigenvalues. The large system eigenvalue
distribution of the latter matrix as is given in [38].
Consequently, the distribution of diagonal elements of
converges to a deterministic distribution, which depends on the
distribution of powers.

It can be shown that for orthonormal and signa-
ture matrix with i.i.d. Gaussian elements, the elements
of are i.i.d. Gaussian. (Our numerical results suggest
that the elements of are Gaussian under more general
assumptions.) Consequently, we can compute the asymptotic
eigenvalue distribution of as by once
again applying the result in [38], where the received “power
distribution” is replaced by the asymptotic eigenvalue distri-
bution of . The fact that converges to
a deterministic limit as (Theorem 1) follows
from the fact that the moments of converge to a deter-
ministic limit, where is a matrix with i.i.d. random variables,
and is diagonal with diagonal elements having the limit
distribution , which has finite moments [18], [19].

The preceding approach can be extended to account for ad-
ditive noise. Let , where is an
random matrix with i.i.d. elements having the same distribution
as the elements of is an random matrix with i.i.d.
elements having the same distribution as the elements of , and
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. As , the elements of
converge to i.i.d. Gaussian random variables with zero mean and
variance . Hence we rewrite as

(35)

where

(36)

and and are independent. The same approach as that
described from (34) can now be applied to computing the mo-
ments of where replaces , and replaces

.
With data windowing and , we have

(37)

where

Once again, the preceding approach applies with the appro-
priate substitutions in (34). Specifically, with has

the form , where the elements of are i.i.d. and is a
diagonal matrix. The large system distribution of the diagonal
elements of is now the large system eigenvalue distribution
of .3 Since for matrices and , the moments of ,
and are the same, computing the large system moments
of is equivalent to computing the moments of where

has i.i.d. elements, and and are diagonal matrices.
To include diagonal loading in the analysis, let de-

note the sample covariance matrix as a function of diagonal
loading factor . The moments of can be written as

(38)

3In what follows, we will compute the large system positive moments of
R̂RR (i), i.e., ̂ ; n > 0. We note that the nth positive moment depends on
PPP only through the first n positive moments of PPP , or equivalently, 


.

That is, the moments with diagonal loading can be expressed as
a function of the moments without diagonal loading.

We conclude that with arbitrary data windowing and di-
agonal loading, evaluating reduces to evaluating
the th asymptotic moment of . With uniform data
windowing, the moments can be computed
directly using this approach. Those expressions are presented in
the next section. For the most general scenario with nonuniform
data windowing and a nonuniform power distribution, we show
in the next section how to compute and in terms of
positive moments . In Section VII, we present a
combinatorial method for computing the positive moments,
which are also needed to evaluate the SINR for reduced-rank
LS filters, to be discussed in Section VI. We remark that the
Stieltjes transform of the large system eigenvalue distribution of

is derived in [39]. This can also be used to compute
the large system moments, although the method presented in
Section VII requires much less computation.

V. COMPUTATION OF NEGATIVE MOMENTS

We now present expressions for the negative moments of the
sample covariance matrix, which are needed to compute the
large system SINR, given by (21) and (27). Here we assume that
these limits exist, and ignore associated convergence issues.4

Let denote the eigenvalues of the sample co-
variance matrix , and the set .
The corresponding empirical distribution function is defined as

. For the time being, we assume uniform data win-
dowing and no diagonal loading. In that case, the discussion in
the preceding section combined with the convergence results in
[38] implies that as , the empirical eigenvalue
distribution converges to a deterministic large system eigen-
value distribution .

Let the Stieltjes transform of be

(39)

for , i.e., must be complex with positive imaginary
part. The Stieltjes transform of the large system eigenvalue dis-
tribution for the covariance matrix in (9) satisfies [38]

(40)

where is the large system limit of the power distribu-
tion. In Appendix III, we show that the corresponding Stieltjes

4Also in what follows, we encounter expressions of the form X =
vvv RRR vvv for n = 1; 2; where vvv is a random vector (e.g., a signature) and RRR
is the interference-plus-noise covariance matrix for user k. (In some cases,
RRR is replaced by a sample covariance matrix.) We will implicitly assume
that the sequence fX g converges uniformly over k (almost surely) to the
corresponding limit so that

lim (1=N) X = lim 1=N ( lim X ):

This enables the computation of similar types of limiting sums.
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transform for the sample covariance matrix without exponential
weighting and diagonal loading is

(41)

The following relations are derived in Appendix III:

(42)

(43)

(44)

(45)

These relations follow from (40) and (41), although the deriva-
tions of (43)–(45) in Appendix III are more direct. In particular,
we give a simple, direct derivation of the Tse–Hanly formula
for the output MMSE (44), [18]. Combining (21) with (42)–(45)
gives Corollary 1.

For the case and , we observe that

where satisfies (41). With equal-power users, this gives
the condition

(46)

where

and the solution must satisfy . Similar manip-
ulations as those used to derive (43) give (47) at the bottom of
the page, where .

To compute the SINR versus observations with nonuniform
data windowing and diagonal loading, we express the output

SINR of the full-rank filter in terms of the SINR of a reduced-
rank filter with sufficiently large rank. Namely, we observe that

is the output SINR of a linear MMSE receiver given the
input covariance matrix [18]. It is shown in [19] that

(48)

where

(49)

(50)

The expression on the right-hand side of (48) is the output SINR
of the corresponding reduced-rank MMSE filter as the rank

. (See the discussion in the next section.) Computation
of the positive moments , is discussed in Section
VII. It is observed in [19] that the SINR converges rapidly to
the full-rank SINR as increases, so that taking is
typically adequate.

To compute , we observe that

(51)

Let

(52)

where , and . It is easily shown that
(48) applies when the moments are computed from , as well
as , so that we can view the moments in (48) as functions of

, as defined in (52). Taking the derivative, as in (51), gives

(53)

where

(54)

(55)

VI. LARGE SYSTEM SINR FOR REDUCED-RANK LS FILTERS

In this section, we present large system SINR expressions
for reduced-rank LS filters. These will be used to compare the
transient performance of reduced- and full-rank LS filters as a
function of training with different diagonal loading factors and
exponential weighting factors.

A reduced-rank filter projects the received vectors onto a
lower dimensional subspace. The filtering and estimation then
occur within this subspace. Let be the matrix of

(47)
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basis vectors, which span a -dimensional subspace, where
. The projected received vector is given by

(56)

and the filter output at time is

(57)

where is . Selecting to minimize the LS cost function
gives

(58)

The reduced-rank LS filter considered here is presented in
[12], and for training length uses the matrix of basis vectors

(59)

which define a Krylov subspace. This reduced-rank LS filter is
equivalent to the adaptive MSWF presented in [12]. It is also
equivalent to the adaptive auxiliary-vector reduced-rank filter
presented in [10], [11], provided that the estimated covariance
matrices are the same in each case, and the combining coeffi-
cients are selected to minimize the LS criterion [12], [21].

The output SINR for the rank- adaptive filter with training
symbols can be written as

(60)

where

(61)

(62)

(63)

and

(64)

(65)

(66)

(67)

(68)

(69)

(70)

For the blind adaptive filters, the preceding expressions hold
where is replaced by .

Theorem 3: As , with and
, the output SINR for the reduced-rank LS filter with

observations, given by (60), converges in probability to ,
also given by (60), where all terms in (64)–(70) are replaced by
their associated large system limits.

Denote the large system limits of and as
and respectively. It is straightforward to show by

induction that each of these terms is a deterministic function
of , and other related terms. Recall that
computing reduces to computing the asymptotic moments
of a matrix with the form where is i.i.d. and
and are diagonal. Computing the previous reduced-rank
terms , and , with nonuniform data windowing

requires the computation of additional moments, which have
the forms , for and

. It
can be shown that these terms also converge as , and
that the limits can be efficiently computed. We omit the proof
of Theorem 3 along with the associated computations. Further
details are presented in [34].

VII. COMPUTATION OF POSITIVE MOMENTS

As discussed in Sections IV and V, the moments and
, which appear in the expressions for large system SINR for

the LS filter, can be computed in terms of the positive moments
. (This corresponds to a reduced-rank approximation

when the number of moments used is finite.) Computing those
moments reduces to computing the large system limit of

(71)

for . As discussed in Sections V and VI, the positive mo-
ments are needed to compute the output SINR of the associated
reduced-rank LS filter.

In what follows, is an matrix with i.i.d. elements,
is a diagonal matrix, and is a diagonal

matrix. The large system limit will be indicated by ,
where is constant. We will denote the corresponding

th large system moment as . This is a generalization of the
large system moment defined by (28), for which .

It is shown in [31], [38] that in probability when
. In Appendix I-A, we prove convergence in proba-

bility for an arbitrary windowing matrix , assuming that the
distribution of diagonal elements has finite moments. Here we
assume convergence, and present a method for computing the
limit. A similar analysis, which relies on the theory of non-
crossing partitions, is presented in [32] and [23].

If , then the large system moments of are given
by [31]

(72)

where the inner summation is over all nonnegative solutions to
the equations

With equal power users, i.e., , where the subscript of
denotes the dimension, the preceding expression becomes

(73)
which was first presented in [30].

In what follows, we show that computation of the large
system moments of the random matrix with arbitrary
distributions for and is equivalent to a combinatorial
coloring problem. We start with the case , which leads
to the following simpler coloring problem.

Coloring Problem: Consider balls arranged in a circle and
numbered from to as shown in Fig. 1. To each ball we assign
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Fig. 1. Illustration of the coloring problem. This is an invalid coloration since
lines connecting two balls with the same color cross.

one of colors. Let denote the set of balls assigned color
, and let , the number of balls in

. The sets are sorted so that .
Given , find the number of colorations that satisfy
the following conditions.

• Given two balls and two balls ,
the line that connects and does not cross the line that
connects and . (For example, the coloration shown in
Fig. 1 is not valid.)

• Two colorations are counted the same if one is obtained
from the other by exchanging colors. (For example, white
becomes red, and the original red becomes white.)

We denote the solution to this problem as .

Theorem 4 (Large System Moments Without Data Win-
dowing): Assume that the diagonal entries of have limit
distribution with finite moments for ,
where . The th large system eigenvalue moment can be
evaluated as

(74)

where

(75)

and

(76)

The proof is given in Appendix I-A.

Comparing Theorem 4 with (72), it can be shown that

(77)

Fig. 2. Illustration of the double-coloring problem.

where is the multiplicity of
in the vector . Combining (73) with (75),

assuming equal powers, gives

(78)

Theorem 5 (Convergence of Moments With Windowed
Data): If the diagonal entries of have limit distribution

with finite moments for , where ,
and has finite moments for , then the th
moment of converges in probability as .

The proof is given in Appendix I-A.

With data windowing, evaluation of the large system mo-
ments relies on the solution to the following coloring problem,
which is a more complicated version of the preceding coloring
problem.

Double-Coloring Problem: Consider balls arranged in a
circle with one square between each two neighboring balls, and
numbered from to as shown in Fig. 2. To each ball (square)
we assign one of colors. Let denote the
set of balls (squares) assigned color

, and let , the number of
balls (squares) in . The sets are sorted
so that

Given , find the number of col-
orations generated by the following process.

1) Assign colors to the balls according to a valid coloration
defined in the preceding coloring problem.

2) Initially assign the same color to all squares.
3) Balls in set divide the circle into segments. As-

sign one of colors to the squares within each segment,
replacing the color previously assigned.
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4) Repeat step 3 for . (Steps 1 and 2 correspond
to .)

Two colorations are again counted the same if one is obtained
from the other by exchanging colors among balls or squares.

Let

denote the solution to this problem. The following theorem ex-
presses the large system moments in terms of .

Theorem 6 (Large System Moments With Windowed Data):
The th large system moment of for can be

evaluated as where

(79)

and

The proof is given in Appendices I.A and B.

It is observed in [23] that computation of

is equivalent to counting factorizations of cycles in the sym-
metric group (see [40] and [41]). An explicit expression for this
term is given in [42, Theorem 2.2]. Namely

is the number of noncrossing partitions for which the blocks
of have sizes and the blocks of its Kreweras
complement have sizes . (See [41] and [24]
for a discussion of noncrossing partitions and Kreweras com-
plement.) It is stated in [41, Theorem 2.1] that this combinato-
rial term is in fact the top connection coefficient for the corre-
sponding symmetric group, for which an explicit expression is
given by [42, Theorem 2.2]5

(80)

We can therefore write

(81)

5We originally presented this formula as a conjecture [37].

where is defined by (75) and

(82)

Theorem 4 implies that without data windowing is a func-
tion of and , i.e.,

(83)

With data windowing, Theorem 6 implies that is a function
of , and , i.e.,

(84)

where is given by (17) with exponential weighting and
effective window length .

Fig. 3 illustrates the convergence of the finite system mo-
ment, denoted by , to the large system limit. The mean
and standard deviation of divided by the large system
moment are plotted versus . The mean and standard devi-
ation are computed by averaging over different i.i.d. matrices

. The load , and the power distribution is given by
, where is the

unit step function. That is, there are two groups of users with
received powers 10 and 20 dB, respectively, and the probability
of being a high-power user is . Also, exponential weighting
is included with normalized window length . As in-
creases, the mean converges to the large system limit, and the
standard deviation converges to zero.

Returning to the computation of the large system moments
of the sample covariance matrix, the approach in Section IV is
used in Appendix I-C to prove the following corollary.

Corollary 3: As

where and are defined by (84) and (83), re-
spectively, convergence is in probability,

, and for .

Without data windowing, the moments can be obtained from
Corollary 3 by letting the effective window length ,
in which case . The corresponding moment

can be computed according to the following corol-
lary.

Corollary 4: As

where convergence is in probability.
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Fig. 3. Illustration of the convergence of  to  with a nonuniform power distribution and exponential windowing.

As discussed in Section IV, the inner terms in Corollaries 3
and 4, such as or , correspond to the mo-
ments of given in (37). The moments of serve as the mo-
ments of the “effective” power distribution, which are used to
evaluate the moments of , as stated by the corollaries.

VIII. NUMERICAL RESULTS

In this section, we present numerical results, which illustrate
the transient performance of the adaptive LS and RLS filters
considered. Simulation results for finite are included
for comparison with the large system limits. The latter results
are averaged over random binary signatures and the received
power distribution.

We first show results for LS filters without exponential
weighting and with . Fig. 4 shows plots of output SINR
versus normalized number of observations for full-
and reduced-rank LS filters with load , background
signal-to-noise ratio SNR 10 dB, and assuming each user
has the same received power. Fig. 4(a) shows results for blind
LS filters, and Fig. 4(b) shows results for LS filters with training.
Simulated values for are shown as discrete points. The
rank one filter with training estimates the matched filter (MF).
These results show that the large system analysis accurately
predicts the performance of the finite-size system for the cases
considered. These results also show that the reduced-rank filter
with appropriate rank converges significantly faster than the
adaptive full-rank LS filter, both with and without training.

Fig. 4(a) shows that the optimal rank for the blind re-
duced-rank filter is a function of the number of observations.
For , rank (the MF) is optimal, and for

is optimal. The optimal rank generally
increases with the number of observations. Of course, with in-
finite observations , the full-rank LS filter is optimal.
It is shown in [19], [22] that this full-rank performance can
be essentially achieved with a low-rank filter (i.e., for
a large range of loads and SNRs). Hence, we expect that an
adaptive reduced-rank filter with will converge faster
than the full-rank LS filter. As shown in Corollary 1, as
increases from one to two, the output SINR for the full-rank
blind LS filter increases from zero ( dB) to about 0 dB.

Fig. 4(a) shows that the output SINRs of the reduced-rank fil-
ters with first decrease before increasing to the asymp-
totic SINR. This is because the blind adaptive reduced-rank
filter is initialized as the MF. When the number of observations
is small, the estimate of is inaccurate, which degrades the per-
formance.

Fig. 4(b) shows that with training, gives the best per-
formance over the entire range of . It also shows that the output
SINR for the full-rank LS adaptive filter with training at
is 3 dB from MMSE performance, which is predicted by Corol-
lary 1. In contrast, for the same target SINR, the reduced-rank
filter with requires approximately iterations.

Fig. 5 shows the effect of rank on the performance of the
training-based reduced-rank filter with different loads and
SNRs. In these plots . With small loads, such as
and , the optimal rank is two or three.
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Fig. 4. Large system convergence plots for (a) blind adaptive LS filters and (b) adaptive LS filters with training.
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Fig. 5. Output SINR versus rank for the reduced-rank filter with training and � = 1:5. Curves are shown for different SNRs in (a), and for different loads in (b).
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Fig. 6 shows large system convergence plots for reduced- and
full-rank RLS filters with exponential weighting and .
Corresponding simulation results are also shown for .
The system load is , the SNR is 10 dB, the effective
window length , and all users are received with equal
power. Large system analysis accurately predicts the simulation
results. Comparing Fig. 6 with Fig. 4 shows that the convergence
of the full-rank RLS filters is improved significantly by adding

to the sample covariance matrix. For this case, the blind
reduced-rank filter with appropriate rank still converges faster
than the full-rank filter. Since the effective window length is rel-
atively long in this case, the exponential weighting does not have
a significant effect. Fig. 6(b) shows that the full-rank RLS filter
with converges as fast as the reduced-rank RLS filter
with optimized rank. Additional numerical results with nonuni-
form power distributions have shown similar behavior, with the
exception that the performance of low-rank filters is more sen-
sitive to power imbalances (e.g., caused by near–far effects).

In the next set of plots, shown in Figs. 7–9, we study the in-
fluence of effective window length and on the performance
of RLS full-rank filters. Since the large system analysis accu-
rately predicts the performance of finite systems, we only show
the large system results.

Fig. 7 illustrates the effect of diagonal loading with uniform
data windowing (no exponential weighting). Fig. 7(a) shows
that as increases, the performance of the blind LS filter im-
proves significantly for small . For small values of , the SINR
in each case is initially the SINR of the MF, and decreases before
increasing to MMSE performance. This is due to the degrada-
tion caused by the inaccurate estimate of the sample covariance
matrix, as discussed for the case . For large values of ,
the sample covariance remains close to for small , so
that the output SINRs start at the SINR of the MF and increase
monotonically.

The convergence curve for the reduced-rank blind RLS filter
with and is also shown in Fig. 7(a) for compar-
ison. The performance of the full-rank blind RLS filter with op-
timized is somewhat better than the performance of the anal-
ogous reduced-rank filter. Additional results generated for the
blind reduced-rank filter with different values of show that di-
agonal loading improves convergence, and there is gener-
ally an optimal value of . The performance of the reduced-rank
blind RLS filter with and optimized is nearly the same
as that of the analogous full-rank filter. (Similar observations
for the blind RLS filter, based on simulation, have been made in
[11].)

Fig. 7(b) shows that diagonal loading also improves the con-
vergence of the LS filter with training when is small. In this
case, large degrades the performance significantly for large .
When is small, there is a “notch” around , in which the
SINR decreases to a local minimum. The performance for small

is a sensitive function of . The convergence curve for the re-
duced-rank RLS filter with training and is also shown,
and exhibits the best performance. Additional numerical results
show that diagonal loading slightly degrades the performance of
the reduced-rank RLS filter with training. That is, with small ,
the reduced-rank filter performs about the same as with ,
and the SINR with a fixed small decreases as increases.

Fig. 8 shows convergence plots for RLS filters with training
and exponential windowing. Curves are shown for different
window lengths with . Exponential windowing ef-
fectively limits the training length, which prevents the adaptive
filter from converging to the corresponding MMSE filter. As
shown in Fig. 8, the steady-state SINR increases with . The
output SINR starts to flatten out when to , which is
consistent with the interpretation of as the effective window
length. In addition, exponential weighting slightly improves the
convergence of the blind RLS filter for small .

Fig. 9 shows asymptotic output SINR, as , versus
the effective window length for different values of . As ex-
pected, the asymptotic SINR increases with . Without expo-
nential weighting, diagonal loading does not affect the asymp-
totic performance of the filters as . However, this is no
longer true with exponential weighting. Fig. 9(a) shows that as

increases from zero, the asymptotic SINR for the blind RLS
filter increases. However, the performance degrades when is
too large, so that there is an optimal value for . Performance is
quite sensitive to the selection of when is small. In contrast,
the asymptotic SINR with training is insensitive to changes in
around , and maximizes the asymptotic SINR. Ad-
ditional results show that also maximizes the asymptotic
SINR for the reduced-rank RLS filter with training.

IX. CONCLUSION

Evaluating the average output SINR versus training samples
for LS filters with random data is a well-known and difficult
problem in adaptive filtering and estimation. The large system
convergence results presented here appear to be the only avail-
able analytical results, which accurately predict performance
for a wide range of system parameters and input statistics. Our
model is general in the sense that it allows an arbitrary power
distribution over the interfering data streams along with arbi-
trary data windowing. Numerical results have shown that the
large system analysis is quite accurate for for all cases
considered. Additional numerical results indicate that this anal-
ysis is generally accurate for significantly smaller values of ,
except for low-rank filters with data windowing.

This analysis shows that, as expected, the reduced-rank LS
filters converge significantly faster than the full-rank LS filters
without diagonal loading. In general, the optimal rank of the
reduced-rank LS filter with finite training (or observations for
blind LS with known user signature) depends on the load, back-
ground noise level, the distribution of received power across
users, and the number of observations. Even so, the performance
of the reduced-rank filter with training is relatively insensitive
to a suboptimal choice of rank.

For the RLS filter, data windowing (e.g., exponential
weighting) offers the potential of tracking a changing envi-
ronment at the cost of degrading steady-state performance.
Diagonal loading of the sample covariance matrix accelerates
the convergence of the full-rank adaptive filter initially, but
can adversely influence steady-state performance when used
with exponential weighting. Still, a reduced-rank LS filter with
optimized rank performs at least as well as the analogous full-
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Fig. 6. Large system convergence plots with � = 0:1 and �L = 10 for (a) blind LS filters and (b) LS filters with training.
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Fig. 7. Large system convergence plots for (a) blind RLS filters and (b) RLS filters with training with different values of �.
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Fig. 8. Large system convergence plots for (a) blind RLS filters and (b) RLS filters with training with different values of �L (exponential windowing).
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Fig. 9. Asymptotic (� !1) performance of (a) the blind RLS filter and (b) the RLS filter with training versus effective window length �L.
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rank filters, and is less sensitive to the selection of algorithm
parameters (i.e., diagonal loading factor and exponential
weight ).

This work can be extended in a few different directions. For
example, more elaborate channel models can be considered
(e.g., that include frequency selectivity). It may also be possible
to obtain large system convergence results for other types of
adaptive filtering algorithms, such as the LMS, or stochastic
gradient algorithm [1], [2]. (Large system analyses of other
reduced-rank, or subspace algorithms have appeared in [19],
[20], [35].) Finally, whether or not the LS and RLS algorithms
considered here are optimal, in the sense of maximizing the
output SINR for a given training length, is an open question.

APPENDIX I
CONVERGENCE AND COMPUTATION OF

LARGE SYSTEM MOMENTS

We start by proving Theorem 5, which is used to prove the
convergence of the moments of the sample covariance matrix
(Theorem 1) in Appendix I-C. Theorem 4, which gives the large
system moments without data windowing, follows from com-
putations presented in the proof of Theorem 5. We then prove
Theorem 6 in Appendix I-B.

A. Proof of Theorem 5: Moments of

We can expand as

(85)

where

(86)

is the th diagonal element of , and is the th column
of .

The method for evaluating the large system limit divides the
set of indices

in (85) into progressively smaller subsets. The large system mo-
ment can then be computed by partitioning the sum in (85) into
smaller sums over the smaller subsets. The relation between (85)
and the coloring problems in Section III is also defined in terms
of these subsets.

We start by defining

exactly distinct indices (87)

For , let the set of distinct indices be de-
noted as . These indices are represented
as different colors. Namely, let de-
note a set of distinct colors, and let be the
one-to-one mapping of indices to colors. Note that ,
which corresponds to the range of indices. For an index vector

, we denote the corresponding coloration as

where . Whereas and
are distinct colors, we may have .

We further subdivide into subsets in which the multi-
plicity of each distinct index (color) is specified. Let be the
number of indices, which satisfy , where de-
notes a specific color. In what follows, we will assume that

. We will refer to as the multi-
plicity vector. For , we define

the distinct indices have

multiplicity vector (88)

Similarly, we define the set of colorations with multiplicity
vector as

exactly elements

(89)

The coloration is the same as if
there exists a permutation operation on the set of colors

such that .
For each we have

where are the distinct indices. Therefore, the sum-
mation in (85) over is
times a scalar, where is the th moment of the power
distribution.

Associated with each is a mapping
where . We define a

color transformation mapping , where is a
set of distinct colors chosen from the set of all possible colors

, and . For each , we
divide into the following subsets:

a mapping where

(90)

That is, the colorations in are obtained by applying
different color transformation mappings to . We
define as the corresponding set of index vectors,
which subdivides . It is easy to show that for each

(91)

Given a coloration , we will need
the following definition.

Segment of a Coloration: Assume that
. Then is called

the -th segment of color , denoted as .

In this definition, the order is cir-
cular. That is, if , then is followed by

. Fig. 10 illustrates the definition of a
segment. A segment is empty if , in which case

and are neighbors.
Recall that a valid coloration was defined by the first con-

straint in the coloring problem stated in Section VII. Colorations
which do not satisfy this constraint are invalid. Here we redefine
a valid coloration in terms of segments.



2466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Fig. 10. Illustration of coloration segments.

Valid (Invalid) Coloration: A coloration

is valid if for all and have no
common color for . Otherwise, it is an
invalid coloration.

For example, and are
valid colorations in whereas is in-
valid. As defined in Section VII, for each

denotes the number of valid col-
orations. Note that each segment of a valid coloration is itself a
valid coloration.

We will show that summing over index vectors in (85) cor-
responding to invalid colorations in gives zero in the
large system limit, whereas the sum over index vectors corre-
sponding to valid colorations converges to times a scalar,
which is the product of moments of the power distribution. The
following two lemmas will be used to show that the sum in (85)
converges in the mean-square sense.

Lemma 1: As , for each valid coloration
we have

(92)

where

(93)

and . For each invalid coloration of
, denoted as , we have

(94)

where convergence is in the mean-square sense.

In the following lemma, refers to the set
of index vectors , with distinct elements, i.e.,

.

Lemma 2: For , as

(95)

The proofs are given in Appendix I-D.

We now write (85) as

(96)

The first term on the right-hand side is a sum over index vec-
tors corresponding to valid colorations, and the second term
sums over invalid colorations. Focusing on the first term, as

, we have

(97)

and from (92), we have

(98)

where the second step follows from (91), the third step follows
from the fact that as , and
the last step follows from (92).

Since and are independent
random variables, we have

(99)
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A similar argument shows that the second sum in (96) over in-
valid colorations converges to zero. This establishes that the mo-
ments of converge.

To prove Theorem 4, we observe that there are
valid colorations for each mul-

tiplicity vector . Substituting ,
and combining with (96) and (99) gives (74)–(76) in The-
orem 4.

B. Proof of Theorem 6: Large System Moments With
Windowed Data

From (96) and (99), it follows that can be written as

(100)

where has the form given in (79), and is a scalar
function of and . Referring
to (85), the only terms in the sum, which make nonzero contri-
butions to , correspond to valid colorations in ,
where . Here the set of valid col-
orations refers to configurations of balls in the double-coloring
problem in Section VII.

The equivalence of the double-coloring problem with the
evaluation of follows directly from the segmentation
procedure used in Appendix I-D to prove Lemma 1. Namely, it
is shown in the proof of the first part of Lemma 1 in Appendix
I-D that we can segment a valid coloration into several smaller
valid colorations, where the contribution each valid coloration
makes to the sum in (92) has the form , where

is given by (93). Here is the index for the
smaller (sub)colorations, is the number of balls in the th
subcoloration, and is the number of distinct colors. The
contribution each valid subcoloration makes to the sum (92) is
then the product of the terms corresponding to
the different segments, as shown in (113).

The squares in the double-coloring problem correspond to
the positions of the data windowing matrices , shown in
the expansion (85)–(86). For each valid double coloration, the
term (i.e., the th moment of the data windowing ma-
trix ), which appears in the sum (79), corresponds to exactly

squares having color . The segmentation procedure in Ap-
pendix I-D assigns one of the distinct colors to the squares
within each segment. This corresponds to step 3 in the double-
coloring problem. Since and are finite, the segmentation
of valid colorations of balls (or equivalently, index vectors in
(113)) accomplishes the coloration of squares in a finite number
of steps in exactly the same way as stated in the double-coloring
problem. This completes the proof of Theorem 6.

C. Proof of Theorem 1: Convergence of

From (38), we only need to show that converges. Let

(101)

where is is and is the diagonal ma-
trix of user powers. The load associated with , defined in Ap-
pendix I-B, is , and the th moment of the ef-
fective power distribution is

From Theorem 6 and (84), the th large system moment for
the matrix is given by

(102)

and with

(103)

For the matrix , we have

where . From (101) and (102), the th large system
moment of is

(104)

Now where is defined in (36).
Hence, . Let be
the effective load for . Then

(105)

According to the discussion in Section IV, has an ef-
fective power distribution with th moment . From (102),
and the discussion following (34) and (35), we have

(106)

For each finite therefore converges, and is a contin-
uous function of . According to the discussion in Section IV,
we must let to obtain i.i.d. Gaussian noise, so that

for (107)

Combining with (106) gives

(108)

where, from (107), and
for . This gives Theorem 1 as well as the

first equality in Corollary 3.



2468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Let

so that

Following a similar argument as before then gives the second
equality in Corollary 3.

D. Proof of Lemma 1

To prove the first part of Lemma 1, we first consider the case
, which corresponds to . From

(86), and the fact that , it follows that

(109)

Furthermore, the variance

as . This can be shown using an argument in [30]. (See
[30, eqs. (2.14) to (2.16)].)

If , then we have . For any valid coloration
, we may have as shown

in Fig. 10. These points, , divide the circle into
segments. We denote the th segment as

If , then is empty. According to the definition
of a valid coloration, if and where ,
then . Hence, we have

(110)

Now we consider different cases for .
Case 1: : This corresponds to the

situation where the ’s are distinct, except for .
According to (109), we have

(111)

Hence, (110) becomes

(112)

where the sequence of indices of in the first and second steps
is , and all negative subscripts
are modulo , since the subscripts are cyclically ordered. Also,

and . This establishes the first part of Lemma 1
for Case 1.

Case 2: : In this case, the valid coloration con-
straint implies that there is no common element in different seg-
ments and . Each seg-
ment is also a valid coloration in the coloration set ,

which implies that

is a permutation of , and some segments can be
empty, e.g., if and are neighbors. Therefore, if

, the same argument used for Case 1 can be applied to

.
Since and are finite, by considering analogous cases for

, we can show in a finite number of steps that

(113)

This establishes the first part of Lemma 3.
For the second part of Lemma 1, consider the invalid col-

oration shown in Fig. 11. That is,
and where , and the
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Fig. 11. Illustration of an invalid coloration.

line crosses the line . The sum in (110) is then re-
placed by the sum

(114)

where the terms differ from the analogous terms on the
left-hand side of (110) in that there are at least two terms

on the right-hand side of (114)
which have at least two common indices as arguments. These
common indices, say, and , where , correspond to
balls in an invalid coloration, as illustrated in
Fig. 11. When summing over , both of these indices
range from to . This effectively reduces the dimension of
the space of possible index vectors by one, which
causes the corresponding sum over the set of constrained index
vectors to converge to zero.

We consider the following cases.
Case 1: Each segment is a valid col-

oration and

where , and is the number of distinct colors.
For each of these colorations, we have

Assume that there are segments ,
and that each of these segments has at least one

, which has color . The corresponding indices in the
sum (114) satisfy , so that

where

and is . Since , the sum in (114) becomes
, which is

This establishes the second part of Lemma 1 for this case.
Case 2: The segments may not all be

valid colorations. The same argument used for Case 1 can be
applied to these invalid colorations, which gives

Therefore, Lemma 1 is also valid for this case.

E. Proof of Lemma 2

For

(115)

The second moment can be computed as
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Following the same sequence as in (115), the first term, which
sums over those with distinct elements,
converges to

If , then the number of corresponding vectors
grows as . Therefore, as

the second term goes to zero, and we have

This proves Lemma 2.

APPENDIX II
PROOFS OF THEOREMS 2 AND 3: LARGE SYSTEM SINR

FOR RLS FILTERS

It will be convenient to use the following notation. Two vec-
tors and are asymptotically equivalent if

in which case we will write .

A. Theorem 2: Full-Rank SINR

To prove Theorem 2, we use the following asymptotic forms
for the LS filter , which are derived in Appendix II-D. Namely

where and are given in Theorem 2

(116)

where and

(117)

is the received interference-plus-noise matrix. The output
SINR does not depend on the scaling of . Hence, for both LS
filters (with or without training) we assume that

(118)

where and are constants. This is exact in the large system
limit. To simplify the notation, we drop the time index .

We also need the following limits, which are derived in Ap-
pendix II-C

(119)

(120)

for .
Computing the large system SINR for the in (118) gives

(121)

Now and converge to and , respectively, and

(122)

Let denote the sample interference-plus-noise covari-
ance matrix without the terms corresponding to and , i.e.,

(123)

In analogy with the form for in (118), we can write

where and are constants. Substituting in (122) gives

(124)

where we have used (119) and the fact that .
Evaluating the large system limit gives

(125)

where we have used (120).
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Finally, we again apply the preceding argument, and the ar-
gument in Appendix II-C to evaluate

(126)

Combining (121)–(126) gives Theorem 2.

B. Corollary 2: Asymptotic Performance of RLS Filters

We need to evaluate (21) as . First, we observe that

(127)

Now Corollary 3 implies that

where and for
. This shows that is a continuous and bounded

function of the ’s and , and converges to a finite constant as
. Hence, from (127), as is .

We also observe that is
, and from (24) and (25), it is easy to show that

is and is . It is then straightforward to de-
rive Corollary 2 from (21).

C. Derivation of (119) and (120)

From (116) and (117), we have .
Note that , and and are
independent and zero mean, so that

(128)

The variance is given by

where the last step follows from the fact that

converges to a finite limit. This establishes convergence in the
mean square sense.

To prove (120), we first observe that

(129)

Let , where is the th column of . We
then have6

(130)

where

is defined by (18), and

(131)

6The following calculation was provided by M. Peacock, who pointed out that
our original proof of Theorem 2 had incorrectly assumed that the matricesWWW
and JJJ ^RRR JJJ are asymptotically free.
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Applying the same manipulations as in (126) gives in (26).
Moreover

(132)

and substituting , gives

(133)

(134)

Combining with (132) gives the expressions for and
in (24) and (25).

D. Derivation of (116)

We first observe that

(135)

where is given by (116) and

as

Let

(136)

(137)

so that

(138)

Applying the matrix inversion lemma in each case gives

(139)

(140)

(141)

(142)

(143)

(144)

where the last two limits follow from the fact that .
Finally, combining (5) and (117), we have

(145)

The expression (116) can be derived by combining (136)–(145)

with the expressions (with training) and

(blind).

APPENDIX III
DERIVATION OF (41)–(45)

We start by deriving (41). From (40) and the representation
(35) and (36), we have

(146)

where is the large system eigenvalue distribution of de-
fined in (36), and denotes the load associated with a covari-
ance matrix , as defined in Appendix I-B. That is,

is the number of columns of divided by the number of
rows of , so that from (35) we have . From
(36), we observe that has rank , so that

(147)

where is the eigenvalue distribution of without the
zero eigenvalues, and is the unit singular function.

Substituting into (146) gives

(148)

Now

(149)



XIAO AND HONIG: LARGE SYSTEM TRANSIENT ANALYSIS OF ADAPTIVE LEAST SQUARES FILTERING 2473

and combining (149) with (148) gives

(150)

From (40) we also have

(151)

where is the effective load associated with
covariance matrix , and is the large system power dis-
tribution associated with . From (36), we have

(152)

where is the distribution of the user powers (i.e., diagonal
elements of ). Substituting into (151) gives

(153)

where the second term in the denominator is obtained by letting
so that . This accounts for the additive

Gaussian noise, as explained in Section IV. The relation (41) can
now be obtained after some further manipulations by combining
(153) with (150).

The relation (42) is obtained by taking the limit in
(41). To derive (45), we use the analogous definition of ,
as that in (52), and note that

(154)

where we have used (44). Evaluating the derivative and com-
bining again with (44) gives (45).

To derive (43), we first apply (45) to the sample covariance
matrix . As shown in Section IV, the effective power distribu-
tion is the eigenvalue distribution of . Hence, we have

(155)

where and we have used (147).

We now evaluate each term in the denominator. Taking the
limit in (149) and (150) gives, after some manipulation

(156)

Combining with (45) gives

(157)

and combining (155)–(157) with (42) gives (43).
We now give a simple, direct derivation of (44) and (45),

which does not rely on the Stieltjes transform. Specifically

(158)

and

(159)

where is the interference-plus-noise covariance matrix for
user , and we have used the relations

, and (29).
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