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Abstract

The performance of two subspace adaptive filtering techniques for Multi-Sensor DS-CDMA inter-

ference suppression is evaluated in the presence of frequency-selective fading. The first technique

partially despreads (PD) the received signal, which is coherently combined with an Exponential

Least Squares (ELS) adaptive algorithm, a Block Least Squares (BLS) adaptive algorithm , or a

MMSE optical filter. The second technique, principal component (PC), projects the received vec-

tors onto an estimated signal subspace obtained by an appropriate eigen-decomposition, which is

only coherently combined with a BLS adaptive algorithm.
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1 Introduction

Linear Minimum Mean Squared Error (MMSE) detection has been proposed to suppress interfer-

ence for Direct-Sequence (DS) Code-Division Multiple-Access (CDMA) systems [1, 2, 3, 4]. In

contrast to nonlinear interference cancellation techniques, linear MMSE detection does not require

explicit estimates of interference parameters such as relative amplitudes, phases, and spreading

codes. Moreover, it can be implemented as an adaptive tapped-delay line, analogous to linear

equalizers for single user channels. MMSE interference suppression has been proposed for multi-

carrier receivers [5] and multi-sensor receivers [6] to improve system performance.

In [4], several subspace adaptive linear MMSE detectors for the single sensor DS-CDMA system

in a military scenario are considered. The system performances are compared only in the presence

of the AWGN channel and under the assumption that power control cannot be used to solve the

near-far problem due to peer-to-peer communication. As indicated in [6], a multi-sensor LS adaptive

detection can improve system performance if the time-variant channel coefficients of the desired user

are known. However, as observed in [7], conventional adaptive algorithms may experience phase

slips and false lock with flat Rayleigh fading channels.

Here we employ two subspace adaptive filtering techniques for multi-sensor DS-CDMA inter-

ference suppression where the processing gain is large compared with the number of users. The

first technique partially despreads the received signal, as proposed in [8]. The second technique,

principal component, projects the received vectors onto an estimated signal subspace obtained by

an appropriate eigen-decomposition, as proposed in [9, 10]. As the subspace dimension decreases,

the response time to interference transients improves; however, the degree of freedom to suppress

interferers decreases. The tradeoff is shown by the numerical results. The channel model consid-

ered includes a frequency-selective fading, and the adaptive algorithms are presented for the cases

of perfect knowledge of the desired user’s channel.

The simulation results show that the BLS algorithm is more sensitive to fade rate than are

the other addressed algorithm in the paper. The eigen-space projection technique combined with

the BLS algorithm performs much better (but is much more complex) than the partial-despreading

technique combined with the BLS algorithm when the number of adaptive weights is relatively small.

It is also noticed that the multi-sensor structure can significant improve the system performance if

the desired user’s channel is known.
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2 System Model

Consider a baseband signal transmitted by the kth active user as

Sk(t) = Ak
∞∑

i=−∞
d

(i)
k pk(t− iT − τk), (1)

where d
(i)
k ∈ {±1} is the ith differentially encoded symbol, T is the symbol duration, τk is random

time delay uniformly distributed over [0, T ], Ak is the amplitude associated with user k, and pk(t)

is a spreading or signature waveform given by

pk(t) =
N−1∑

n=0

c
(n)
k h(t− nTc), (2)

where c
(n)
k ∈ {±1/

√
N} is the nth chip of the spreading sequence, N is the processing gain, which

is taken to be equal to the period of the spreading sequence, h(t) is the chip waveform, and Tc is

the chip duration.

The channel model is assumed to be a frequency selective, Rayleigh channel with L resolvable

paths, and all channels are constant during each symbol interval. The complex low-pass impulse

response of the channel for the mth sensor seen by the kth user is given by

Ck,m(t) =
L−1∑

l=0

ζk,m,lδ(t− lTc), (3)

where ζk,m,l ≡ αk,m,lexp(jβk,m,l), and where the {αk,m,l} are Rayleigh random variables, and the

{βk,m,l} are uniformly distributed in [0, 2π]. Note that {ζk,m,l} are assumed i.i.d for different users

k, different paths l, and different sensors m.

The received signal corresponding to the mth sensor is given by

rm(t) =
K∑

k=1

L−1∑

l=1

χkζk,m,lSk(t− lTc) + nm(t), (4)

where χk takes on values zero or one, depending on whether or not the kth interferer is currently

transmitting a packet, χ1 = 1, and nm(t) is AWGN with zero mean and covariance σ2.

The structure of M -sensor receiver is shown in Figure 1, which provides a chip-matched filter

for each sensor. letting rm(i) be the N -vector containing samples at the output of a chip-matched

filter for the mth sensor within the window spanned by p1(t − iT ), assuming that the receiver is

synchronized to the main path for desired user, say user 1, we can write

rm(i) =
K∑

k=1

χk{dk(i)s+
k,m(i) + dk(i− 1)s−k,m(i)}+ nm(i), (5)
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where

s±k,m = P±kAkζk,m(i), (6)

and where

P±k = [p±k,1,p
±
k,2, · · · ,p±k,L], (7)

Ak = diag[Ak,1, · · · , Ak,L], (8)

and

ζk,m(i) = [ζk,m,1(i), · · · , ζk,m,L(i)]′. (9)

Note that p+
k,l and p−k,l are the vectors of chip-matched filter outputs during symbol i corresponding

to the inputs pk(t− iT − τk − lTc) and pk(t− (i− 1)T − τk − lTc), respectively, which are given in

[2] and [3], and ′ denotes transpose. The output vectors of the chip-matched filters from M sensors

can be expressed as

r(i) = [r′1(i), · · · , r′M(i)]′. (10)

3 Subspace Projection

We consider the situation where the dimension of the received vector rm(i) is greater than the

number of (strong) users. In this case, the conventional adaptive filter, where the number of

adaptive weights is equal to the processing gain, may not work well in the presence of interference

transients, since there are too many degree of freedom, which creates very slow convergence modes

associated with the noise subspace. As introduced in [4, 10], we can project the received vectors onto

a lower dimensional subspace before using any adaptive filtering scheme. Let Q be the NM × JM
projection matrix, where J is the number of adaptive filter coefficients and J < N . The projected

received vector corresponding to symbol i is then given by

r̃(i) = Q†r(i). (11)

The output for symbol i of the adaptive filter with JM equivalent weights is

y(i) = w̃†(i)r̃(i). (12)

Note that all projected JM -dimensional quantities are denoted with a tilde, and † represents Her-

mitian transpose.
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3.1 Partial Despreading

The received DS-CDMA signal from each sensor is partially despread over consecutive segments

of I chips, where I is a partial despread rate. The partially despread vector in each sensor has

dimension J = dN/Ie, and is the input to the J-tap adaptive filter in each branch. The projection

matrix for M -sensors is then given by

Q = diag[q1, · · · , qM ], (13)

where qm is the N × J projection matrix for each sensor. Note that for the M -sensor case, all qm

are the same for different sensors, since, as described in [4], the columns of qm are non-overlapping

segments of the desired spreading sequence, where each segment is of length I.

3.2 Eigen-space Projection

Let R
4
= E[r(i)r†(i)], be the MN ×MN covariance matrix for the input vector from M sensors,

and x be the steering vector. Since R is symmetric and positive semi-definite, we can express it as

R = ΦΛΦ†, (14)

where the columns of Φ are the orthonormal eigenvectors, and Λ is the diagonal matrix of eigen-

values with the assumption that the real-valued eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λNM . If we

choose the projection matrix as

Q = Φ1:JM , (15)

where Φ1:JM denotes the NM × JM matrix consisting of the first JM columns of Φ, the reduced-

rank filter associated with this projection will be referred to as the principal components (PC)

filter.

4 Adaptive Algorithm

In this section we describe the adaptive algorithms used to estimate the filter coefficients. Three

algorithms, the Wiener MMSE solution, the coherent exponential least squares (ELS), and the

coherent block least squares (BLS), are combined with partial-despreading, and only the coherent

BLS is combined with the eigen-space projection. We evaluate the performance by considering

known channel coefficients for the desired user.
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4.1 Wiener MMSE Solution

With coherent detection the weight vector w̃(i) which minimizes the mean squared error (MSE)

E(|e(i)|2), where e(i) = d1(i)− w̃†(i)r̃(i), is

w̃(i) = R̃
−1

(i)x̃(i), (16)

where

R̃(i)
4
= E[r̃(i)r̃†(i)]

= Q†R(i)Q, (17)

R(i)
4
= E[r(i)r†(i)]

=
K∑

k=1

χk[s
+
k (i)(s+

k (i))† + s−k (i)(s−k (i))†] + σ2
n(i)I, (18)

and

x̃(i)
4
= E[d1(i)r̃(i)]

= Q†s+
1 (i), (19)

Where Q can be any projection matrix. Note that Eqn. (18) is obtained based on the assumption

of known channel for desired user and trackable channel for multiple access interferer.

4.2 Exponetial Least Square

We use the ELS algorithm combined with partial despreading for the multi-sensor DS CDMA

receiver. The ELS algorithm is given by [11],

ˆ̃R(i+ 1) = (1− ε)[r̃(i)r̃ † (i)] + ε ˆ̃R, (20)

and

w̃(i+ 1) = ˆ̃R
−1

(i+ 1)x̃(i+ 1), (21)

where the steering vector x̃(i+ 1) in Eqn. (21) is given by Eqn. (19) for a known channel model.

4.3 Block Least Squares

The BLS algorithm obtains the covariance matrix by time-average instead of the ensemble-average

for MMSE. It can then be predicted that the algorithm should work well in a AWGN channel. The
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simulation results confirm that it only works well in a very slow fading channel relative to the block

length, B, which is an important parameter affectting the error rate in the presence of time-varying

fading. The time-averaged covariance matrix is given by

R̂(i) =
1

B

i∑

j=i−B+1

r(j)r†(j), (22)

and for a known channel assumption, the estimate of steering vector is given by

x̂(i) =
1

B

i∑

j=i−B+1

s+
1 (j). (23)

The projection matrixQ for the BLS algorithm can be obtained corresponding to the two projection

techniques described in Section 3.

5 Numerical Results

The main parameters chosen for simulation are following: The processing gain is N = 64, and there

are three asynchronous users. The received power of interferers varies with the standard deviations

of 1.5dB. All received signals experience a 2-path Rayleigh fading, and relative power loss of each

path to main path is 3dB. The signal-to-noise ratio is 1/σ2
n = 9dB per path for each sensor. Note

that, for the complex Gaussian noise, N0 = 2σ2
n. Each curve is obtained by averaging 20 runs and

10, 000 symbols per run.

5.1 Effect of the Partial Despreading Factor I

The performance comparison between one sensor system and two sensor system is first shown in

Fig. 2 for ELS and MMSE algorithms combined with partial despreading technique respectively,

where the adaptive filter coefficients are updated every symbol. The normalized Doppler frequency

of fdT ≈ 0.00035 cycles/symbol. However, in practice, mobile users experience different fade rates,

which depend on velocities.

Two parameters for the adaptive algorithms are the exponential weighting factor, which is set

as ε = 0.995 (corresponding to an averaging window length of approximately 1/(1 − ε) = 200

symbols), and the training period, which is set as 200 symbols to acquired the desired user in

the simulation. The initial values of R̂ and x̂ are taken to be 0.01 × I and the vector of zeros,

respectively. Peeformance is relatively insensitive to this choice. The subspace dimension is J =

dN/Ie. The curves with diamond mark correspond to the two-sensor receiver and the various line
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styles correspond to the different algorithms. It is shown from the figure that the two-sensor system

can offer a significant improvement in performance relative to the one-sensor system, and the MMSE

filter always outperforms the ELS algorithm. There is a obvious degradation in performance for

MMSE as the partial despreading factor increases, i.e., the subspace dimension decrease, which

means that the degree of freedom to suppress interference decreased. However, we cannot observe

such degradation for ELS algorithm.

With the same parameters as used in Fig. 2, the performances are compared for the BLS

algorithm combined with partial despreading technique or principal component subspace technique,

where the adaptive filter coefficients are updated every block, and the subspace dimension is J =

dN/Ie. The performance improvement of the two sensor system is obvious too. It is also shown

that the eigen-space algorithm can offer a significant improvement in performance relative to partial

despreading for a large partial despreading factor, but with a significant increase in computational

complexity (i.e., an eigen-decomposition is required for each block).

5.2 Effect of Fading Rate

Figure 4 shows the effect of fading rate on the system performances for ELS algorithm, BLS al-

gorithm, and MMSE filter combined with partial despreading respectively, where we use the same

parameters as used in Figure 2 besides that we fixed the partial despreading factor as I = 8, i.e.,

J = 8. It is shown that all the algorithms always benefit from an increase in sensors. Additional,

the BLS algorithm is more sensitive to the mobile speed than both MMSE and ELS algorithms.

This is because the BLS algorithm updates filter coefficiences every block. The higher the Doppler

shift, the more difficult for the BLS algorithm to estimate the time-varying steering matrix within

a block even such estimation is based on the known channel coefficience for each symbol.

The effect of a mobile speed is also shown by Figure 5 for the BLS algorithm combined with

partial despreading technique or principal component subspace technique, where we use the same

parameters as used in Figure 4. Although the BLS algorithm is sensitive to the mobile speed, the

improvement in performance by increasing the number of sensors is still true. It is also shown

that when the subspace dimension, say 8, close to the strong interferers in the system, 6, the BLS

algorithm associated with the eigen-space decomposition can achieve the better performance than

the BLS algorithm associated with partial despreading.
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6 Conclusions

The performance of subspace adaptive filtering techniques for multi-sensor DS-CDMA in the pres-

ence of a frequency-selective fading has been studied. A comparion is made by simulation for a

single-sensor receiver structure and a two-sensor receiver structure. The results indicate that all the

algorithms can always benefit from the two-sensor structure. The MMSE filter achieves the best

performance when subspace dimension is large relative to the number of interferers. It is also noted

from the results that the principal component subspace technique will outperform other algorithm

addressed in the paper when subspace dimension is small relative to the number of interferers.

Finally, The block-oriented LS algorithms is more sensitive to the fading rate (mobile speed) than

non-block-oriented algorithms.

References

[1] Rapajic and B.S. Vucetic, “Adaptive Reveiver Structures for Asynchronous CDMA Systems”,

IEEE JSAC, vol. 12, no. 4, pp. 685-697, May 1994.

[2] U. Madhow and M. L. Honig, “MMSE interference suppression for direct-sequence spread-

spectrum CDMA,” IEEE Trans. on Comm., vol. 42, pp. 3178-3188, Dec. 1994.

[3] S. L. Miller, “An adaptive direct-sequence code-division multiple-access receiver for multiuser

interference rejection”, IEEE Trans. on Comm., vol. 43, No. 2/3/4, pp. 1746-1755, Feb.-April

1995.

[4] M. L. Honig, “A comparison of subspace adaptive filtering techniques for DS-CDMA interfer-

ence suppression,” Proc. MILCOM’97, vol. 2, pp. 836-840, Nov. 1997.

[5] W. Xu and L. B. Milstein, “MMSE Interference Suppression for Multicarrier DS-CDMA in

Frequency Selective Fading Channels”, Submitted to Globecom’98 .

[6] S. Buljore, M.L. Honig, J. Zeidler, and L.B. Milstein, “Adaptive Multi-sensor Receivers for

Frequency Selective Channels in DS-CDMA Communications Systems”, Proc. 31st Asilomar

Conf. on SSC, Nov. 1997.

[7] A. N. BArbosa and S. L. Miller, “Adaptive Multiuser Detection of DS-CDMA signals in fading

channels”, IEEE Trans. comm., vol. 46, no. 1, pp. 115-124, Jan. 1998.

[8] R. Singh and L. B. Milstein, “Adaptive interference suppression for Direct-Sequence CDMA,”

Submitted to IEEE Trans. on Comm.



9

[9] J. S. Goldstein and I. S. Reed, “Reduced-Rank Adaptive Filtering”IEEE Trans. on SP, Vol.

45, No. 2, pp. 492-496, Feb. 1997.

[10] X. Wang and H. V. Poor, “Blind Multiuser Detection: A Subspace Approach”, IEEE Trans.

on IT, Vol. 44, Num. 2, pp. 677-690, Mar. 1998.

[11] M. L. Honig, S. L. Miller, M. J. Shensa, and L.B. Milstein, “Performance of Adaptive Linear

Interference Suppression in the Presence of Dynamic Fading”, submitted to IEEE Trans. Comm.

[12] S. E. Bensley and B. Aazhang, “Subspace-BAsed Channel Estimation for CDMA Communi-

cation Systems”, IEEE Trans. Comm., vol. 44, no. 8, pp. 1009-1020, Aug. 1996.



10

ˆ d 

Sensor 1

Sensor 2

Sensor M

chip
match

chip
match

chip
match

PROJECT

r1 t( )

r2 t( )

rM t( ) rM i( )

r2 i( )

r1 i( )

˜ r i( )
˜ W T(i)˜ r (i)

y(i)
DLS

Figure 1: Multi-sensor Baseband Receiver Block Structure for User 1
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Figure 2: Error rate vs. partial despreading factor I for a 2-path Rayleigh fading channel. N=64, 3

users with the standard deviation of power 1.5dB for each path, 1/fdT ≈ 2863 symbols/fade cycle

(speed=5 mph), 1/σ2
n = 9dB per path.
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Figure 3: Error rate vs. partial despreading factor I for a 2-path Rayleigh fading channel. N=64, 3

users with the standard deviation of power 1.5dB for each path, 1/fdT ≈ 2863 symbols/fade cycle

(speed=5 mph), 1/σ2
n = 9dB per path.
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Figure 4: Error rate vs. mobile speed (mph) for a 2-path fading channel. N=64, J=8 (I=8), 3 users

with the standard deviation of power 1.5dB for each path, 1/σ2
n = 9dB per path.
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Figure 5: Error rate vs. mobile speed (mph) for a 2-path fading channel. N=64, J=8 (I=8), 3 users

with the standard deviation of power 1.5dB for each path, 1/σ2
n = 9dB per path.


